首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 133 毫秒
1.
通过物理模型实验,对弹性侧壁液舱和刚性液舱内液体晃荡问题进行了研究。由于流固耦合的影响,弹性侧壁液舱内液体晃荡的最低阶固有频率稍小于同尺寸的刚性液舱内液体晃荡的最低阶固有频率。液舱模型处于纵向简谐激励作用下,其中激励频率在最低阶固有频率附近。实验分析两种相对液深比h/L=0.167和h/L=0.333,在二阶模态的次共振和一阶模态的共振状况下,对弹性侧壁液舱与刚性液舱内不同测点的波面、振幅谱和晃动波高进行对比分析。结果表明:在浅液深(h/L=0.167)一阶共振下,流固耦合对波面形态的影响比较明显,弹性侧壁液舱内测点晃动波高明显大于刚性液舱内对应测点波高;而在一般液深(h/L=0.333)一阶共振下,水弹性效应减弱,弹性侧壁液舱与刚性液舱内对应测点处波高差异较小。  相似文献   

2.
基于势流理论和时域高阶边界元方法,建立了三维完全非线性数值波浪水槽模型.利用源造波法产生入射波浪,应用五阶斯托克斯波理论给定波浪速度;采用混合欧拉-拉格朗日方法追踪流体瞬时水面,将二阶泰勒级数展开法应用于更新下一时间步的波面和速度势;通过加速势的方法准确计算自由水面速度的法向导数和物面速度势的时间导数.对完全非线性波浪进行了模拟,得到了稳定的波形.当波浪非线性较小时,与四阶Runge- Kutta法(RK4)计算结果和五阶斯托克斯波理论解均吻合良好;随着波浪非线性的增大,计算结果误差逐渐增大.通过数值试验分析,在满足精度要求的基础上,本方法计算时间略大于四阶Runge- Kutta法的四分之一,大大减少了计算量.  相似文献   

3.
极限波浪运动特性的非线性数值模拟   总被引:1,自引:0,他引:1       下载免费PDF全文
宁德志  滕斌  姜立明  臧军 《海洋学报》2008,30(3):126-132
利用时域高阶边界元方法建立了模拟极限波浪运动的完全非线性数值模型,其中自由水面满足完全非线性自由水面条件.采用半混合欧拉-拉格朗日方法追踪流体瞬时水面,运用四阶Runge-Kutta方法更新下一时间步的波面和速度势,同时应用镜像格林函数消除水槽两个侧面和底面上的积分.研究中利用波浪聚焦的方法产生极限波浪,并且在水槽中开展了物理模型实验,将测点试验数据与数值结果进行了对比,两者吻合得很好.对极限波浪运动的非线性和流域内速度分布进行了研究.  相似文献   

4.
调谐液体阻尼器(TLD)是有效的结构减振装置。TLD在激励作用下内部液体运动属于晃荡问题。本文建立了求解二维不可压缩Navier-Stokes方程的数值模型。数值模型采用对时间积分的分步方法求解压力项,THINC格式捕捉自由面。利用晃荡试验数据验证了模型计算结果的正确性。模拟了不同深度的浅水TLD在不同频率激励作用下内部液体的运动,计算了TLD晃荡产生的阻尼力。分析激励频率对TLD中液体运动的形态和阻尼力的影响。浅水TLD中液体运动形态主要为行波。TLD产生的阻尼力受激励频率影响,在固有频率附近产生共振现象,阻尼力大,减振效果理想。  相似文献   

5.
利用完全非线性数值波浪水槽技术研究水下平板与波浪的相互作用。假定水下平板厚度极薄、刚性,位于有限水深并且非常接近自由水面。应用四阶龙格库塔方法追踪每一时刻的波面形状,采用阻尼层来吸收反射波以保证算法的稳定性,同时引入平滑和重组的方法抑制自由表面控制点的较高梯度。通过对波浪与浮动圆柱相互作用的数值模拟证实了数值波浪水槽方法的有效性,计算结果与线性理论吻合良好。在波浪数值水槽方法中引入造波板模拟波浪产生并与水下平板发生相互作用,应用傅立叶解析方法对波面变形、波浪力作了分析。结果表明在板非常接近自由水面的情况下会表现出现很强的非线性,揭示了线性理论的局限性。  相似文献   

6.
应用理论推导及数值计算方法,对Stokes随机波的谱特性进行了分析。首先将波面方程,海水质点水平速度用一阶波面分量的非线性组合表示,应用平稳随机高阶短的降阶计算法则,得到了波面方程及海水质点水平速度与一阶波面分量的自相关函数之间的关系,从而确定了Stokes随机波浪的波浪谱密度及海水质点水平速度和加速度谱密度,进而求得有关波浪要素的均方根值。文章还应有数值计算方法,分析了波浪基本参数对均方根值的影响。  相似文献   

7.
三阶非线性海浪波面斜率的联合概率统计分布   总被引:2,自引:0,他引:2  
从Longuet-Higgins于1963年建立的非线性随机海浪模型出发,对各向同性波面斜率的联台概率统计分布进行了理论研究.结果表明,在三阶近似下,波面斜率联合概率统计分有为截断的Gram-Charlier级数,截断的项数取决于非线性近似的阶数,每一阶近似均对前一阶近似结果有所修正如果不考虑非线性耦合相互作用的影响,则分布蜕化为高斯分布.  相似文献   

8.
孤立波与带窄缝双箱相互作用模拟研究   总被引:1,自引:1,他引:0  
针对孤立波与带窄缝双箱的作用问题,应用时域高阶边界元方法建立了二维数值水槽。其中,自由水面满足完全非线性运动学和动力学边界条件,对瞬时自由表面流体质点采用混合欧拉-拉格朗日法追踪,采用四阶龙格库塔法对下一时刻的自由水面的速度势和波面升高进行更新。采用加速度势法求解物体湿表面的瞬时波浪力。采用推板方法生成孤立波。通过模拟孤立波在直墙上的爬高以及施加在直墙上的波浪力,并与已发表的实验和数值结果对比,验证本数值模型的准确性。通过数值模拟计算研究了窄缝宽度、方箱尺寸对波浪在箱体迎浪侧爬高,窄缝内波面升高,箱体背浪侧透射波高及箱体受波浪荷载的影响。同时研究了有一定时间间隔的双孤立波与带窄缝双箱系统作用问题。  相似文献   

9.
海浪波面极大值分布的非线性影响   总被引:4,自引:0,他引:4       下载免费PDF全文
依非线性海浪模型,在二阶近似下,利用特征函数展开技术和直接求矩的方法,导出了定点波面位移及其对时间的一阶和二阶导数的联合分布。由此联合分布,导出了二阶非线性近似下的波面极大值分布。它由线性意义下的海浪频谱及所考虑的二阶级。波相互作用所确定。当忽略非线性影响时,文中给出的波面极大值分布退化为Cartwright和Longuet-Higgins所导出的分布。  相似文献   

10.
非线性波浪波面追踪的一种新模式   总被引:1,自引:0,他引:1  
基于Laplace方程的Green积分表达式和波面BemouUi方程所建立的非线性波动数学模型,是一个时域上具有初始值的边值问题,而精确地追踪自由表面的波动位置,给出波面运动瞬时的波面高度和波面势函数,是建立时域内非线性波浪数值模式的基础。本文采用0-1混合型边界元剖分计算域边界并离散Laplace方程的Green积分表达式,采用有限元剖分自由水面并推导满足自由表面非线性边界条件的波面有限元方程,联立计算域内以节点波势函数和波面位置高度的时间增量为未知量的线性方程组,通过时步内的循环迭代,给出每个时步上的波面位置和波面势函数,从而建立了一种新的非线性波浪波面追踪模式。数值造波水槽内的波浪试验表明,其数值模拟结果具有良好的计算精度。  相似文献   

11.
A fully nonlinear numerical model based on a time-domain higher-order boundary element method (HOBEM) is founded to simulate the kinematics of extreme waves. In the model, the fully nonlinear free surface boundary conditions are satisfied and a semi-mixed Euler-Lagrange method is used to track free surface; a fourth-order Runga-Kutta technique is adopted to refresh the wave elevation and velocity potential on the free surface at each time step; an image Green function is used in the numerical wave tank so that the integrations on the lateral surfaces and bottom are excluded. The extreme waves are generated by the method of wave focusing. The physical experiments are carried out in a wave flume. On the horizontal velocity of the measured point, numerical solutions agree well with experimental results. The characteristics of the nonlinear extreme-wave kinematics and the velocity distribution are studied here.  相似文献   

12.
A coupled numerical model considering nonlinear sloshing flows and the linear ship motions has been developed based on a boundary element method. Hydrodynamic performances of a tank containing internal fluid under regular wave excitations in sway are investigated by the present time-domain simulation model and comparative model tests. The numerical model features well the hydrodynamic performance of a tank and its internal sloshing flows obtained from the experiments. In particular, the numerical simulations of the strong nonlinear sloshing flows at the natural frequency have been validated. The influence of the excitation wave height and wave frequency on ship motions and internal sloshing has been investigated. The magnitude of the internal sloshing increases nonlinearly as the wave excitation increases. It is observed that the asymmetry of the internal sloshing relative to still water surface becomes more pronounced at higher wave excitation. The internal sloshing-induced wave elevation is found to be amplitude-modulated. The frequency of the amplitude modulation envelope is determined by the difference between the incident wave frequency and the natural frequency of the internal sloshing. Furthermore, the coupling mechanism between ship motions and internal sloshing is discussed.  相似文献   

13.
A two-dimensional nonlinear random sloshing problem is analyzed by the fully nonlinear wave velocity potential theory based on the finite element method. A rectangular container filled with liquid subjected to specified horizontal random oscillations is studied. Both wave elevation and hydrodynamic force are obtained. The spectra of random waves and forces have also been investigated, and the effects of the peak frequencies and spectral width of the specified spectrum used for the generation of the random oscillations are discussed. It is found that the energy mainly concentrates at the natural frequencies of the container and is dominant at the ith order natural frequency when the peak frequency is close to the ith order natural frequency. Some results are compared between the fully nonlinear solutions, the linear solutions and the linear plus second-order solutions.  相似文献   

14.
In this paper theoretical models are proposed for computing the natural frequencies and modal shapes of two-dimensional asymmetric and symmetric moonpools in the finite water depth. The boundary value problem is solved by using a domain decomposition approach. On the outer vertical boundary bounded by the beam of the two bodies, linearized velocity potential is assumed to be nil. Eigenvalue problem is formulated by matching the velocity potential and fluid flux on the common boundaries to obtain the natural frequencies and modal shapes of the free surface elevation. In the symmetric moonpool cases, so-called single mode approximations (SMA) have been derived and can be adopted for rapid estimation of the natural frequencies for both piston and sloshing modes. The present results have been extensively compared with the solutions using the two-dimensional infinite water depth model developed by Molin [1], the numerical solutions and experimental data by Faltinsen et al. [2]. It is found that the solutions have been improved from the infinite water depth model. It is demonstrated that the proposed models can well predict the resonance frequencies and modal shapes for the two-dimensional asymmetric and symmetric moonpools.  相似文献   

15.
This paper aims at developing a modal approach for the non-linear analysis of sloshing in an arbitrary-shape tank under both horizontal and vertical excitations. For this purpose, the perturbation technique is employed and the potential flow is adopted as the liquid sloshing model. The first- and second-order kinematic and dynamic boundary conditions of the liquid-free surface are used along with a boundary element model which is formulated in terms of the velocity potential of the liquid-free surface. The boundary element model is used to determine the natural mode shapes of sloshing and their corresponding frequencies. Using the modal analysis technique, a non-linear model is presented for the calculation of the first- and second-order potential which can be used to obtain a reduced-order model for the sloshing dynamics. The results of the presented model are verified with the analytical solution for the second-order analysis of sloshing in a rectangular tank and very good results were obtained. Also, the second-order sloshing in some other example tanks with complex bed shapes is studied. The second-order resonance conditions of liquid sloshing in the example tanks are investigated and some conclusions are drawn.  相似文献   

16.
A numerical model is developed to simulate fully nonlinear extreme waves in finite and infinite water-depth wave tanks. A semi-mixed Eulerian-Lagrangian formulation is adopted and a higher-order boundary element method in conjunction with an image Green function is used for the fluid domain. The boundary values on the free surface are updated at each time step by a fourth-order Runga-Kutta time-marching scheme at each time step. Input wave characteristics are specified at the upstream boundary by an appropr...  相似文献   

17.
This paper aims to investigate the effects of the porous baffles on the suppression of sloshing for the tanks with axisymmetric geometries under lateral excitation. Based on the assumptions of inviscid, irrotational, incompressible liquid and small amplitude sloshing, an axisymmetric boundary element method (BEM) for 3D Laplace equation is derived by using the Green's theorem together with the weighted residual method. And a zoning method is employed to model fluid domain in the tanks with complex porous baffles. Meanwhile, the porous baffles are treated motioning together with the tanks, and the velocity across the porous baffle is assumed to be linearly proportional to the pressure gradient between each side of the porous baffle. And the mechanism of suppressing the sloshing response is mainly the energy dissipation of the fluid passing through the porous baffle. Moreover, the linear free surface boundary conditions are also used to solve the governing equations. Compared with other numerical methods, the most prominent advantage of the BEM in solving axisymmetric potential problem is that only the boundaries of half the cross-section instead of the entire problem domain should be discretized, which can cut down large amount of memory and time costs. The present method is verified by comparing the numerical results with the existing literatures, and excellent agreements are obtained. Meanwhile, the proposed models are applied to investigate the effects of the porous baffles on sloshing response in circular cylindrical, annular cylindrical and conical tanks. The effects of the porous baffle length, porous-effect parameter, installation angle and baffle height on the sloshing force, natural frequency and surface elevation are studied. Additionally, some typical sloshing pressure distributions, velocity potential contours and velocity fields are plotted. The results show that swirls at the tips of the baffles can be observed in many cases, and the top-mounted porous baffle makes more significant suppression effects on sloshing response than that of bottom-mounted porous baffle, while increasing the number of ring porous baffles can achieve better restraint effects on sloshing response. And increasing the baffle length of the horizontal wall-mounted ring porous baffle can significantly decrease the sloshing frequencies, as well as the first non-dimensional natural frequency decreases with decrease in porous-effect parameter of the coaxial porous baffle. In addition, remarkable effects on sloshing can be obtained when reasonable designed by selecting the optimal porous-effect parameter, installation angle and baffle height. And this paper can be a useful guide for the seismic design and analysis of many actual liquid storage tanks (such as the Advanced Passive PWR, large water cooling tower, etc.).  相似文献   

18.
Sloshing, or liquid free surface oscillation, in containers has many important applications in a variety of engineering fields. The modal method can be used to solve linear sloshing problems and is the most efficient reduced order method that has been used during the previous decade. In the present article, the modal method is used to solve a nonlinear sloshing problem. The method is based on a potential flow solution that implements a two-phase analysis on sloshing in a rectangular container. According to this method, the solution to the mass conservation equation, with a nonpenetration condition at the tank walls, results in velocity potential expansion; this is similar to the mode shapes used in modal method. The kinematic and dynamic boundary conditions create a set of two-space-dimensional differential equations with respect to time. The numerical solution of this set of differential equations, in the time domain, predicts the time response of interfacial oscillations. Modal method solutions for the time response of container sloshing due to lateral harmonic oscillations show a good agreement with experimental and numerical results reported in the literature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号