首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
俯冲带系统是研究地球水圈-岩石圈相互作用的天然实验室。俯冲板片所携带的水进入俯冲带系统,显著影响俯冲板片上地幔蛇纹石化程度、岛弧岩浆活动以及俯冲带地震机制等构造动力学过程。沿着环太平洋俯冲带,由主动源地震探测得到的板片含水量结果可以很好地解释区域相关地震观测,同时由被动源地震探测到的上地幔低速异常区域都与俯冲板片断层发育区相一致。多道反射地震探测与数值模拟都揭示了俯冲板块正断层广泛存在,可穿透莫霍面,深度可达海底下至少20 km。俯冲板块正断层为流体进入地壳与上地幔提供了重要通道,导致上地幔蛇纹石化程度达到1.4%,甚至更高。在洋壳俯冲过程中,随着温压增加,在不同深度脱水形成不同性质流体与地幔反应。通过俯冲带流体包裹体和交代成因矿物等的研究发现水岩相互作用广泛存在。本文旨在回顾俯冲板片含水量探测及水岩相互作用研究,简述近年来取得的重要进展以及对将来相关研究的启示。  相似文献   

2.
洋壳俯冲过程中温度、压力升高和密度差异,可导致俯冲板片熔融柱的快速上涌,并作用在上覆板块岩石圈地幔底部,从而导致岩石圈的破坏减薄以及地表形态的剧烈变化,该过程类似于地幔柱对岩石圈的破坏作用。目前,对于俯冲板片熔融柱的形成及其对岩石圈破坏程度的研究相对较少,特别是地表动力地形变化与深部岩石圈破坏作用之间的响应关系依然不清楚。为此,本文将利用I2VIS有限差分方法,基于质量守恒方程、动量守恒方程以及能量守恒方程,通过给定材料参数和一定边界条件,计算揭示俯冲洋壳在不同时间和不同深度下发生部分熔融并形成俯冲板片熔融柱的过程,从而模拟再现该熔融柱对上覆板块岩石圈的破坏过程,并进一步分析其导致的浅部地表地形变化响应。数值模拟结果显示,在大洋板片俯冲过程中,由俯冲的陆源沉积物以及洋壳形成的混合熔融柱垂向侵蚀岩石圈底部,造成岩石圈减薄。在熔融柱的横向侵蚀过程中,岩石圈地幔熔融范围增加,可达300 km。在地形变化方面,板块俯冲造成大陆前缘受挤压变形,引起构造变形,构造变形范围可达300 km。同时,与俯冲相关形成的熔融柱对岩石圈地幔底部的侵蚀作用逐渐增强,动力地形变化幅度增大,并持续抬升,最终可垂向抬升至4 km。动力地形的变化范围局限在300 km以内,这与岩石圈地幔的破坏范围保持一致。  相似文献   

3.
燕山运动以来,华北东部地区发生了翻天覆地之构造转变,构造体制从印支期末的地体拼贴、大陆增生,转变为地幔热柱多级演化——渤海海盆伸展裂陷的发展阶段。地形地貌上亦从东部的隆升高原转变为华北东部盆-岭构造,形成了以渤海地幔热柱为中心的大规模裂陷与外围一系列幔枝构造快速隆升的有机组合。渤海的形成是地幔热柱演化的浅部反映,表现为遍及全区强烈的构造运动、大规模的岩浆活动、区域性超变质作用,反映了燕山—喜马拉雅期强烈的幔壳活动。  相似文献   

4.
古特提斯缝合带澜沧江段花岗岩高温高压实验模拟   总被引:3,自引:0,他引:3  
对古特提斯主体遗迹的云南西部昌宁-孟连构造混杂缝合带、临沧花岗岩基、澜沧江韧性变形变质带进行了岩石高温高压三轴变形实验模拟研究.以期对该构造带形成时期所处的构造物理环境作出判断。实验岩洋取自紧邻澜沧江韧性剪切变形变质带西侧的临沧花岗岩基。实验后样品产生了一系列新生显微构造,对应的地壳深度环境相当于中下地壳(13-18km)。澜沧江韧性变形变质带花岗岩的显微组构以动力重结晶颗粒极为发育为特征,表明其形成时的环境远比实验深度更深。综合考虑临沧花岗岩基现在的厚度(达15km)和花岗岩浆流动的上限深度(8-10km)以及风化剥蚀量.可以认为临沧花岗岩基的形成深度可大于25km,原始岩浆源于下地壳下部.接近莫霍面的顶面。澜沧江韧性变形变质带的形成与临沧岩基向东逆冲相关.它直抵古特提斯俯冲板块下插滑动顶面。研究表明,昌宁-孟连古特提斯曾发生过真正意义上的大规模洋壳俯冲.是一个具有较大规模的古洋盆。  相似文献   

5.
中国东部的苏鲁造山带印支期先后经历了大洋消减俯冲、大陆碰撞、陆壳深俯冲、陆内造山等复杂过程。综合苏鲁造山带的构造地质学、岩石学、岩相古地理学、年代学进展,发现以下事实用传统的华南向华北俯冲难以解释:(1)徐淮地区形成了明显的朝北西拓展的逆冲构造变形,此外,苏鲁造山带中还存在大量的北西向逆冲推覆构造;(2)苏鲁造山带中出露的白垩纪花岗岩中来自古元古代的继承锆石,以及Sr、Nd、Pb同位素示踪结果都显示与华北地块南缘地质体更为相似;(3)苏鲁造山带北侧的胶莱盆地以及胶北隆起缺乏晚古生代到中生代的弧后火山岩证据;(4)华北南缘三叠纪时期的古地理环境更接近被动大陆边缘。基于这些事实,本文认为,晚古生代-早三叠世早期苏鲁段的商丹洋可能向南东俯冲,不同于秦岭-大别段的商丹洋向北俯冲,消减到秦岭-大别微陆块苏鲁段之下,发生华北地块与该微陆块的拼合,华北地块整体向南东楔入秦岭-大别微陆块,导致大别-苏鲁超高压岩石垂向折返剥露;中三叠世-晚三叠世,勉略洋自东向西的剪刀式闭合,华南地块向北秦岭-大别微陆块俯冲拼合,并逐渐将华南地块与华北地块之间的秦岭-大别微陆块向西、向北侧向挤出,到了中生代华北地块持续向南东俯冲并楔入华南地块,将苏鲁-大别造山带沿郯庐断裂错断并最终形成该区总体构造格局。  相似文献   

6.
洋-陆转换与耦合过程   总被引:1,自引:0,他引:1  
洋-陆转换/耦合地带就是大陆与大洋岩石圈转换/耦合的特殊构造地带。探索该区动力学对于深入理解人类密集区的地质过程具有重要的意义。这里洋-陆转换/耦合过程不是指陆壳向洋壳或陆幔向洋幔之间的物质转换,因洋壳向陆壳或洋幔向陆幔的物质转换过程也是不可逆的,而是特指构造动力作用或能量的转换交接过程。洋-陆转换/耦合带的狭义定义为被动大陆边缘的陆壳明显减薄到洋壳出现的深水区;但广义定义包括上述被动陆缘裂解作用涉及的区域范围,或是大洋岩石圈俯冲作用所能影响到的区域,其核心依然是俯冲带和/或大陆边缘,也就是说,其内涵是俯冲带和大陆边缘概念的总和,包涵浅部的地理要素和深部的地质因素。当前,对于洋-陆转换/耦合带的国际关注点很多,国际地学前沿问题较多,其中主要侧重以下几个方面:(1)物质:洋内弧形成与初始陆壳生成、俯冲脱水-相变、岩浆工厂、变质工厂;(2)结构:俯冲带类型、分段性、洋-陆转换/耦合带变形型式、地幔楔精细对流结构、俯冲面糙度-孔隙度-渗透率时空特征;(3)过程:俯冲过程、构造跃迁、构造转换、深部底侵、拆沉、高压-超高压岩石剥露、弧后扩张过程、板片窗、俯冲侵蚀与增生、物质迁移-转变-运聚、多圈层耦合过程;(4)机制:俯冲起源与板块机制起源、陆缘互换机制、地震触发机制、深部拆沉与底侵动力学机制、大陆裂解与(火山型和非火山)被动陆缘形成、洋-陆转换/耦合带构造跃迁机制、高压-超高压岩石剥露新机制、岩浆动力学、主动与被动俯冲机制、海山俯冲;(5)效应:源-汇效应、地表地形过程与深部流变关联、板片窗的构造-岩浆-成矿效应、边缘海盆地与资源-能源效应、俯冲与地震-海啸-滑坡灾害链。西太平洋和印度洋更是我国走向深海大洋、实现"海洋强国"的关键海域,蕴含着诸多中国的国家利益,也具有极其丰富的洋-陆转换/耦合过程的关键科学问题。现阶段可初步概括为以下几点:(1)板块重建的洋陆转换/耦合带检验;(2)深部过程(底侵-拆沉)与机制;(3)西太平洋陆缘构造体制和机制转换;(4)俯冲带分段性、过程与地震触发机制;(5)地表地形过程与深部流变、岩石圈强度关联;(6)地史期间的板片窗及其构造-岩浆-成矿效应;(7)洋陆转换/耦合带变形型式、构造跃迁和机制;(8)俯冲脱水、岩浆工厂与岩浆动力学;(9)边缘海盆地与资源、能源和灾害;(10)西太平洋板块格局与华北克拉通破坏;(11)太平洋板块格局与华南大陆再造;(12)印度洋过程重建与青藏高原隆升;(13)东亚地史期间的洋陆转换/耦合过程。  相似文献   

7.
新几内亚-所罗门弧(PN-SL)位于印度-澳大利亚板块与太平洋板块汇聚边界、新特提斯构造域东端。晚白垩世以来,逐渐演化形成复杂的沟-弧-盆-台、俯冲时序完整的俯冲构造体系。受多期次、多类型板块俯冲起始作用的制约,PN-SL俯冲体系深部结构呈现出明显的空间差异性:板块俯冲深度由500 km减小至不足100 km,板块俯冲角度则由70°减小至30°。俯冲体系东侧毗邻的翁通爪哇海台作为世界上最大的海台,其显著的"凸起"构造以及低密度结构,重新塑造了PN-SL俯冲体系的构造格局,但不同于低密度结构俯冲诱发海沟位置后移、俯冲极性反转二元经典模式,弧后所罗门海盆发生反向俯冲的同时,中新世以来呈现出NW向、NE向和SW向的多向俯冲过程。这意味着翁通爪哇海台与PN-SL俯冲体系汇聚形变过程并非仅依据板块密度变化来简单解释,需要考虑其复杂的构造环境和诸多的构造要素。特别是作为岩石圈强度的重要影响因子—俯冲体系流体活动,导致岩石圈强度减弱、熔点降低的同时,伴随板块俯冲向地球深部运移,促使板片脱水并与地幔楔发生水化交代作用,进而改变壳幔物质组成及流变学性质,诱发地幔楔部分熔融和岛弧岩浆活动,是理解板块俯冲构造动力的关键切入点。  相似文献   

8.
海南岛地壳厚度与泊松比结构   总被引:2,自引:0,他引:2  
地壳厚度和泊松比是了解地球内部介质的重要参数,研究二者之间的关系能够为揭示深部地壳结构特征提供重要信息。本文提取了海南岛固定地震台站记录到的远震接收函数波形,通过在地壳厚度和波速比域对壳-幔间断面的Ps转换波及其多次波震相进行振幅叠加,同时参考人工地震探测结果,获得了海南岛地区的地壳厚度和泊松比分布。结果显示:海南岛地区地壳厚度为26—31km;受普遍发育的花岗岩以及火山作用影响,其泊松比值基本小于0.26,地壳厚度与泊松比之间存在正消长关系,表明该区的构造伸展作用主要造成富含镁铁成分的下地壳的明显减薄;部分地区的上地壳可能存在褶皱或逆冲推覆构造,其泊松比出现低值异常。  相似文献   

9.
针对沙捞越盆地盆地类型的不同观点,通过盆地区域构造背景、构造演化阶段、构造沉降曲线的分析以及构造地质事件的恢复,得到以下认识:①盆地的构造演化可划分为晚白垩世—晚始新世,拉让洋壳向婆罗洲基底俯冲,并在婆罗洲中部形成火山岛弧的俯冲增生期;渐新世—早中新世,拉让洋壳俯冲消减完毕,路科尼亚地块与婆罗洲碰撞,并俯冲于婆罗洲基底之下,形成周缘前陆盆地的前陆盆地期;中中新世至今,南中国海开启、婆罗洲碰撞抬升引起盆地稳定沉降的被动边缘期3个阶段。②盆地所选井的构造沉降曲线具有早期缓慢沉降、晚期快速沉降这一前陆盆地的典型特征。③盆地构造地质事件复原图表明,盆地晚期处于被动大陆边缘构造背景。由此,认为沙捞越盆地为复合型盆地,即早期为前陆盆地,晚期则转化为大陆边缘型盆地。  相似文献   

10.
以微量元素、稀土元素、Sr和Nd同位素变异特征为依据,确定鲁苏榴辉岩为多成因、多来源和多阶段,指出主要是在印支期扬子陆块与华北陆块碰撞造山作用过程中,挤入的上地幔碎片以及不同原岩类型的壳内高压变质岩碎块。燕山晚期的区域构造热事件使得某些榴辉岩的同位素体系再平衡。  相似文献   

11.
The Ulleung Basin (Tsushima Basin) in the southwestern East Sea (Japan Sea) is floored by a crust whose affinity is not known whether oceanic or thinned continental. This ambiguity resulted in unconstrained mechanisms of basin evolution. The present work attempts to define the nature of the crust of the Ulleung Basin and its tectonic evolution using seismic wide-angle reflection and refraction data recorded on ocean bottom seismometers (OBSs). Although the thickness of (10 km) of the crust is greater than typical oceanic crust, tau-p analysis of OBS data and forward modeling by 2-D ray tracing suggest that it is oceanic in character: (1) the crust consists of laterally consistent upper and lower layers that are typical of oceanic layers 2 and 3 in seismic velocity and gradient distribution and (2) layer 2C, the transition between layer 2 and layer 3 in oceanic crust, is manifested by a continuous velocity increase from 5.7 to 6.3 km/s over the thickness interval of about 1 km between the upper and lower layers. Therefore it is not likely that the Ulleung Basin was formed by the crustal extension of the southwestern Japan Arc where crustal structure is typically continental. Instead, the thickness of the crust and its velocity structure suggest that the Ulleung Basin was formed by seafloor spreading in a region of hotter than normal mantle surrounding a distant mantle plume, not directly above the core of the plume. It seems that the mantle plume was located in northeast China. This suggestion is consistent with geochemical data that indicate the influence of a mantle plume on the production of volcanic rocks in and around the Ulleung Basin. Thus we propose that the opening models of the southwestern East Sea should incorporate seafloor spreading and the influence of a mantle plume rather than the extension of the crust of the Japan Arc.  相似文献   

12.
南海区域岩石圈的壳-幔耦合关系和纵向演化   总被引:11,自引:2,他引:11  
南海区域岩石圈由地壳层和上地幔固结层两部分组成。具典型大洋型地壳结构的南海海盆区莫霍面深度为9~13km,并向四周经陆坡、陆架至陆区逐渐加深;陆缘区莫霍面一般为15~28km,局部区段深达30~32km,总体呈与水深变化反相关的梯度带;东南沿海莫霍面深约28~30km,往西北方向逐渐增厚,最大逾36km。南海区域上地幔天然地震面波速度结构明显存在横向分块和纵向分层特征。岩石圈底界深度变化与地幔速度变化正相关;地幔岩石圈厚度与地壳厚度呈互补性变化,莫霍面和岩石圈底界呈立交桥式结构,具有陆区厚壳薄幔—洋区薄壳厚幔的岩石圈壳-幔耦合模式。南海区域白垩纪末以来的岩石圈演化主要表现为陆缘裂离—海底扩张—区域沉降的过程,现存的壳-幔耦合模式显然为岩石圈纵向演化产物,其过程大致可分为白垩纪末至中始新世的陆缘裂离、中始新世晚期至中新世早期的海底扩张和中新世晚期以来的区域沉降等三个阶段。  相似文献   

13.
As an interoceanic arc, the Kyushu-Palau Ridge(KPR) is an exceptional place to study the subduction process and related magmatism through its interior velocity structure. However, the crustal structure and its nature of the KPR,especially the southern part with limited seismic data, are still in mystery. In order to unveil the crustal structure of the southern part of the KPR, this study uses deep reflection/refraction seismic data recorded by 24 ocean bottom seismometers to reconstruct a detail...  相似文献   

14.
A seismic refraction study on old (110 Myr) lithosphere in the northwest Pacific Basin has placed constraints on crustal and uppermantle seismic structure of old oceanic lithosphere, and lithospheric aging processes. No significant lateral variation in structure other than azimuthally anisotropic mantle velocities was found, allowing the application of powerful amplitude modeling techniques. The anisotropy observed is in an opposite sense to that expected, suggesting the tectonic setting of the area may be more complex than originally thought. Upper crustal velocities are generally larger than for younger crust, supporting current theories of decreased porosity with crustal aging. However, there is no evidence for significant thickening of the oceanic crust with age, nor is there any evidence of a lower crustal layer of high or low velocity relative to the velocity of the rest of Layer 3. The compressional and shear wave velocities rule out a large component of serpentinization of mantle materials. The only evidence for a basal crustal layer of olivine gabbro cumulates is a 1.5 km thick Moho transition zone. In the slow direction of anisotropy, upper mantle velocities increase from 8.0 km s-1 to 8.35 km s-1 in the upper 15 km below the Moho. This increase is inconsistent with an homogeneous upper mantle and suggests that compositinal or phase changes occur near the Moho.  相似文献   

15.
Berndt  C.  Mjelde  R.  Planke  S.  Shimamura  H.  Faleide  J.I. 《Marine Geophysical Researches》2001,22(3):133-152
Ocean bottom seismograph (OBS), multichannel seismic and potential field data reveal the structure of the Vøring Transform Margin (VTM). This transform margin is located at the landward extension of the Jan Mayen Fracture Zone along the southern edge of the Vøring Plateau. The margin consists of two distinctive segments. The northwestern segment is characterized by large amounts of volcanic material. The new OBS data reveal a 30–40 km wide and 17 km thick high-velocity body between underplated continental crust to the northeast and normal oceanic crust in the southwest. The southeastern segment of the mar is similar to transform margins elsewhere. It is characterized by a 20–30 km wide transform margin high and a narrow continent-ocean transition. The volcanic sequences along this margin segment are less than 1 km thick. We conclude from the spatial correspondence of decreased volcanism and the location of the fracture zone, that the amount of volcanism was influenced by the tectonic setting. We propose that (1) lateral heat transport from the oceanic lithosphere to the adjacent continental lithosphere decreased the ambient mantle temperature and melt production along the entire transform margin and (2) that right-stepping of the left-lateral shear zone at the northwestern margin segment caused lithospheric thinning and increased volcanism. The investigated data show no evidence that the breakup volcanism influenced the tectonic development of the southeastern VTM.  相似文献   

16.
The comparative estimation of the parameters of the lithosphere of the Mid-Ocean Southwestern Indian range in the areas westwards and eastwards of the Atlantis II transform fault zone shows that, within this zone, an alteration in the basalt composition occurred. Eastwards of this zone, a decrease of the anomaly of the magnetic field occurred and increased average depths of the axial part (4.7 km) and thinning (up to 4–5 km) of the ocean crust with increased rates of seismic waves in the upper mantle were observed. This, first of all, indicates an anomalously cold mantle below the oceanic crust. The changes that occurred in the location of the Euler pole within the last millions of years resulted in slanting spreading in the area of the investigation with rates of opening lower than 1.8 cm/year probably accompanied by the phenomena of transtension in the active parts of the transform faults. The interaction between the Landly and Somali lithosphere plates occurred along the diffusion boundary and was accompanied by problems with tracing the chrones between the neighboring profiles of geomagnetic observations. Consequently, the more detailed investigation of the configuration of the diffusion boundary will contribute to the more accurate reconstruction of the paleogeodynamics of the central part of the Indian Ocean.  相似文献   

17.
This paper presents actuality of investigation and study of the crustal structure characters of East China Sea at home and abroad. Based on lots of investigation and study achievements and the difference of the crustal velocity structure from west to east, the East China Sea is divided into three parts - East China Sea shelf zone, Okinawa Trough zone and Ryukyu arc-trench zone. The East China Sea shelf zone mostly has three velocity layers, i.e., the sediment blanket layer (the velocity is 5.8-5.9 km/s), the basement layer (the velocity is 6.0-6.3 km/s), and the lower crustal layer (the velocity is 6.8-7.6 km/s). So the East China Sea shelf zone belongs to the typical continental crust. The Okinawa Trough zone is located at the transitional belt between the continental crust and the oceanic crust. It still has the structural characters of the continental crust, and no formation of the oceanic crust, but the crust of the central trough has become to thinning down. The Ryukyu arc-trench zone belongs to the transitional type crust as a whole, but the ocean side of the trench already belongs to the oceanic crust. And the northwest Philippine Basin to the east of the Ryukyu Trench absolutely belongs to the typical oceanic crust.  相似文献   

18.
Two long seismic refraction lines along the crest of the Iceland-Faeroe Ridge reveal a layered crust resembling the crust beneath Iceland but differing from normal continental or oceanic crust. The Moho was recognised at the south-eastern end of the lines at an apparent depth of 16–18 km. A refraction line in deeper water west of the ridge and south of Iceland indicates a thin oceanic type crust underlain by a 7.1 km/s layer which may be anomalous upper mantle.An extensive gravity survey of the ridge shows that it is in approximate isostatic equilibrium; the steep gravity gradient between the Norwegian Sea and the ridge indicates that the ridge is supported by a crust thickened to about 20 km rather than by anomalous low density rocks in the underlying upper mantle, in agreement with the seismic results. An increase in Bouguer anomaly of about 140 mgal between the centre of Iceland and the ridge is attributed to lateral variation in upper mantle density from an anomalous low value beneath Iceland to a more normal value beneath the ridge. Local gravity anomalies of medium amplitude which are characteristic of the ridge are caused by sediment troughs and by lateral variations in the upper crust beneath the sediments. A steep drop in Bouguer anomaly of about 80 mgal between the ridge and the Faeroe block is attributed partly to lateral change in crustal density and partly to slight thickening of the crust towards the Faeroe Islands; this crustal boundary may represent an anomalous type of continental margin formed when Greenland started to separate from the Faeroe Islands about 60 million years ago.We conclude that the Iceland-Faeroe Ridge formed during ocean floor spreading by an anomalous hot spot type of differentiation from the upper mantle such as is still active beneath Iceland. This suggests that the ridge may have stood some 2 km higher than at present when it was being formed in the early Tertiary, and that it has subsequently subsided as the spreading centre moved away and the underlying mantle became more normal; this interpretation is supported by recognition of a V-shaped sediment filled trough across the south-eastern end of the ridge, which may be a swamped sub-aerial valley.  相似文献   

19.
Crustal Thinning of the Northern Continental Margin of the South China Sea   总被引:2,自引:0,他引:2  
Magnetic data suggest that the distribution of the oceanic crust in the northern South China Sea (SCS) may extend to about 21 °N and 118.5 °E. To examine the crustal features of the corresponding continent–ocean transition zone, we have studied the crustal structures of the northern continental margin of the SCS. We have also performed gravity modeling by using a simple four-layer crustal model to understand the geometry of the Moho surface and the crustal thicknesses beneath this transition zone. In general, we can distinguish the crustal structures of the study area into the continental crust, the thinned continental crust, and the oceanic crust. However, some volcanic intrusions or extrusions exist. Our results indicate the existence of oceanic crust in the northernmost SCS as observed by magnetic data. Accordingly, we have moved the continent–ocean boundary (COB) in the northeastern SCS from about 19 °N and 119.5 °E to 21 °N and 118.5 °E. Morphologically, the new COB is located along the base of the continental slope. The southeastward thinning of the continental crust in the study area is prominent. The average value of crustal thinning factor of the thinned continental crust zone is about 1.3–1.5. In the study region, the Moho depths generally vary from ca. 28 km to ca. 12 km and the crustal thicknesses vary from ca. 24 km to ca. 6 km; a regional maximum exists around the Dongsha Island. Our gravity modeling has shown that the oceanic crust in the northern SCS is slightly thicker than normal oceanic crust. This situation could be ascribed to the post-spreading volcanism or underplating in this region.  相似文献   

20.
A Seabeam reconnaissance of 1200 km of the deep sediment-starved axis of Tonga Trench delineated the fine-scale relief at the outcrop of a subduction zone generally characterized by tectonic erosion rather than accretion. The commonest axial cross-section has a steep (12°) irregular inner slope intersecting the thinly sedimented surface of Mesozoic ocean crust, which dips under it at 5–6°. There is little or no intervening turbidite fill, but small lenses interpreted as debris deposits occur at the foot of parts of the inner slope that lack basins or benches which elsewhere obstruct downslope sediment transport. The oceanic slope is severely broken by parallel but slightly sinuous fractures induced by bending of the plate, and entry of outer-slope grabens into the subduction zone is confirmed to be a morphologically and tectonically important process. Arrival of oceanic seamounts and volcanic ridges at the trench outer slope and axis affects the fracture pattern of the oceanic plate, the depth of the temporarily plugged axis, and the relief of the lower inner slope. Subduction of the Louisville guyot chain, or of the extensive hotspot swell and thick sediment apron that surrounds it, has important regional effects as well, shoaling 400 km of trench axis and causing development of a small accretionary prism with trench-slope basins. Because the intersection point of the hot-spot chain has moved rapidly south along the trench, structural changes that occur in the wake of guyot-chain subduction can also be inferred: accretion at the inner slope is followed by rapid tectonic erosion, which unroofs a wider strip of downgoing lithosphere and thereby deepens the trench axis. The longitudinal profile of axial depths, made locally irregular by the collision of medium-scale volcanic and tectonic relief on the oceanic plate, also has a step near 18.5° S, where there is a regional depth difference in the oceanic crust entering the trench.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号