首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Unusual large-scale phytoplankton blooms in the equatorial Pacific   总被引:1,自引:0,他引:1  
Unusual large-scale accumulations of phytoplankton occurred across 10,000 km of the equatorial Pacific during the 1998 transition from El Niño to La Niña. The forcing and dynamics of these phytoplankton blooms were studied using satellite-based observations of sea surface height, temperature and chlorophyll, and mooring-based observations of winds, hydrography and ocean currents. During the bloom period, the thermocline (nutricline) was anomalously shallow across the equatorial Pacific. The relative importance of processes that enhanced nutrient flux into the euphotic zone differed between the western and eastern regions of the blooms. In the western bloom region, the important vertical processes were turbulent vertical mixing and wind-driven upwelling. In contrast, the important processes in the eastern bloom region were wave-forced shoaling of nutrient source waters directly into the euphotic zone, along-isopycnal upwelling, and wind-driven upwelling. Advection by the Equatorial Undercurrent spread the largest bloom 4500 km east of where it began, and advection by meridional currents of tropical instability waves transported the bloom hundreds of kilometers north and south of the equator. Many processes influenced the intricate development of these massive biological events. Diverse observations and novel analysis methods of this work advance the conceptual framework for understanding the complex dynamics and ecology of the equatorial Pacific.  相似文献   

2.
Chlorophyll blooms consistently develop in the oligotrophic NE Pacific in late summer, isolated from land masses and sources of higher chlorophyll waters. These blooms are potentially driven by nitrogen fixation, or by vertically migrating phytoplankton, and a better understanding of their ubiquity could improve our estimate of the global nitrogen fixation rate. Here, global SeaWiFS chlorophyll data from 1997 to 2007 are examined to determine if similar blooms occur in other oligotrophic gyres. Our analysis revealed blooms in five other areas. Two of these are regions where blooms have been previously identified: the SW Pacific and off the southern tip of Madagascar. Previously, unnoticed summer blooms were also identified in the NE and SW Atlantic and in a band along 10°S in the Indian Ocean. There is considerable variation in the intensity and frequency of blooms in the different regions, occurring the least frequently in the Atlantic Ocean. The blooms that develop along 10°S in the Indian Ocean are unique in that they are clearly associated with a hydrographic feature, the 10°S thermocline ridge, which explains the bloom within a conventional upwelling scenario. The environment and timing of the blooms, developing in oligotrophic waters in late summer, are conducive to both nitrogen fixers and vertically migrating phytoplankton, which require a relatively stable water column. However, the specific locations of the chlorophyll blooms generally do not coincide with areas of maximum levels of nitrogen fixation or Trichodesmium. The NE Pacific chlorophyll blooms develop in a region with a very high SiO4/NO3 ratio, where silicate will not be a limiting nutrient for diatoms. The blooms often develop between eddies, wrapping around the periphery of anti-cyclonic features. However, none of the areas where the blooms develop have particularly high eddy kinetic energy, from either a basin-scale or a mesoscale perspective, suggesting that other factors, such as interactions with a front or dynamics associated with the critical latitude, operate in conjunction with the eddy field to produce the observed blooms.  相似文献   

3.
用59年Ishii再分析温度资料,讨论了热带西南印度洋(SWTIO)上升流区的季节和年际变化以及与上升流区有关的温度距平的变化,同时分析了其与热带印太海气系统的关系,结果显示SWTIO 上升流在南半球冬、夏季比较强,春季最弱。它的范围在5°~1°S,在东西向从50°E可以伸展到90°E。该上升流区的变化与温跃层的温度距平有密切的关系,并存在明显的5 a振荡周期。SWTIO上升流区温度距平的5 a周期振荡是由热带东印度洋温度距平在最大垂直温度距平曲面(MTAL)上向西沿着11.5°~6.5°S传播过来的,它与热带太平洋的温度距平传播方式不同。SWTIO上升流是热带印太海气系统的一个重要组成部分,印度洋偶极子 超前SWTIO上升流区温度变化5个月,最大相关系数达到0.57,NINO3区指数超前SWTIO上升流区指数2个月达到0.49。当热带印太区域的大气风场改变,影响热带太平洋和印度洋表层SSTA,出现ENSO和DIPOLE,进一步向西传播到SWTIO次表层,导致SWTIO上升流区出现改变。  相似文献   

4.
通过海气耦合模式CCSM3(The Community Climate System Model version 3),研究在北大西洋高纬度淡水强迫下,北太平洋冬季的海表温度SST、风场及流场的响应及其区域性差异。结果表明:淡水的注入使北太平洋整体变冷,但有部分区域异常增暖;在太平洋东部赤道两侧,SST的变化出现北负南正的偶极子型分布。阿留申低压北移的同时中纬度西风减弱,热带附近东北信风增强。黑潮和南赤道流减弱,北太平洋副热带逆流和北赤道流增强,日本海被南向流控制。风场及流场的改变共同导致了北太平洋SST异常出现复杂的空间差异:北太平洋中高纬度SST的降温主要由大气过程决定,海洋动力过程主要影响黑潮、日本海及副热带逆流区域的SST,太平洋热带地区SST异常由大气与海洋共同主导。  相似文献   

5.
应用TAO(Tropical Atmosphere Ocean project)热带太平洋实测海温和风场资料,分析研究了2010/2011年La Nia事件的变化特征,讨论了此次过程中赤道太平洋次表层异常海温的变化特征及其传播过程,以及上层海温场的异常变化机理。结果表明,2010/2011年的La Nia事件与传统事件不同,是一次明显的中部型La Nia事件(简称CPP La Nia),其爆发过程主要存在两个不同机制的响应过程:一是西太平洋暖池(WPWP)区域次表层异常冷海温通过赤道潜流的作用沿温跃层东传,导致赤道东太平洋上层海洋温度场出现异常降温:二是赤道中东太平洋出现强的距平东风,通过上升流作用,导致冷海温上传影响中太平洋上层异常海温场。前者是导致La Nia事件的必要条件,后者则是形成此次中部型La Nia事件的关键过程。由分析结果还表明,日界线以东赤道太平洋纬向风变化对中西太平洋上层海温场变化有重要影响,是导致此次中部型事件爆发的重要机制。文章进一步分析了此次中部型La Nia事件过程中热带垂直环流的变化,结果表明经向和纬向大气环流都表现出明显的异常。  相似文献   

6.
INTRODUCTIONSincetheTOGA-COARElOP(October1992--March1993),usingthelOPdatamanyscientistshaveanalyzedthedifferenttimescaleair-seainteractionduringoccurringanddevelopingperiodof1992/1993EINifio,andespeciallyemphasizedtheintraseasonalvariation(Wuetal.,1993;Liu,1993;WuandSheng,1993).ThishasgottenanewunderstandingoftheEINino*ThisworkissupportedbytheNationalKeyProjectStudiesonShort-rangeClimatePredictionSysteminChinaundercontractNo.96--908-04-02--2.1.FirstinstituteofOceanography,S…  相似文献   

7.
对海洋中起伏运动(heaving)信号的时空分布研究能够帮助我们更好地了解气候系统中的年际和年代际变率。文章通过再分析资料和模式对太平洋区域的heaving主要模态进行了研究。研究结果表明: 太平洋区域主要存在两种heaving模态: 第一模态主要表现为赤道东西两侧的温跃层异常信号反位相; 第二模态表现为赤道区域和副热带区域的温跃层异常信号呈现反位相变化的规律。本文对这两个主要heaving模态所涉及的物理过程进行详细讨论, 结果表明: 东西反位相模态主要是受赤道波动调节的结果; 而经向结构模态则主要是由赤道地区的波动和副热带区域的风应力旋度异常作用共同导致。此外, 我们还讨论了heaving模态可以通过海洋波动以及Ekman输送等过程对海盆尺度的热输送(振幅约为5×1014W)以及海洋热含量(振幅约为1.5×1020J)的再分配起到了关键的调制作用, 进一步表明heaving模态对全球气候变化有着重要的作用。  相似文献   

8.
本文使用SODA(simple ocean data assimilation)海洋同化资料,系统分析了厄尔尼诺-南方涛动(El Ni?o-Southern Oscillation,ENSO)循环中冷暖位相期间热带太平洋上层海洋环流的演变规律,探讨了形成海洋环流异常的新机制。结果表明,在厄尔尼诺成熟期,热带中东太平洋赤道潜流最弱,赤道两侧出现反气旋性环流异常;西太平洋赤道外热带海域出现气旋性环流异常,该区南、北赤道流、棉兰老流、黑潮、新几内亚沿岸潜流及南赤道逆流增强;北赤道逆流区出现异常气旋性环流串,北赤道逆流接近正常。在厄尔尼诺衰退期和拉尼娜发展期,热带中西太平洋赤道潜流达到极强,赤道两侧出现气旋性环流异常;西太平洋赤道外热带海域异常环流减弱,该处主要流场的强度减弱或处于正常状态;北赤道逆流区反转为异常西向流。结果表明, ENSO循环期间的上层海洋环流异常受到热带太平洋温跃层深度异常产生的压强梯度力异常调控,在赤道外热带海洋温跃层深度异常和科里奥利力共同作用产生大尺度海洋环流异常,而在赤道海域,海洋温跃层深度异常和Gill效应造成赤道潜流异常以及关于赤道对称的气旋或反气旋性环流异常。  相似文献   

9.
Although plankton bloom incidents in the upper Gulf of Thailand (UGoT) have been reported, no dynamic investigation of the phenomenon has been conducted. To address this need, a simple pelagic ecosystem model coupled with the Princeton Ocean Model (POM) was employed to investigate seasonal variations in surface chlorophyll-a (chl-a) distributions to clarify phytoplankton dynamics in this area. The results revealed patterns of seasonal chl-a distribution that correspond to local wind, water movement and river discharge. High chl-a patchiness was found to be concentrated near the western coast following westward circulation near the northern coast developed during the northeast monsoon. During the southwest monsoon high concentrations were observed around the northeastern coast due to eastward flow. The simulated results could explain the seasonal shifting of phytoplankton blooms, which typically arise along the western and eastern coasts during the northeast and the southwest monsoons, respectively. Sensitivity analyses of simulated chl-a distributions demonstrate that water stability, including wind-induced vertical currents and mixing, plays significant roles in controlling phytoplankton growth. Nutrients in the water column will not stimulate strong plankton blooms unless upwelling develops or vertical diffusivity is low. This finding suggests an alternative aspect of the mechanism of phytoplankton bloom in this region.  相似文献   

10.
热带西太平洋暖池异常东伸与热带东太平洋增温   总被引:7,自引:1,他引:6  
本文利用“Climate Diagnostics Bulletin”、“Oceanographic Monthly Summary”、美国夏威夷水位中心提供的资料以及TOGA-COAREIOP资料,分析了1992~1993厄尔尼诺事件中西太平洋暖池、东太平洋SST对异常风场的响应,结果指出:由于西风暴发而引起的西太平洋暖水向东输送,不仅导致西太平详水位降低,而且导致温跃层显着升高,进而引起上层海水热含量显着减少,这种减少在温跃层更为明显.东太平洋与此相反,热含量与温跃层深度出现正距平,正距平中心出现时间比西太平洋的负距平均晚两个月;暖池28℃等温线的异常东伸是海流对低空西风异常直接响应的结果,定量估算表明,纬向流异常所引起的温度平流是暖池28℃等温线异常东伸的主要动力,是热带东太平洋异常增温的主要原因之一.  相似文献   

11.
利用小波分析方法,对2003-2008年周平均的Argo(地转海洋学实时观测阵)海温资料进行了分析,给出了全球上层海温年周期和半年周期振荡的空间分布特征.结果表明,南北半球中高纬地区以表层海温的年周期变化为主,在低纬度地区,表层海温以半年周期为主,而温跃层附近海温既有年周期也有半年周期(赤道太平洋、东南印度洋和赤道西大西洋以年周期为主;赤道东、西印度洋以半年周期为主).南北半球中高纬的年周期海温和北半球中纬度的半年周期海温在表层范围最大,显著性最高,强度最强,位相最前.随深度的增加,范围减小,显著性降低,强度减弱,位相滞后.信号主要集中在水深50 m以上,影响深度在150m以浅;赤道附近的太平洋和热带东南印度洋的年周期海温以及赤道东、西印度洋的半年周期海温在水深100m范围最大,显著性最高,强度最强,位相最前,信号主要集中在温跃层附近,影响深度均可达500m.  相似文献   

12.
2009/2010年El Ni(n)o事件变化特征及其机理   总被引:3,自引:2,他引:1  
应用TAO (Tropical Atmosphere Ocean project)热带太平洋实测海温和风场资料,分析研究了发生在2009/2010年的El Ni(n)o事件的变化特征,讨论了此次El Ni(n)o事件发生过程中,赤道东、西太平洋次表层异常海温的变化特征及其传播过程,特别是对赤道太平洋次表层异常海温变化的...  相似文献   

13.
We examine the effect of a northward shift in the position of the southern hemisphere subpolar westerly winds (SWWs) on the vertical and horizontal distribution of temperature and salinity in the world ocean. A northward shift of the SWWs causes a latitudinal contraction of the subpolar gyres in the southern hemisphere (SH). In the Indian and Pacific, this leads to subsurface warming in the subtropical thermocline. As the southern margins of the gyres move into latitudes characterised by warmer surface air temperature (SAT), the layers at mid-depth below 400 m depth become ventilated by warmer water. We characterize the approximation of the ventilated thermocline in our coarse resolution model using a set of passive tracer experiments, and illustrate how the northward shift in the SWWs causes an equatorward shift in the latitude of origin of water ventilating layers deeper than 400 m in the Indian and Pacific, leaving the total surface ventilation of the upper 1200 m unchanged. In contrast, the latitudinal constraint on the Antarctic Circumpolar Current posed by the Drake Passage causes a cooling and freshening throughout the Atlantic thermocline; here, subsurface thermocline water originates from higher latitudes under the wind shift. On longer timescales Atlantic cooling and freshening is reinforced by a reduction in North Atlantic Deep Water (NADW) formation and surface salinification of the Indian and Pacific Oceans. In effect, the latitude of zero wind stress curl in the SWWs regulates the relative importance of the “cold water route” via the Drake Passage and the “warm water route” associated with thermocline water exchange via the Indian Ocean. Thus, a more northward location of the SWWs corresponds with a reduced salinity contrast between the Indian/ Pacific Oceans and the Atlantic. This results in reduced NADW formation. Also, a more northward location of the SWWs facilitates the injection of cool fresh Antarctic Intermediate Water into the South Atlantic subtropical gyre. Beyond these changes, on a millennial timescale, the deep ocean warms throughout the water column in response to the wind shift. Global salinity stratification also becomes less stable, as more saline water remains at the surface and accumulates in the Indian and Pacific thermocline. The freshening of the deep ocean reflects a reduced stirring of the global ocean due to reduced net circulation arising from a misalignment between the westerlies and the topographically constrained ACC. Our results lend support to the idea that a more equatorward location of the SWW maximum during glacial climates contributed to cooler and fresher conditions in the Atlantic, inhibiting NADW.  相似文献   

14.
15.
Circulations associated with the Indonesian Throughflow (IT), particularly concerning subsurface currents in the Pacific Ocean, are studied using three types of models: a linear, continuously stratified (LCS) model and a nonlinear, -layer model (LOM), both confined to the Indo-Pacific basin; and a global, ocean general circulation model (COCO). Solutions are wind forced, and obtained with both open and closed Indonesian passages. Layers 1-4 of LOM correspond to near-surface, thermocline, subthermocline (thermostad), and upper-intermediate (AAIW) water, respectively, and analogous layers are defined for COCO.The three models share a common dynamics. When the Indonesian passages are abruptly opened, barotropic and baroclinic waves radiate into the interiors of both oceans. The steady-state, barotropic flow field from the difference (open − closed) solution is an anticlockwise circulation around the perimeter of the southern Indian Ocean, with its meridional branches confined to the western boundaries of both oceans. In contrast, steady-state, baroclinic flows extend into the interiors of both basins, a consequence of damping of baroclinic waves by diapycnal processes (internal diffusion, upwelling and subduction, and convective overturning). Deep IT-associated currents are the subsurface parts of these baroclinic flows. In the Pacific, they tend to be directed eastward and poleward, extend throughout the basin, and are closed by upwelling in the eastern ocean and Subpolar Gyre. Smaller-scale aspects of their structure vary significantly among the models, depending on the nature of their diapycnal mixing.At the exit to the Indonesian Seas, the IT is highly surface trapped in all the models, with a prominent, deep core in the LCS model and in LOM. The separation into two cores is due to near-equatorial, eastward-flowing, subsurface currents in the Pacific Ocean, which drain layer 2 and layer 3 waters from the western ocean to supply water for the upwelling regions in the eastern ocean; indeed, depending on the strength and parameterization of vertical diffusion in the Pacific interior, the draining can be strong enough that layer 3 water flows from the Indian to Pacific Ocean. The IT in COCO lacks a significant deep core, likely because the model’s coarse bottom topography has no throughflow passage below 1000 m. Consistent with observations, water in the near-surface (deep) core comes mostly from the northern (southern) hemisphere, a consequence of the wind-driven circulation in the tropical North Pacific being mostly confined to the upper ocean; as a result, it causes the near-surface current along the New Guinea coast to retroflect eastward, but has little impact on the deeper New Guinea undercurrent.In the South Pacific, the IT-associated flow into the basin is spread roughly uniformly throughout all four layers, a consequence of downwelling processes in the Indian Ocean. The inflow first circulates around the Subtropical Gyre, and then bends northward at the Australian coast to flow to the equator within the western boundary currents. To allow for this additional, northward transport, the bifurcation latitude of the South Equatorial Current shifts southward when the Indonesian passages are open. The shift is greater at depth (layers 3 and 4), changing from about 14°S when the passages are closed to 19°S when they are open and, hence, accounting for the northward-flowing Great Barrier Reef Undercurrent in that latitude range.After flowing along the New Guinea coast, most waters in layers 1-3 bend offshore to join the North Equatorial Countercurrent, Equatorial Undercurrent, and southern Tsuchiya Jet, respectively, thereby ensuring that northern hemisphere waters contribute significantly to the IT. In contrast, much of the layer 4 water directly exits the basin via the IT, but some also flows into the subpolar North Pacific. Except for the direct layer 4 outflow, all other IT-associated waters circulate about the North Pacific before they finally enter the Indonesian Seas via the Mindanao Current.  相似文献   

16.
A three-dimensional ocean biogeochemical model of the tropical Atlantic Ocean was run for more than half a century (1949–2000) in order to characterize the ocean biogeochemical response to variable forcing over this period. The seasonal cycle in the equatorial upwelling zone agrees reasonably well with observations and other published simulations but underestimates phytoplankton biomass under strong upwelling conditions. Away from the equator, modelled nutrient flux and biological production are maximal in each hemisphere's winter season, and appear to be proximately forced by evaporative cooling and wind stirring rather than by Ekman upwelling. The fraction of the total variance associated with the seasonal cycle is considerably smaller for modelled biogeochemical fields than for sea-surface temperature over this long simulation, and much of the biogeochemical variance is associated with interdecadal changes. The model results suggest that the tropical Atlantic became more productive following the Pacific climate shift of 1976 and remained so until about 1989. Summer surface nitrate concentrations during the 1990s were lower than those in the 1980s. The relationship between the equatorial and off-equatorial regimes may have changed following the 1976 event, with equatorial variability dominating the basin-wide variance patterns after 1976.  相似文献   

17.
ENSO循环过程中次表层海洋信号的传播和变化   总被引:2,自引:0,他引:2  
利用SODA等资料分析了热带太平洋次表层海洋要素的变化特征,结果表明,ENSO循环过程中次表层异常海温信号在赤道外向西传播的路径与温跃层深度的分布有一定关系,10oN附近是气候平均温跃层深度的极小值区域,温跃层在该区域形成了一个从东到西的阻隔带,阻挡了来自赤道地区的ENSO信号继续向北传播,从而转向西传播;而南半球温跃层深度的气候分布不具备这一特征,不利于ENSO信号在南半球的向西传播。进一步的研究还表明,ENSO信号在整个循环过程中,异常海温的主周期是变化的,特别是在沿10oN附近向西传播的过程中,ENSO信号的主周期变化较大。推断西太平洋暖池区域的ENSO信号除了在循环过程中自东太平洋10oN传来的以外,还受其他因素的影响,例如局地的大气变化引起的海温异常,以及来自中高纬度的异常海温信号等因素。  相似文献   

18.
The responses to tropical cyclones of ocean wave characteristics in deep water of the western Atlantic Ocean have been investigated extensively, but not the regional seas in the western Pacific such as the South China Sea (SCS), due to a lack of observational and modeling studies there. Since monsoon winds prevail in the SCS but not in the western Atlantic Ocean, the SCS is unique for investigating wave characteristics during a typhoon’s passage in conjunction with steady monsoon wind forcing. To do so, the Wavewatch-III (WW3) is used to study the response of the SCS to Typhoon Muifa (2004), which passed over not only deep water but also the shallow shelf of the SCS. The WW3 model is forced by the NASA QuikSCAT winds and tropical cyclone wind profile model during Typhoon Muifa’s passage from 0000UTC 16 on November to 1200UTC on 25 November 2004. The results reveal the unique features of the SCS wave characteristics in response to Muifa, such as non-decaying, monsoon-generated swell throughout the typhoon period and strong topographic effects on the directional wave spectrum.  相似文献   

19.
The circulation of the eastern tropical Pacific: A review   总被引:5,自引:9,他引:5  
During the 1950s and 1960s, an extensive field study and interpretive effort was made by researchers, primarily at the Scripps Institution of Oceanography, to sample and understand the physical oceanography of the eastern tropical Pacific. That work was inspired by the valuable fisheries of the region, the recent discovery of the equatorial undercurrent, and the growing realization of the importance of the El Niño phenomenon. Here we review what was learned in that effort, and integrate those findings with work published since then as well as additional diagnoses based on modern data sets.Unlike the central Pacific, where the winds are nearly zonal and the ocean properties and circulation are nearly independent of longitude, the eastern tropical Pacific is distinguished by wind forcing that is strongly influenced by the topography of the American continent. Its circulation is characterized by short zonal scales, permanent eddies and significant off-equatorial upwelling. Notably, the Costa Rica Dome and a thermocline bowl to its northwest are due to winds blowing through gaps in the Central American cordillera, which imprint their signatures on the ocean through linear Sverdrup dynamics. Strong annual modulation of the gap winds and the meridional oscillation of the Intertropical Convergence Zone generates a Rossby wave, superimposed on the direct forcing, that results in a southwestward-propagating annual thermocline signal accounting for major features of observed thermocline depth variations, including that of the Costa Rica Dome, the Tehuantepec bowl, and the ridge–trough system of the North Equatorial Countercurrent (NECC). Interannual variability of sea surface temperature (SST) and altimetric sea surface height signals suggests that the strengthening of the NECC observed in the central Pacific during El Niño events continues all the way to the coast, warming SST (by zonal advection) in a wider meridional band than the equatorially trapped thermocline anomalies, and pumping equatorial water poleward along the coast.The South Equatorial Current originates as a combination of equatorial upwelling, mixing and advection from the NECC, and Peru coastal upwelling, but its sources and their variability remain unresolved. Similarly, while much of the Equatorial Undercurrent flows southeast into the Peru Undercurrent and supplies the coastal upwelling, a quantitative assessment is lacking. We are still unable to put together the eastern interconnections among the long zonal currents of the central Pacific.  相似文献   

20.
与太平洋和印度洋不同,全球变暖下热带大西洋变化的研究较少。本文使用地球系统模型CESM(Community Earth System Model),发现全球变暖后热带大西洋在秋季的升温类似大西洋尼诺(Atlantic Niño)的正位相,即大西洋西部增暖幅度小于东部;在夏季类似大西洋尼诺的负位相,即大西洋西部增暖幅度大于东部。利用覆盖(overriding)技术,分离了风应力、风速和CO2的直接热效应对海洋升温的作用,探讨了大西洋尼诺本身和全球变暖作用下类似大西洋尼诺正位相(下文简称“类大西洋尼诺升温”)的形成机制。结果表明,这两种情况下的形成机制基本相同,风应力的变化是导致大西洋东部暖异常的主要机制。但两者之间也存在区别:1)全球变暖下海表温度的季节变化振幅减小,而大西洋尼诺时变化不大;2)全球变暖下西风异常主要集中在大西洋东部,而大西洋尼诺时主要集中在大西洋中部;3)除风应力外,CO2的热效应对类尼诺升温的变化也有一定影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号