首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 163 毫秒
1.
The deepwater of the northwestern South China Sea is located in the central to southern parts of the Qiongdongnan Basin(QDN Basin),which is a key site for hydrocarbon exploration in recent years.In this study,the authors did a comprehensive analysis of gravity-magnetic data,extensive 3D seismic survey,cores and cuttings,paleontology and geochemical indexes,proposed the mechanism of natural gas origin,identified different oil and gas systems,and established the model of hydrocarbon accumulations in the deep-water region.Our basin tectonic simulation indicates that the evolution of QDN Basin was controlled by multiple-phased tectonic movements,such as Indochina-Eurasian Plate collision,Tibetan Uplift,Red River faulting and the expansion of the South China Sea which is characterized by Paleogene rifting,Neogene depression,and Eocene intensive faulting and lacustrine deposits.The drilling results show that this region is dominated by marineterrestrial transitional and neritic-bathyal facies from the early Oligocene.The Yacheng Formation of the early Oligocene is rich in organic matter and a main gas-source rock.According to the geological-geochemical data from the latest drilling wells,Lingshui,Baodao,Changchang Sags have good hydrocarbon-generating potentials,where two plays from the Paleogene and Neogene reservoirs were developed.Those reservoirs occur in central canyon structural-lithologic trap zone,Changchang marginal trap zone and southern fault terrace of Baodao Sag.Among them,the central canyon trap zone has a great potential for exploration because the various reservoirforming elements are well developed,i.e.,good coal-measure source rocks,sufficient reservoirs from the Neogene turbidity sandstone and submarine fan,faults connecting source rock and reservoirs,effective vertical migration,late stage aggregation and favorable structural–lithological composite trapping.These study results provide an important scientific basis for hydrocarbon exploration in this region,evidenced by the recent discovery of the significant commercial LS-A gas field in the central canyon of the Lingshui Sag.  相似文献   

2.
In nature, a slope stability is determined by the ratio of a sliding resistance to a slide force. The slide force of a marine deep-water continental slope is mainly affected by sediment mechanics properties, a topography, and a marine seismic. However, the sliding resistance is mainly affected by sedimentary patterns and a sedimentary stress history. Both of these are different from case to case, and their impact can be addressed when the data are organized in a geographic information system(GIS). The study area on the continental slope in Zhujiang River Mouth Basin in South China Sea provides an excellent opportunity to apply GIS spatial analysis technology for the evaluation of the slope stability. In this area, a continental slope topography and a three-dimension(3-D) topography mapping show a sea-floor morphology and the distribution of a slope steepness in good detail, and the sediment analysis of seabed samples and an indoor appraisal reveals the variability of a sediment density near the sea-floor surface. On the basis of the results of nine geotechnical studies of submarine study areas, it has worked out that an equivalent cyclic shear stress ratio is roughly between 0.158 and 0.933, which is mainly depending on the initial water content of sediment. A regional density, slope and level of anticipated seismic shaking information are combined in a GIS framework to yield a map that illustrates a continental slope stability zoning under the influencing factors in Zhujiang River Mouth Basin in the South China Sea. The continental slope stability evaluation can contribute to north resources development in the South China Sea, the marine functional zoning, the marine engineering construction and adjust measures to local conditions, at the same time also can provide references for other deep-water slope stability analysis.  相似文献   

3.
Distributions of the parameters of sedimentary grain sizes and their correlations were studied to trace the sources of silts and their movement trends in the Zhujiang River Estuary based on the analyses of grain sizes from more than 1080 sedimentary samples. The distributions of the median diameter, public value, quartile deviation, and skewness of sediments were complex in the Zhuiiang River Estuary mainly because of the impact of the matter source regions, distances from the source regions, and hydrodynamic conditions, such as waves, tidal currents, and coastal currents. Analyses of the parameters of the grain sizes for the various types of sediments showed that the distributions of the surface sediments in the Zhujiang River Estuary were controlled by many factors. Their matter sources were mainly the sediments discharged from the runoffs and ebb tidal currents, and from the open sea. The sediments mainly moved by suspension movement. The silts formed a large area of sediments with suspended fine silts in the Zhujiang River Estuary by internal adjustment transportation in the area, and moved toward the western coast of the Zhujiang River Estuary under the effect of Coriolis forces and coastal currents.  相似文献   

4.
The natural gas generation process is simulated by heating source rocks of the Yacheng Formation, including the onshore-offshore mudstone and coal with kerogens of Type II_2-III in the Qiongdongnan Basin. The aim is to quantify the natural gas generation from the Yacheng Formation and to evaluate the geological prediction and kinetic parameters using an optimization procedure based on the basin modeling of the shallow-water area. For this, the hydrocarbons produced have been grouped into four classes(C_1, C_2, C_3 and C_(4-6)). The results show that the onset temperature of methane generation is predicted to occur at 110℃ during the thermal history of sediments since 5.3 Ma by using data extrapolation. The hydrocarbon potential for ethane, propane and heavy gaseous hydrocarbons(C_(4-6)) is found to be almost exhausted at geological temperature of 200℃ when the transformation ratio(TR) is over 0.8, but for which methane is determined to be about 0.5 in the shallow-water area. In contrast, the end temperature of the methane generation in the deep-water area was over 300℃ with a TR over 0.8. It plays an important role in the natural gas exploration of the deep-water basin and other basins in the broad ocean areas of China. Therefore, the natural gas exploration for the deep-water area in the Qiongdongnan Basin shall first aim at the structural traps in the Ledong, Lingshui and Beijiao sags, and in the forward direction of the structure around the sags, and then gradually develop toward the non-structural trap in the deep-water area basin of the broad ocean areas of China.  相似文献   

5.
The Liwan Sag, with an area of 4 000 km~2, is one of the deepwater sags in the Zhujiang River(Pearl River) Mouth Basin, northern South China Sea. Inspired by the exploration success in oil and gas resources in the deepwater sags worldwide, we conducted the thermal modeling to investigate the tectono-thermal history of the Liwan Sag,which has been widely thought to be important to understand tectonic activities as well as hydrocarbon potential of a basin. Using the multi-stage finite stretching model, the tectonic subsidence history and the thermal history have been obtained for 12 artificial wells, which were constructed on basis of one seismic profile newly acquired in the study area. Two stages of rifting during the time periods of 49–33.9 Ma and 33.9–23 Ma can be recognized from the tectonic subsidence pattern, and there are two phases of heating processes corresponding to the rifting.The reconstructed average basal paleo-heat flow values at the end of the rifting events are ~70.5 and ~94.2 mW/m~2 respectively. Following the heating periods, the study area has undergone a persistent thermal attenuation phase since 23 Ma and the basal heat flow cooled down to ~71.8–82.5 mW/m~2 at present.  相似文献   

6.
Geochemical and detrital zircon U-Pb dating data for drilled sediments from the Baiyun deepwater area of the northern South China Sea demonstrate a change of sedimentary sources from the Oligocene to the Miocene.Zircon ages of the pre-rift Eocene sequences are dominated by Yanshanian ages with various peak values(110–115 Ma for U1435 and L21; 150 Ma for H1), indicating local sediment supply from the pre-existing Mesozoic magmatic belt. For the Oligocene sediments in the northern part of the basin, the rare earth elements show different distribution characteristics, indicating sediment supply from the paleo-Zhujiang River(Pearl River), as also confirmed by the multimodal zircon age spectra of the Lower Oligocene strata in Well X28. By contrast, a positive Eu anomaly characterizes sediments from the western and southern parts of the basin, indicating potential provenances from intermediate to basic volcanic rock materials. The Baiyun Movement at the end of the Oligocene contributed to a large-scale subsidence in the deepwater area and also a northward retreat of continental shelf break, leading to deepening depositional environment in the basin. As a result, all the detrital zircon ages of the Upper Oligocene strata from Wells X28, L13, and L21 share a similar distribution, implying the possible control of a common source like the Zhujiang River. During the Miocene, whereas sediments in the northern area were mainly sourced from the Zhujiang River Delta, and those in the southern deepwater area continued to be affected by basic volcanic activities, the Dongsha Uplift could have contributed as the main source to the eastern area.  相似文献   

7.
The Zhujiang River Estuary is becoming eutrophic due to the impact of anthropogenic activities in the past decades. To understand nutrient dynamics and fluxes to the Lingdingyang water via four outlets(Humen,Jiaomen, Hongqimen and Hengmen), we investigated the spatial distribution and seasonal variation of dissolved nutrients in the Zhujiang River Estuary, based on fourteen cruises conducted from March 2015 to October 2017,covering both wet(April to September) and dry(October to March next year)...  相似文献   

8.
Long-term changes of composition,sources and burial fluxes of TOC(total organic carbon) in sediments of the central Yellow Sea mud area and their possible affecting factors are discussed in this paper.Firstly,similarity analysis is employed to confirm that the carbon burial features resulted from two collected cores are typical in the central Yellow Sea mud area where YSWC(Yellow Sea Warm Current) is prevalent.On this basis,the burial flux of TOC here was considered to be 235.5–488.4 μmol/(cm2?a) since the first industrial revolution,accounting for about 70%–90% among burial fluxes of TC(total carbon) in the sediments.Compared TOC/TC ratio in the two cores with that in other marine sediments worldwide,we suggest that the growth of calcareous/non-calcareous organisms and dissolution of IC(inorganic carbon) are important factors controlling the TOC/TC ratio in sediment.Results of two-end mixed model based on δ13C data indicate that marine-derived organic carbon(OCa)is the main part among total burial organic carbon which accounts for a ratio over 85%.Due to the high TOC/TC ratio in the two cores,TC in the sediments also mainly exists as OCa,and the proportion of OCa is about 60%–80%.Away from the shore and relatively high primary production in upper waters are the main reasons that OCa is predominant among all burial OC in sediments of the central Yellow Sea mud area.Burial of OC in this mud area is probably mainly influenced by the human activities.Although the economic development during the late 19 th century caused by the first industrial revolution in China did not obviously increase the TOC burial fluxes in the sediments,the rise of industry and agriculture after the founding of new China has clearly increased the TOC burial flux since 1950 s.Otherwise,we also realize that among TC burial fluxes,TIC account for about 10%–30% in sediments of the central Yellow Sea mud area,so its burial could not be simply ignored here.Distinct from TOC burial,long-term TIC burial fluxes variations relate with climate changes more closely:the East Asian summer monsoon may influence the strength of the Huanghe River(Yellow River) flood,which could further affect the transport of terrestrial IC from land to the central Yellow Sea as well as the burial of these IC in the sediments.  相似文献   

9.
High-resolution Chirp profiling and coring reveals an elongated(ca. 400 km) Holocene Zhujiang River(Pearl River)-derived mud area(maximum thickness 20 m) extending from the Zhujiang River Delta, southwestward off the Guangdong coast, to the Leizhou Peninsula. Two depo-centers, one proximal and one distal, are identified. On the continental shelf off the west Guangdong Province, the mud is deposited in water depth shallower than 50 m; while to the southeast of the Zhujiang River Estuary, the mud area can extend to the-120 m isobath. A combined analysis with the stratigraphic sequences of other muddy deposits in the Western Pacific marginal seas(mainly Changjiang(Yangtze) and Huanghe(Yellow) Rivers derived) indicates that the initiation of the Zhujiang River muddy deposit can be further divided into two stages: Stage 1 is before the mid-Holocene sea-level highstand(ca. 7.0 cal. ka BP), the proximal mud was mostly deposited after 9.0 cal. ka BP, when the sea-level rose slowly after the Meltwater Pulse-1C; Stage 2, after the mid-Holocene sealevel highstand, clinoform developed on the continental shelf off the west Guangdong Province, extending ca. 400 km from the Zhujiang River Estuary. The proximal clinoform thins offshore, from ca. 10 m thickness around 5–10 m water depth to less than 1–2 m around 20–30 m water depth. In addition, we also find a developed distal clinoform in the east of the Leizhou Peninsula.  相似文献   

10.
In order to investigate the hydrocarbon generation process and gas potentials of source rocks in deepwater area of the Qiongdongnan Basin, kinetic parameters of gas generation(activation energy distribution and frequency factor) of the Yacheng Formation source rocks(coal and neritic mudstones) was determined by thermal simulation experiments in the closed system and the specific KINETICS Software. The results show that the activation energy(Ea) distribution of C1–C5 generation ranges from 50 to 74 kcal/mol with a frequency factor of 2.4×1015 s–1 for the neritic mudstone and the Ea distribution of C1–C5 generation ranges from 49 to 73 kcal/mol with a frequency factor of 8.92×1013 s–1 for the coal. On the basis of these kinetic parameters and combined with the data of sedimentary burial and paleothermal histories, the gas generation model of the Yacheng Formation source rocks closer to geological condition was worked out, indicating its main gas generation stage at Ro(vitrinite reflectance) of 1.25%–2.8%. Meanwhile, the gas generation process of the source rocks of different structural locations(central part, southern slope and south low uplift) in the Lingshui Sag was simulated. Among them, the gas generation of the Yacheng Formation source rocks in the central part and the southern slope of the sag entered the main gas window at 10 and 5 Ma respectively and the peak gas generation in the southern slope occurred at 3 Ma. The very late peak gas generation and the relatively large gas potential indices(GPI:20×108–60×108 m3/km2) would provide favorable conditions for the accumulation of large natural gas reserves in the deepwater area.  相似文献   

11.
珠江口盆地的扩张旋回及其与含油气性的关系   总被引:1,自引:0,他引:1  
根据“陆缘扩张”观点,扩张型陆缘演化阶段的三个构造旋回与珠江口盆地的油气生成和聚集密切相关。第一扩张旋回中形成的始新统文昌组泥岩是珠江口盆地的主要烃源岩。由文昌组排出的油气,经运移上升至第三扩张旋回中形成的中中新统韩江组泥岩盖层之下。运移过程中,油气主要进入由第二扩张旋回中形成的上渐新统珠海组和下中新统珠江组为储层的有利圈闭中。因此,珠江组和珠海组是珠江口盆地的重要目的层,而“拗中隆”及生物礁-滩则是钻探的主要对象。  相似文献   

12.
Source rock formation influenced by river-delta system, especially in continental margin basins, is still poorly understood. This article aimed to reveal the effect of river-delta system on the formation of the source rock by taking the Baiyun Sag of the Pearl River Mouth Basin for example. Paleo-Pearl River began to develop since the Enping Formation, providing abundant organic matter beneficial for the formation of the source rocks in the Baiyun Sag. The main controlling factor of source rock formation in the Baiyun Sag is terrestrial organic matter supply rather than the paleoproductivity or redox conditions. Low Al/Ti and P/Ti ratios suggest low marine productivity, which may be associated with a large number of terrigenous detritus input, occupying about 43.04%–94.91%. There is a positive correlation between the oleanane/C30hopane ratio and the TOC value, showing that terrigenous organic matter controls the source rock formation. The size of the delta below Pearl River estuary determines the extent of terrestrial organic matter supply. Source rocks with high organic matter abundance mainly formed in delta environment, and those in neritic environment in Enping and Zhuhai Formations also have high TOC values as a result of adequate terrestrial organic matter supply.  相似文献   

13.
南海北部为我国重要的含油气区之一, 但目前南海北部盆地的演化史及其与周边构造事件的关系仍不明确。基于钻孔和地震资料, 通过数学模拟, 反演了琼东南盆地和珠江口盆地的构造应力演化特征和初始地壳厚度。结果表明, 南海北部盆地具有较薄的初始地壳厚度和岩石圈厚度。珠江口盆地存在两期应力松弛期, 而琼东南盆地在深水区和浅水区分别存在一期应力松弛期。南海北部第一期应力松弛在空间上具有连续性, 主要分布在深水区, 在时间上东早西晚; 第二期应力松弛空间上存在东西分异性。分析认为, 南海北部深水区应力松弛期由东至西的演化应为西北次海盆由东至西的剪刀式张裂所致。珠江口盆地第二期构造应力松弛与局部岩浆侵入有关, 琼东南盆地浅水区的构造应力松弛期与红河走滑断裂平静期相对应。  相似文献   

14.
Source rock potential of 108 representative samples from 3 m intervals over a 324 m thick shale section of middle Eocene age from the north Cambay Basin, India have been studied. Variation in total organic carbon (TOC) and its relationship with loss on ignition (LOI) have been used for initial screening. Screened samples were subjected to Rock-Eval pyrolysis and organic petrography. A TOC log indicated wide variation with streaks of elevated TOC. A 30 m thick organic-rich interval starting at 1954 m depth, displayed properties consistent with a possible shale oil or gas reservoir. TOC (wt%) values of the selected samples were found to vary from 0.68% to 3.62%, with an average value of 2.2. The modified van Krevelen diagram as well as HI vs. Tmax plot indicate prevalence of Type II to Type III kerogen. Tmax measurements ranged from 425 °C to 439 °C, indicating immature to early mature stage, which was confirmed by the mean vitrinite reflectance values (%Ro of 0.63, 0.65 and 0.67 at 1988 m, 1954 m, and 1963 m, respectively). Quantification of hydrocarbon generation, migration and retention characteristics of the 30 m source rock interval suggests 85% expulsion of hydrocarbon. Oil in place (OIP) resource of the 30 m source rock was estimated to be 3.23 MMbbls per 640 acres. The Oil saturation index (OSI) crossover log showed, from a geochemical perspective, moderate risk for producing the estimated reserve along with well location for tapping the identified resource.  相似文献   

15.
在烃源岩分布特征、有机质丰度、类型和成熟度分析的基础上,运用含油气盆地数值模拟技术,定量恢复了烃源岩热成熟演化史,探讨了油气差异分布特征。研究表明,文昌A凹陷各层系烃源岩分布广,厚度大,有机质丰度高;有机质类型文昌组偏Ⅱ1型,恩平组偏Ⅲ型,二者现今多处于高成熟—过成熟阶段。凹陷内烃源岩成熟时间早(文昌组约45.5Ma),现今成熟度高,以干气生成为主;凹陷边缘烃源岩成熟时间较晚(文昌组约30.0Ma),现今成熟度相对较低,以石油生成为主。凹陷现今油气差异分布的格局受制于有机质类型差异和热演化史不同,且下一步油气勘探方向,凹陷内以天然气为主,凹陷边缘以石油为主。  相似文献   

16.
琼东南盆地新生代构造研究现状及展望   总被引:1,自引:0,他引:1  
琼东南盆地属于南海北部陆缘拉张盆地,但是由于其不同的发育历史及红河断裂的影响,具有与东部陆缘盆地不同的构造特征。琼东南盆地和珠江口盆地在地壳结构、基底特征等方面存在差异,但是这种差异的原因还不清楚。新生代沉降速率发生多期变化,并存在裂后异常沉降、沉降延迟等现象,其形成机制尚需要进一步研究;平面上,构造具有迁移性,但是对不同地质时期的构造迁移方向仍存在不同的看法。盆地沉降中心和沉积中心经历了由裂陷期和裂后早期的较好重合到裂后晚期的逐步分离,直至完全分离的过程。盆地形成与地幔流的关系,以及红河断裂对盆地裂后沉降迁移的影响,也都是需要进一步确定的工作。鉴于以上各方面存在的问题,对琼东南盆地与南沙的共轭关系、盆地异常沉降、红河断裂及内部构造转换带对构造迁移的影响、以及琼东南盆地与珠江口盆地的比较等方面的研究是下一步工作的重点。  相似文献   

17.
The identification of a deeply-buried petroleum-source rock, owing to the difficulty in sample collection, has become a difficult task for establishing its relationship with discovered petroleum pools and evaluating its exploration potential in a petroleum-bearing basin. This paper proposes an approach to trace a deeply-buried source rock. The essential points include: determination of the petroleum-charging time of a reservoir, reconstruction of the petroleum generation history of its possible source rocks, establishment of the spatial connection between the source rocks and the reservoir over its geological history, identification of its effective source rock and the petroleum system from source to trap, and evaluation of petroleum potential from the deeply-buried source rock. A case study of the W9-2 petroleum pool in the Wenchang A sag of the Pearl River Mouth Basin, South China Sea was conducted using this approach. The W9-2 reservoir produces condensate oil and gas, sourced from deeply-buried source rocks. The reservoir consists of a few sets of sandstone in the Zhuhai Formation, and the possible source rocks include an early Oligocene Enping Formation mudstone and a late Eocene Wenchang Formation mudstone, with a current burial depth from 5000 to 9000 m. The fluid inclusion data from the reservoir rock indicate the oil and the gas charged the reservoir about 18–3.5 Ma and after 4.5 Ma, respectively. The kinetic modeling results show that the main stages of oil generation of the Wenchang mudstone and the Enping mudstone occurred during 28–20 Ma and 20–12 Ma, respectively, and that the δ13C1 value of the gas generated from the Enping mudstone has a better match with that of the reservoir gas than the gas from the Wenchang mudstone. Results from a 2D basin modeling further indicate that the petroleum from the Enping mudstone migrated upward along the well-developed syn-sedimentary faults in the central area of the sag into the reservoir, but that the petroleum from the Wenchang mudstone migrated laterally first toward the marginal faults of the sag and then migrated upward along the faults into shallow strata. The present results suggest that the trap structure in the central area of the sag is a favorable place for the accumulation of the Enping mudstone-derived petroleum, and that the Wenchang mudstone-derived petroleum would have a contribution to the structures along the deep faults as well as in the uplifted area around the sag.  相似文献   

18.
The geochemical and petrographic characteristics of saline lacustrine shales from the Qianjiang Formation, Jianghan Basin were investigated by organic geochemical analysis, X-ray diffraction (XRD), scanning electron microscopy (SEM) and low pressure nitrogen adsorption analysis. The results indicate that: the saline lacustrine shales of Eq3 member with high oil content are characterized by type I and type II oil-prone kerogen, variable TOC contents (1.0–10.0 wt%) and an early-maturity stage (Ro ranges between 0.41 and 0.76%). The mineral compositions of Eq3 saline shale show strong heterogeneity: brittle intervals with high contents of quartz and carbonate are frequently alternated with ductile intervals with high glauberite and clay contents. This combination might be beneficial for oil accumulation, but may cause significant challenges for the hydraulic stimulation strategy and long-term production of shale oil. The interparticle pores and intraparticle pores dominate the pore system of Eq3 shale, and organic matter hosted pores are absent. Widely distributed fractures, especially tectonic fractures, might play a key role in hydrocarbon migration and accumulation. The pore network is contributed to by both large size inorganic pores and abundant micro-factures, leading to a relatively high porosity (2.8–30.6%) and permeability (0.045–6.27 md) within the saline shale reservoir, which could enhance the flow ability and storage capacity of oil. The oil content (S1 × 100/TOC, mg HC/g TOC and S1, mg HC/g rock) and brittleness data demonstrate that the Eq33x section has both great potential for being a producible oil resource and hydraulic fracturing. Considering the hydrocarbon generation efficiency and properties of oil, the mature shale of Eq3 in the subsidence center of the Qianjiang Depression would be the most favorable zone for shale oil exploitation.  相似文献   

19.
南海北部陆缘记录了南海形成演化的历史,但是其新生代构造沉积演化特征在东段和西段的差异及其原因目前还不太清楚。本文分别在珠江口盆地和琼东南盆地的深水区选择了数口构造地理位置相似的井通过精细地层回剥分析,重建了两沉积盆地的沉积速率和沉降速率并结合前人研究成果进行了对比分析。研究结果发现,两沉积盆地在裂陷期的沉积和沉降特征基本相似,但是两者在裂后期的构造沉积演化特征差异明显。珠江口盆地深水区沉积和沉降速率都表现为幕式变化特征,其中沉积速率表现为“两快三慢”的特征而沉降速率表现为“两快一慢”的特征。琼东南盆地深水区的沉积速率表现为“地堑式”变化特征,但是沉降速率表现为“台阶式”上升的变化特征。琼东南盆地“台阶式”上升的沉降速率推测主要是受到海南地幔柱伴随红河断裂的右旋走滑而向西北漂移的影响,这也与南海西北部的岩浆活动以及周围盆地的沉降特征吻合。红河断裂在2.1 Ma BP的右旋走滑控制了琼东南盆地1.8 Ma BP以来的快速沉积和加速沉降分布。  相似文献   

20.
南海珠江口盆地潜伏着多种地质灾害因素,对海洋开发、油气资源勘探、海底管线铺设等构成直接危害或潜在的威胁。根据联合国开发计划署(UNDP)援华项目(CPR/85/044)实际调查资料,对区内地震、活动断裂、海底滑坡、浅层气、活动沙波.埋藏古河道等潜在灾害因素作了分析,讨论了它们的成因机制与分布规律,提出防避灾害事件发生的具体措施。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号