首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Effects of elevated water temperatures and residual chlorine from a thermal discharge at a coastal nuclear power plant on the biomass and productivity of periphyton and phytoplankton were determined in subtropical Taiwan. Phytoplankton chlorophyll a, but not productivity, was significantly lower in the outlet region than in the intake region. Periphyton chlorophyll a was significantly greater in the outlet region than in the intake region. Nevertheless, periphyton productivity was negatively correlated with water temperature in the outlet region. A distinct difference in periphyton community composition was also detected between the two regions. Chlorination experiments showed that a chlorine concentration of 0.2 ppm greatly suppressed phytoplankton productivity, regardless of whether the water temperature was elevated or not. However, periphyton productivity was little influenced by a chlorine concentration of < 0.5 ppm. Our results suggest that phytoplankton productivity was greatly affected by residual chlorine, but periphyton productivity was more affected by elevated water temperatures.  相似文献   

2.
We carried out a benthic survey and two experiments in runs at eight sites down the Kakanui River (South Island, New Zealand) during summer low flows, to investigate the interaction between nutrients, periphyton, and macro‐grazers. Benthic periphytic biomass was generally low (< 20 mg m‐2 chlorophyll a) at most sites, but high densities of macro‐grazers (mainly snails) were observed at six of the eight sites. Chlorophyll a and cellular P concentrations were generally higher on artificial substrates in the first‐ to third‐order tributaries, compared with downstream. Macro‐grazer densities (mainly snails) were also highest in the second‐ and third‐order tributaries. Enrichment of patches with N and P did not translate into significant increases in chlorophyll a concentrations. Instead there was a general increase in macro‐grazers, and an increase in the relative abundance of Cocconeis placentula. In a second experiment, the chlorophyll a level was five‐fold higher on the substrates where macro‐grazers were excluded and there was no significant response of chlorophyll a to nutrient addition on these substrates. On the grazed substrates, densities of snails and caddis‐larvae were two‐fold higher with N+P enrichment. These experiments provided evidence for a tight coupling between first and second trophic levels, and strong grazer control of periphyton, in this river.  相似文献   

3.
Abstract

The effects of shade on periphyton and invertebrates were investigated by comparisons in 12 replicate channels beside a pasture stream where shade cloth reduced the photosynthetically available radiation (PAR) by 0, 60, 90, and 98%. Periphytic productivity decreased with increasing shade. Periphyton chlorophyll a was consistently low (< 30 mg m?2) under 98 and 90% shade and usually low at 60% shade, whereas blooms were common during summer in the unshaded channels. More periphytic taxa occurred in the open than shaded channels and the relative concentration of the photo‐protective pigment beta‐carotene decreased with increasing shade. Nitrate uptake rates by periphyton, measured in separate chamber studies, decreased progressively as shade increased from 60% through 90% to 98%, and were more strongly correlated with gross primary productivity than periphyton chlorophyll a and particulate carbon levels. Total invertebrate and chironomid densities declined significantly as shade increased from 60 to 90% and invertebrate taxa richness declined markedly between 90 and 98% shade. Most collector‐browsing invertebrates (other than chironomids) had similar densities under 0–90% shade and only declined at 98%. This suggests a weak coupling of these invertebrates with local periphyton production and also suggests that energy derived from up‐stream sources may be their most important food in these pastoral streams.  相似文献   

4.
ABSTRACT

This study investigated the impact of pastoral land use and nutrient and fine sediment inputs on Microcoleus autumnalis and filamentous algae-dominated mats, and benthic chlorophyll-a in streams (lower North Island, New Zealand). Surveying and sampling was undertaken monthly at 61 sites spanning a wide gradient in catchment cover and environmental conditions. Two boosted regression tree models were built. The first models included pastoral land cover and five environmental variables as predictors. In the second model pastoral land cover was replaced by nutrient/sediment data. The abundance of the two mat types and chlorophyll-a increased when pastoral land cover was between 20% and 70% (model 1). Replacement of pastoral land cover by nutrient/sediment data (model 2) slightly improved the model fit for all three periphyton variables. Microcoleus autumnalis-dominant mats increased with dissolved inorganic nitrogen concentrations up to ca. 0.6?mg?L?1, and in streams with more frequent flushes. In contrast, filamentous algal-dominated mats increased with turbidity, and in streams with less frequent flushes. Chlorophyll-a generally followed the response of the dominant periphyton type. Increased knowledge on responses of specific periphyton types, rather than total biomass, to environmental variables is essential to guide effective management strategies.  相似文献   

5.
Seasonal changes in oceanographic conditions related to primary productivity was investigated in the southwestern Okhotsk Sea during non-iced seasons, using the observation data conducted in 2000∼2006. Based on hydrographic characteristics, the studied area could be classified into two regions, the Coastal Region which is influenced under the Soya Warm Current and the Forerunner Water of the Soya Warm Current, and the Offshore Region where the Intermediate Cold Water was located in the subsurface layer. This study is the first report on seasonal change of nutrient and chlorophyll a concentrations in the offshore region of the southwestern Okhotsk Sea. Variability of concentrations of chlorophyll a and nutrients is temporally and regionally high in the Coastal Region. The maximum chlorophyll a concentration in April was observed at the surface layer of both regions. The most remarkable feature on the vertical structure in the Offshore Region was the consistent existence of the Intermediate Cold Water and the development of seasonal thermocline in the subsurface layer during summer and autumn. The stratification formed within the euphotic zone in the Offshore Region resulted in the formation of the subsurface chlorophyll a maximum (SCM) from May to October. Throughout the research period, although less amplitude of nutrients at the surface was observed in the Coastal Region than that in the Offshore Region, comparable amplitude of chlorophyll a concentration was observed between regions. These results suggested differences of environmental conditions for primary production between the two regions. Depending on the presence of SCM, relationships between chlorophyll a concentration at the sea surface and chlorophyll a standing stock within the euphotic layer were different. At most stations with SCM, the surface chlorophyll a concentration was lower than 0.6 mg m-3. This suggests that the presence of SCM and the chlorophyll a standing stock within the euphotic layer may be estimated using the surface chlorophyll a concentration from spring to autumn in the studied area.  相似文献   

6.
Chlorophyll-a (chl-a) concentration has an important economic effect in coastal and marine environments on fisheries resources and marine aquaculture development. Monthly climatologies the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) derived chl-a from February 1998 to August 2004 around Funka Bay were used to investigate the spatial and temporal variability of chl-a concentrations. SeaWiFS-derived suspended sediment, MODIS derived sea surface temperature (SST), solar radiation and wind data were also analyzed. Results showed two distinct chlorophyll blooms in spring and autumn. Chl-a concentrations were relatively low (<0.3 mg m3) in the bay during summer, with high concentrations occurring along the coast, particularly near Yakumo and Shiraoi. In spring, chl-a concentrations increased, and a large (>2 mg m3) phytoplankton bloom occurred. The spatial and temporal patterns were further confirmed by empirical orthogonal function (EOF) analysis. About 83.94% of the variability could be explained by the first three modes. The first chl-a mode (77.93% of the total variance) explained the general seasonal cycle and quantified interannual variability in the bay. The spring condition was explained by the second mode (3.89% of the total variance), while the third mode (2.12% of the total variance) was associated with autumn condition. Local forcing such as the timing of intrusion of Oyashio water, wind condition and surface heating are the mechanisms that controlled the spatial and temporal variations of chlorophyll concentrations. Moreover, the variation of chlorophyll concentration along the coast seemed to be influenced by suspended sediment caused by resuspension or river discharge.  相似文献   

7.
The horizontal pattern of mesoscale (1–4 km) variability in salinity was a poor predictor of mesoscale patterns in chlorophyll a, suspended particulate matter, and daily primary productivity in the South San Francisco Bay estuary during spring 1987. The tidally-averaged salinity distribution varied over weekly time scales, reflecting inputs of freshwater as well as transport processes. Spatial distributions of the other quantities also varied weekly, but not in concert with the salt field. Spatial patterns of phytoplankton biomass (chlorophyll a) deviated from the salinity patterns, largely reflecting in situ production of phytoplankton biomass during the spring bloom. The tidally-averaged distribution of suspended particulate matter (SPM) was highly dynamic and responded to (1) the riverine input of suspended sediment during a freshet, (2) neap-spring variations in tidally-driven resuspension, and (3) resuspension in shallows following a period of wind mixing. Two-dimensional distributions of primary productivity P′, derived from maps of biomass and turbidity (SPM), also varied weekly, but the spatial variability of P′ was only about half that of SPM and chlorophyll. Since the magnitude and patterns of spatial variability differ among nonconservative quantities, at least in part because of local sources and sinks, we conclude that the spatial distributions of nonconservative quantities cannot be predicted from distributions of conservative tracers, such as salinity.  相似文献   

8.
An analysis is presented of data on chlorophyll a concentrations of the total and the netplankton (>10 μm), determined either in April to June or in August to September from 48°N to 15°S along 175°E in the Pacific Ocean during 6 years by the NOPACCS (Northwest Pacific Carbon Cycle Study). Particular attention was given to the variability of absolute concentrations of the netplankton chlorophyll a and their percentage shares of the total chlorophyll a concentration. Below 0.2 μg l−1 of surface total chlorophyll a, the netplankton chlorophyll a showed low percentage shares (such as 12.7% on average) with a large variation, but above 0.2 μg l−1 it was 35.9% on average with less variation, showing an accelerated increase at high total chlorophyll a concentrations. High netplankton chlorophyll a concentrations in surface waters were observed at high latitudes, in waters having high chlorophyll a concentrations at sub-surface depth, and in equatorial upwelling. The percentage shares of netplankton in the total chlorophyll a in the euphotic zone were 8.5% and 25.9% above and below 0.2 μg l−1, respectively, although the data points scattered over a wide range (from 7.2% to 53.8%) depending on differences in water masses, depths and seasons. High chlorophyll a concentrations and high percentage shares of netplankton corresponded to high ambient nitrate plus nitrite concentrations. Integrated netplankton chlorophyll a concentrations in the euphotic zone varied from 0.7 to 19.5 mg m−2 in waters below 0.2 μg l−1 of surface total chlorophyll a, and from 2.0 to 29.5 mg m−2 above 0.2 μg l−1, and the percentage shares of netplankton for the former were 7.4% on average and 23.7% for the latter. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

9.
Abstract

Given sufficient light and heat, the growth of aquatic macrophytes and algae associated with eutrophication is generally controlled by the concentration, form and ratio between nitrogen (N) and phosphorus (P). Data from 1100 freshwater sites monitored for the last 10 years by New Zealand's regional councils and unitary authorities were assessed for streams and rivers with mean nitrate/ nitrite‐N (NNN), dissolved reactive P (DRP), total N (TN) and total P (TP) concentrations in excess of New Zealand guidelines, and to generate a data set of N:P ratios to predict potential periphyton response according to the concentration of the limiting nutrient. The frequency of sites exceeding the guidelines varied from 0 to 100% depending on the parameter and region, but South Island regions were generally more compliant. The dissolved inorganic N (DIN) to dissolved reactive P (DRP) ratio was used to group data into three nutrient limitation classes: <7:1 (N‐limited), between 7:1 and 15:1 (co‐limited), and>15:l (P‐limited), by mass. P‐limitation was the most frequent scenario in New Zealand streams (overall, 76% of sites were P‐limited, 12% N‐limited, and 12% co‐limited). The mean concentration of the limiting nutrient for each site was combined with empirical relationships to predict periphyton densities (the average of N‐and P‐limited growth was used for sites with co‐limitation). This assessment predicted that 22 sites were likely to exceed the periphyton guideline for protecting benthic biodiversity (50 mg chlorophyll a m?2), but this assessment is likely to be highly changeable in response to climatic conditions and present and future land use. As an example, we modelled N and P losses from an average sheep and a dairy farm in Southland (South Island, New Zealand) in 1958, 1988, 2008 and 2028. We predicted that with time, as farm systems have and continue to intensify, N losses increase at a greater rate than P losses. Since the pathway for N to reach fresh waters may be more tortuous and take longer than P to reach a stream or river, focusing mitigation on P losses may have a quicker effect on potential algal growth. In addition, with time, it is expected that P‐limitation in New Zealand's rivers and streams will be more widespread as N‐losses are unabated. Hence, although strategies to decrease N losses should be practised, mitigating P losses is also central to preventing eutrophication.  相似文献   

10.
Abstract

The surface distribution of salinity, temperature, nitrate‐nitrogen (N03‐N), and chlorophyll a in the southern New Zealand, Foveaux Strait region in February 1977, 1978, 1979, and 1980 was highly variable. The source of new nitrogen appears to be incursions of high‐salinity water west and east of Stewart Island. Although it seems likely that the source of this high‐nutrient, high‐salinity water is vertical, a horizontal advective source cannot be ruled out The chlorophyll a content of surface waters was not related directly to the NO3‐N concentrations. This lower food chain variability may be linked to variability in economically important species. Oysters grew twice as fast in the summer of 1978/79 as they did in 1979/80. But the mean chlorophyll a values were very similar for February of both years (2.5 and 2.2 μg 1?1, respectively). The elevated NO3‐N levels in 1979 may have resulted in much higher phytoplankton levels later that summer and resulted in the higher oyster growth rate that year. The mechanisms driving this variability have yet to be determined.  相似文献   

11.
Eight stations were chosen for this 14 month survey of Tolo Harbour in Hong Kong, four of them in the harbour proper and four in the estuaries of the major streams entering the harbour. Various chemical and physical factors were measured twice each month. Water samples were collected for nutrient, phytoplankton, chlorophyll and bacteriological analysis.The annual discharge of nutrients from the four streams into Tolo Harbour has been estimated, based on the nutrient analyses and computation of annual discharge (QA) values for these streams. The seasonal and spatial variations in nutrient content are discussed in relation to the increasing organic pollution of Tolo Harbour. Calculations of various ratios between SiO3, PO4, NO3 and total inorganic N reveal that excessive amounts of phosphate are entering the harbour and subsequently accumulating in the bottom waters and sediments, leading to changes in the trophic condition of this water body and the development of anoxic conditions in the bottom layer.Significant correlation has been demonstrated between standing crop and various environmental parameters in both estuarine and marine waters and similarly between chlorophyll a concentration and various environmental parameters. However, no significant correlation values were obtained between either standing crop or chlorophyll a concentrations, SiO3Si (the latter presumably due to the predominance of diatoms in the phytoplankton). Neither standing crop nor chlorophyll determinations reveal any evidence of alternating periods of high productivity and decomposition which could explain the deteriorating bottom water conditions. This again is taken as evidence that the high organic inputs are responsible for such deterioration.Increasing TC, FC and FS densities have been noted in Tolo Harbour as a direct result of the increasing organic pollution and ratios between FC and FS densities indicate that in 55% of the samples pollution was derived from human sewage. The bacterial levels well exceeded various international standards for bathing waters and shellfish collection for at least a part of the survey period and at a number of stations for the entire survey period. Pathogenic organisms were also present. This underlines the potential health risks in these waters.Finally, the future prospects for this harbour are discussed in relation to activities such as reclamation and the development of new towns and their impact on water quality.  相似文献   

12.
Twenty-eight sea surface microlayer samples, along with subsurface bulk water samples were collected in Funka Bay, Japan during October 2000–March 2001 and analyzed for dimethylsulfoniopropionate, dissolved (DMSPd) and particulate (DMSPp), and chlorophyll a. The aim of the study was to examine the extent of enrichment of DMSP in the microlayer and its relationship to chlorophyll a, as well as the production rate of dimethylsulfide (DMS) from DMSP and the factors that influence this. The enrichment factor (EF) of DMSPd in the surface microlayer ranged from 0.81 to 4.6 with a mean of 1.85. In contrast, EF of DMSPp in the microlayer varied widely from 0.85–10.5 with an average of 3.21. Chlorophyll a also appeared to be enriched in the microlayer relative to the subsurface water. This may be seen as an important cause of the observed enrichment of DMSP in the microlayer. The concentrations of DMSPp in the surface microlayer showed a strong temporal variation, basically following the change in chlorophyll a levels. Moreover, the microlayer concentrations of DMSPp were, on average, 3-fold higher than the microlayer concentrations of DMSPd and there was a significant correlation between them. Additionally, there was a great variability in the ratios of DMSPp to chlorophyll a over the study period, reflecting seasonal variation in the proportion of DMSP producers in the total phytoplankton assemblage. It is interesting that the production rate of DMS was enhanced in the microlayer and this rate was closely correlated with the microlayer DMSPd concentration. Microlayer enrichment of chlorophyll a and higher DMS production rate in the microlayer provide favorable evidence supporting the view that the sea surface microlayer has a greater biological activity than the underlying water.  相似文献   

13.
Sampling was conducted within inshore and offshore sites, characterized by highly dissimilar hydrodynamic and hydrobiological conditions, in the Eastern English Channel. The eutrophic inshore site was dominated by the influence of a dense bloom of the Prymnesiophyceae phytoplankton species Phaeocystis globosa, while the offshore site was characterized by more oceanic conditions. Within each site the microscale distributions of chlorophyll a and several flow cytometrically-defined subpopulations of heterotrophic bacteria and viruses were measured at a spatial resolution of 5 cm. The inshore site was characterized by comparatively high levels of microscale spatial variability, with concentrations of chlorophyll a, heterotrophic bacteria, and viruses varying by 8, 11 and 3.5-fold respectively across distances of several centimeters. Within the offshore site, microscale distributions of chlorophyll a and bacteria were markedly less variable than within the inshore site, although viruses exhibited slightly higher levels of heterogeneity. Significant mesoscale variability was also observed when mean microbial parameters were compared between the inshore and offshore sites. However, when the extent of change (max/min and coefficient of variation) was compared between meso- and microscales, the variability observed at the microscale, particularly in the inshore site, was substantially greater. This pattern suggests that microscale processes associated with Phaeocystis globosa bloom dynamics can generate heterogeneity amongst microbial communities to a greater degree than large scale oceanographic discontinuities.  相似文献   

14.
The distribution of chlorophyll a derivatives was examined in samples collected from the subarctic North Pacific during July to September 1997. Pheophorbide a, pheophytin a and pyropheophorbide a as determined by high performance liquid chromatography (HPLC) were the major derivatives recorded. The distribution patterns of chlorophyll a and its derivatives showed a strong vertical and horizontal heterogeneity. Patches with high concentration of derivatives seemed to be associated with high concentration of chlorophyll a. A clear east-west gradient was observed in both chlorophyll a and pheophorbide a integrated from the surface to 100 m depth with significantly higher amounts of both the pigments in the Western Subarctic Gyre and in the Bering Sea than in the Alaskan Gyre. In contrast, no apparent gradient was observed in the integrated pyropheophorbide a and pheophytin a. Grazing experiments conducted with the copepod (Neocalanus cristatus) and salp (Cyclosalpa bakeri) fed on five species of phytoplankton cultures, showed a marked difference in the composition of the derivatives in their fecal pellets. Pyropheophorbide a was dominant in the copepod fecal pellet regardless of the phytoplankton species fed on. In the salp, however, pheophytin a and pheophorbide a were found in the fecal pellets, the relative concentrations varying with the algal food. Spatial heterogeneity in the distribution of the derivatives is considered to reflect local variations in dominant herbivorous processes.  相似文献   

15.
Chlorophyll a of total and particles retained on 30 μm mesh plankton net were both determined in surface waters along two cruise tracks ranging from the Subtropical water to the marginal ice zone in the Pacific sector of the Southern Ocean in austral summer. Total surface chlorophyll a in the study area was mostly less than 1 μg chl a 1−1, and showed distributions with no obvious trend associated with different waters masses of the Antarctic and the Subantarctic, although total chlorophyll a concentrations changed greatly within each water mass. Particularly low concentrations of chlorophyll a were detected in the marginal ice zone. Chlorophyll a contained in 30 μm netplankton made up 5∼60% of total chlorophyll a: large near the marginal ice zone and becoming small with travel towards the north. High percentage shares of netplankton chlorophyll a were confirmed even in low total chlorophyll a concentrations in summer in the Southern Ocean. A positive relation was observed between the percentage of 30 μm netplankton and the “average total chlorophyll a”, although there was great scatter. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

16.
Concentrations of chlorophyll a and suspended particulate concentrations were measured during three lake-wide surveys of St Lucia, a shallow, turbid estuary on the east coast of South Africa. There was no salinity gradient in the system during any of the surveys, but between the surveys there were considerable salinity differences. Summer turbidities were higher than those of winter and spring, and turbidity along the eastern edge of the system was lower than elsewhere. Chlorophyll a was present over a wide range of salinities and turbidities and was generally highest in summer. However, there was no relationship between salinity and concentrations of chlorophyll a, and the concentrations were not significantly higher along the less turbid eastern shore. Concentrations of total paniculate matter (TPM) and particulate organic matter (POM) in the < 100 μm fraction were significantly correlated with turbidity throughout the year, but chlorophyll a and POM (< 100 μm) were significantly correlated only in summer. Concentrations of TPM in the > 100 μm fraction were two orders of magnitude lower than those in the < 100 μm fraction, but the organic content of the former fraction was very much higher. There was no relationship between turbidity and TPM (> 100 μm), nor between chlorophyll a and POM (> 100 μm) concentrations. Under conditions of high TPM load and in the salinity range 2–25 × 10?3, phytoplankton would probably still occur in St Lucia. Estimates of phytoplankton production ranged between 218 and 252 mg C·m?2·day?1. A comparison of estimates of the standing stocks of carbon from phytoplankton and suspended POM < 100 μm indicated that carbon input from sources other than phytoplankton may be important.  相似文献   

17.
Pure individual and mixed pigment standards were distributed among Joint Global Ocean Flux Study (JGOFS) pigment analysts to estimate the variability of their spectrophotometric and chromatographic systems. To monitor the integrity of the pigments during the comparison exercise, chlorophyll and carotenoid standards were archived and periodically analyzed by high-performance liquid chromatography (HPLC). Pigment standards stored in the dark under nitrogen at − 20 °C were found to be stable for periods of at least one year. Results from three separate intercalibration exercises document a better agreement for spectrophotometric analyses than for HPLC. For the spectrophotometric comparisons, 90% of the pigments analyzed by participant laboratories were within ± 6% of the mean “consensus” values. By contrast, 65 and 85% of the laboratories agreed to within ± 10 and ± 20%, respectively, when chromatographic analyses were compared. Chlorophyll absorption measurements obtained with a diode array-type spectrophotometer were 6–9% lower than those obtained with monochromator-type spectrophotometers. These underestimates probably result from chlorophyll fluorescence contamination associated with the optical configuration of the diode array spectrophotometer. It was also determined that HPLC methods which are not capable of separating monovinyl chlorophyll a from divinyl chlorophyll a can produce 15–25% overestimates of total chlorophyll a concentration in Prochlorococcus-dominated oceanic waters. A simple dichromatic approach is described for eliminating this variable source of error caused by co-elution of these structurally-related pigments. The use of internal standards and periodic calibration checks with external standards is highly recommended for improving analytical performance.  相似文献   

18.
In the upper Schelde estuary in 2002, phytoplankton biomass and community composition were studied using microscopic and pigment analyses. Chlorophyll a concentration was a good predictor of phytoplankton biomass estimated from cell counts and biovolume measurements. The phytoplankton carbon to chlorophyll a ratio, however, was often unrealistically low (<10). CHEMTAX was used to estimate the contribution of the major algal groups to total chlorophyll a. The dominant algal groups were diatoms and chlorophytes. While diatom equivalents in chlorophyll a predicted diatom biomass relatively well, chlorophyte equivalents in chlorophyll a were only weakly related to chlorophyte biomass. The pigment-based approach to study phytoplankton overestimated phytoplankton biomass in general and chlorophyte biomass in particular in late autumn and winter, when phytoplankton biomass was low. A possible explanation for this overestimation may be the presence of large amounts of vascular plant detritus in the upper Schelde estuary. Residual chlorophyll a, chlorophyll b and lutein in this detritus may result in an overestimation of total phytoplankton and chlorophyte biomass when the contribution of phytoplankton to total particulate organic matter is low.  相似文献   

19.
Distribution of cyanobacteria cannot be evaluated using chlorophyll a (Chla) in vivo fluorescence, as most of their Chla is located in non-fluorescing photosystem I. Phycobilin fluorescence, in turn, is noted as a useful tool in the detection of cyanobacterial blooms. We applied phycocyanin (PC) fluorometer in the monitoring of the filamentous cyanobacterial bloom in the Baltic Sea. For the bloom forming filamentous cyanobacteria Aphanizomenon flos-aquae and Nodularia spumigena, PC fluorescence maximum was identified using the excitation–emission fluorescence matrix. Consequently, the optical setup of our instrument was noted to be appropriate for the detection of PC, and with minor or no interference from Chla and phycoerythrin fluorescence, respectively.During summer 2005, the instrument was installed on a ferryboat commuting between Helsinki (Finland) and Travemünde (Germany), and data were collected during 32 transects providing altogether 200 000 fluorescence records. PC in vivo fluorescence was compared with Chla in vivo fluorescence and turbidity measured simultaneously, and with Chla concentration and biomass of the bloom forming filamentous cyanobacteria determined from discrete water samples.PC fluorescence showed a linear relation to the biomass of the bloom forming filamentous cyanobacteria, and the other sources of PC fluorescence are considered minor in the open Baltic Sea. Estimated by PC fluorescence, cyanobacterial bloom initiated late June at the Northern Baltic Proper, rapidly extended to the central Baltic Proper and the Gulf of Finland, and peaked in the mid-July with values up to 10 mg l−1 (fresh weight). In late July, bloom vanished in most areas.During single transects, or for the whole summer, the variability in Chla concentrations was explained more by PC fluorescence than by Chla fluorescence. Thus, filamentous cyanobacteria dominated the overall variability in phytoplankton biomass. Consequently, we show that during the cyanobacterial blooms, the estimation of Chla concentration using only Chla in vivo fluorescence is not applicable, but PC in vivo fluorescence is required as a predictor as well.  相似文献   

20.
Two sets of high-resolution subsurface hydrographic and underway surface chlorophyll a (Chl a) measurements are used, in conjunction with satellite remotely sensed data, to investigate the upper layer oceanography (mesoscale features and mixed layer depth variability) and phytoplankton biomass at the GoodHope line south of Africa, during the 2010–2011 austral summer. The link between physical parameters of the upper ocean, specifically frontal activity, to the spatially varying in situ and satellite measurements of Chl a concentrations is investigated. The observations provide evidence to show that the fronts act to both enhance phytoplankton biomass as well as to delimit regions of similar chlorophyll concentrations, although the front–chlorophyll relationships become obscure towards the end of the growing season due to bloom advection and ‘patchy’ Chl a behaviour. Satellite ocean colour measurements are compared to in situ chlorophyll measurements to assess the disparity between the two sampling techniques. The scientific value of the time-series of oceanographic observations collected at the GoodHope line between 2004 to present is being realised. Continued efforts in this programme are essential to better understand both the physical and biogeochemical dynamics of the upper ocean in the Atlantic sector of the Southern Ocean.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号