首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 125 毫秒
1.
现代海底低温热液弥散流区微生物生态的发育情况已经成为当前热液系统研究关注的热点之一。大量的分析表明在低温热液弥散流区赋存着丰富的化能自养微生物,以硫、铁等元素的氧化还原反应获取新陈代谢能量,这些微生物的分布与低温热液流体的物理化学条件有着密切的联系。这些发现极大地丰富了我们对低温弥散流区微生物生态、关键地球化学过程与微生物新陈代谢耦合关系的认识。此外,低温热液流体是研究洋壳深部生物圈的窗口,通过这个窗口可以了解地壳内部生命的新陈代谢方式,进而理解地球内部微生物与洋壳内部流体、岩石之间的相互作用机制。  相似文献   

2.
The Saldanha hydrothermal field is hosted atop a mafic–ultramafic seamount, located at a non-transform offset on the Mid-Atlantic Ridge. Previous observations revealed a field where transparent low-temperature fluids discharge through centimeter-sized vents without the formation of chimney structures. We present geochemical and stable isotope (O and C) analyses from sediment samples collected at this field, both at and far from the vent area. Most sediments, including some directly adjacent to orifice vents, are pelagic oozes with only a weak hydrothermal overprinting. Hydrothermal precipitates are characterized by Fe–Mn oxyhydroxides and a minor amount of Cu–Zn sulphide minerals. However, one of the cores (SCD7) collected at the vent area shows a much stronger hydrothermal signature. This core is composed of a matrix of serpentine + talc ± chlorite with high porosity, where calcite + chalcopyrite + sphalerite/wurtzite ± pyrite–pyrrhotite were precipitated. In this core, metal enrichments, REE patterns, and the oxygen and carbon isotope composition of calcites indicate that mineralization must have occurred in the subsurface by high-temperature fluids, with minor mixing with seawater and with a significant magmatic contribution. Thus, while most samples confirm previous findings indicating that Saldanha hydrothermal fluid discharge is mainly diffuse and of low temperature, data from core SCD7 suggest that areas of high-temperature hydrothermal activity also occur, where temperatures of the fluids could reach > 260 °C and maximum temperatures of 330 °C. We suggest that fluids can flow through faults at the top of the mount and discharge in a more focused way through vent orifices, producing intense hydrothermal alteration of the sediments. At these locations complex hydrothermal processes occur, including reactions of the hydrothermal fluids with mafic and ultramafic rocks and magma degassing, as suggested by the carbon isotope composition of hydrothermal calcites. The high temperature of the fluid inferred from the geochemistry of the hydrothermal minerals requires a significant heat input to the system, suggesting an additional magmatic heat source to the already proposed exothermic serpentinization reactions.  相似文献   

3.
A low-temperature diffuse flow site associated with abundant vent fauna was found by submersible observations on the southern East Pacific Rise at 17°25′ S in 1997. This site was characterized by thin sediment covered pillow and sheet lavas with collapsed pits up to ∼15 m in diameter. There were three warm water vents (temperature: 6.5 to 10.5 °C) within the site above which the vented fluids rise as plumes. To estimate heat flux of the warm water vents, a temperature logger array was deployed and the vertical temperature distribution in the water column up to 38 m above the seafloor was monitored. A stationary deep seafloor observatory system was also deployed to monitor hydrothermal activity in this site. The temperature logger array measured temperature anomalies, while the plumes from the vents passed through the array. Because the temperature anomalies were measured in only specific current directions, we identified one of the vents as the source. Heat flux from the vent was estimated by applying a plume model in crossflow in a density-stratified environment. The average heat flux from September 13 to October 18, 1997 was 39 MW. This heat flux is as same order as those of high-temperature black smokers, indicating that a large volume flux was discharged from the vent (1.9 m3/s). Previous observations found many similar warm water flow vents along the spreading axis between 17°20′ S–30′ S. The total heat flux was estimated to be at least a few hundred mega-watts. This venting style would contribute to form effluent hydrothermal plumes extended above the spreading axis.  相似文献   

4.
The vestimentiferan tubeworm Ridgeia piscesae is an ecosystem-structuring organism in the hydrothermal vent environments of the Northeast Pacific. During this study, a single representative aggregation of the long-skinny morphotype of R. piscesae from the main endeavor segment was monitored for 3 yr before being collected in its entirety with a hydraulically actuated collection device manipulated in situ by a research vehicle. Vestimentiferan growth rates in this aggregation were determined by staining the exterior of the tubes and measuring newly deposited tube sections. The average growth rate of R. piscesae in this aggregation was very low in both years of the growth study (3.2 mm yr−1). Although the incidence of plume damage from partial predation was very high (>95%), mortality was very low (<4% yr−1). The distribution and the very tight clustering of recently recruited individuals indicated gregarious settlement behavior that is hypothesized to be partly due to biotic cues from settled larvae. Coupled measurements of vent fluid sulfide concentration and temperature were used to calculate the exposure of the vestimentiferans to sulfide from short- and long-term temperature monitoring. Plume-level temperature records indicate that most of the time individuals in this aggregation were exposed to extremely low levels of vent fluid, and therefore sulfide (<0.1 μM), while their posterior sections were consistently exposed to sulfide concentrations in the 100 μM range. A rootball-like structure formed the common base of the aggregation. In contrast to the anterior sections of the tubeworm tubes, the portions of the tubes within the “rootball” were freely permeable to sulfide. The results of this study show that R. piscesae, unlike vestimentiferans from the East Pacific Rise, can survive and grow in areas of low diffuse vent flow with very low plume-level exposure to sulfide. We propose that this morphotype of R. piscesae has the ability to acquire sulfide from sources near their posterior ends, similar to some species of cold seep vestimentiferans from the Gulf of Mexico. The ability of this single species of vestimentiferan to survive low exposure to vent flow with low mortality coupled with sulfide uptake across posterior tube sections may help explain the occurrence of a single vent vestimentiferan species in a wide variety of habitat conditions at hydrothermal vent sites in the Northeast Pacific.  相似文献   

5.
A new gas-tight isobaric sampler for the collection of hydrothermal fluids venting at the seafloor has been designed, constructed, and tested at a ridge-crest vent site. The new device is constructed of chemically inert titanium, is gas-tight to 450 bar and can be used to sample fluids with temperatures up to 400°C. Compressed gas is used to maintain the sample at seafloor pressure before and during sample withdrawal onboard ship, allowing subsampling without degassing the fluid remaining in the sampler. This feature eliminates the need to collect separate gas-tight and major element samples since a single fluid sample can be analyzed quantitatively for major, trace, semi-volatile, and volatile components. The sampler fill rate is regulated to minimize entrainment of ambient seawater during collection of fluids from environments characterized by low fluid flow such as diffuse hydrothermal vents. In addition to deployment at the ridge-crest, the samplers can be used to collect gas-tight samples from other subseasurface environments such as hydrocarbon seeps, areas of methane-gas hydrate formation, cold seeps associated with serpentinites, regions of groundwater egress to the oceans, and the water column.  相似文献   

6.
The Qiangtang Basin is a significant prospective area for hydrocarbon and gas hydrate resources in the Tibetan Plateau, China. However, relatively little work has been performed to characterise heat flow in this basin, which has restricted petroleum and gas hydrate exploration. In this study, we compare present and palaeo-heat flow in the Qiangtang Basin to provide information on geothermal regime, hydrocarbon generation and permafrost that is necessary for further petroleum and gas hydrate exploration. We base our study on temperature data from a thermometer well, thermal conductivity tests, vitrinite reflectance data, homogenisation temperature data from fluid inclusions, stratigraphic information and a time-independent modelling approach. Our results indicate that in the central Qiangtang Basin, the present thermal gradient is approximately 15.5 °C/km, and heat flow is approximately 46.69 mW/m2. Heat flow in the Qiangtang Basin is not relatively stable since the Early Jurassic, as previous research has suggested, and it is generally decreasing with time. Additionally, there is a clear difference between the hottest thermal regime of the southern and northern Qiangtang Depressions during Cretaceous to Pleistocene time. In the southern Qiangtang Depression, the palaeogeothermal gradient is approximately 32.0 °C/km, and palaeo-heat flow is approximately 70 mW/m2. However, in the northern Qiangtang Depression, the palaeogeothermal gradient exceeds 81.8 °C/km, and palaeo-heat flow is greater than 172.09 mW/m2. The high thermal regime in the northern Qiangtang Depression is driven mainly by hydrothermal convection. Gas reservoirs are possible targets for hydrocarbon exploration in this depression. Currently, the northwestern part of the northern Qiangtang Depression is the most favourable area for gas hydrate exploration in the Qiangtang Basin.  相似文献   

7.
Habitat created or modified by the physical architecture of large or spatially dominant species plays an important role in structuring communities in a variety of terrestrial, aquatic, and marine habitats. At hydrothermal vents, the giant tubeworm Riftia pachyptila forms large and dense aggregations in a spatially and temporally variable environment. The density and diversity of smaller invertebrates is higher in association with aggregations of R. pachyptila than on the surrounding basalt rock seafloor. Artificial substrata designed to mimic R. pachyptila aggregations were deployed along a gradient of productivity to test the hypothesis that high local species diversity is maintained by the provision of complex physical structure in areas of diffuse hydrothermal flow. After 1 year, species assemblages were compared among artificial aggregations in low‐, intermediate‐, and high‐productivity zones and compared to natural aggregations of R. pachyptila from the same site. Hydrothermal vent fauna colonized every artificial aggregation, and both epifaunal density and species richness were highest in areas of high chemosynthetic primary production. The species richness was also similar between natural aggregations of R. pachyptila and artificial aggregations in intermediate‐ and high‐productivity zones, suggesting that complex physical structure alone can support local species diversity in areas of chemosynthetic primary production. Differences in the community composition between natural and artificial aggregations reflect the variability in microhabitat conditions and biological interactions associated with hydrothermal fluid flux at low‐temperature hydrothermal vents. Moreover, these local ecological factors may further contribute to the maintenance of regional species diversity in hydrothermal vent communities on the East Pacific Rise.  相似文献   

8.
The saddle dolomites occur more intensely in cores closely to fault than that in cores far away from the fault in Upper Cambrian carbonate of western Tarim basin, suggesting that formation of the saddle dolomites is likely related to fault-controlled fluid flow. They partially fill in fractures and vugs of replacement dolomite. The saddle dolomites exhibit complex internal textures, commonly consisting of core and cortex. In comparison with the matrix dolomites, the saddle dolomites show lower Sr-content and 87Sr/86Sr ratios, higher Fe- and Mn-content, and more negative δ18O values. Combined with high Th (100–130 °C) of primary fluid inclusions, it is suggested that the saddle dolomites precipitated from hydrothermal fluid derived from the deep evaporite-bearing Middle Cambrian strata, and the magnesium source may be due to dissolution of host dolomite during hydrothermal fluid migration. Fault activity resulted in petrographic and geochemical difference of the core and cortex of the saddle dolomites. The cores precipitated from the formation water mixed by deep brines at the early stage of fault activity, and the cortexes precipitated from the deep fluid with higher temperatures through the Middle Cambrian later. In summary, the formation of the saddle dolomites implies a hydrothermal fluid event related to fault activity, which also resulted in high porosity in Upper Cambrian carbonate in western Tarim Basin.  相似文献   

9.
Significant quantities of fluids and dissolved geochemical components are expelled through the sediment surface in ocean margin and sedimented ridge environments. Recently, significant interest has been generated in constraining hydrological processes in these environments, but direct measurement of fluid flow in the marine environment has proven to be difficult and many aspects of marine hydrogeology remain poorly understood. To address the need for a means to make a significant number of direct measurements in a wide range of low to moderate flow environments, we have developed a new type of benthic aqueous flux meter that is capable of measuring diffuse fluid flow through the sediment surface on the order of 0.1 mm yr−1–15 m yr−1 when the flow is through sediments with permeabilities of less than 10−8 cm2 (typical seafloor sediments). The instrument measures fluid flow by determining the degree of dilution of a chemical tracer that is injected by an osmotic pump at a known rate into the fluids venting into or out of a collection chamber situated on the sea bed. The pump also withdraws a subsample of this tracer/fluid mix into sample coils allowing a serial record of the flow rates to be determined. Both upward and downward flow can be measured and, when flux rates are high enough to effectively flush the collecting chamber, the instruments also act as geochemical samplers. Three years of laboratory testing and field use have constrained the effects of (1) temperature, pressure, and deployment duration on osmotic pump performance, (2) dispersion/diffusion in the sample coils, and (3) deflection of flow under a range of sediment permeabilities. Recent deployments on the Kodiak and Cascadia accretionary prisms document the range and capabilities of the instrument in the field.  相似文献   

10.
A phase of ferroan burial calcite from the Middle Jurassic Lincolnshire Limestone exhibits a systematic spatial arrangement of oxygen isotopic characteristics. Mean δ18O values of the ferroan calcites from each of 15 core and outcrop localities over a study area 25 × 25 km were obtained. These values show a marked depletion from west to east across the study area of approximately 3‰, such that the oxygen isotopic composition of the ferroan calcites can be contoured. The systematic change in oxygen isotopic composition across the study area is believed to have recorded the thermal gradient in the limestone during ferroan calcite precipitation. This thermal gradient can be partially attributed to approximately 200 m of differential burial of the Lincolnshire Limestone across the study area during the Chalk deposition, with a maximum burial of 550 m to the east of the area at this time. A component of up-dip fluid flow (from east to west) through the formation is required to generate the temperature enhancements above those predicted for conduction alone by simple differential burial. Using a finite-difference step computer program, rates of fluid flow during ferroan calcite precipitation are calculated to be approximately 25 m/year. This rate of fluid flow is considerably greater than rates usually predicted for buried sedimentary basins. The causes of such rapid, probably relatively short-lived flow-rates may be the sudden dewatering of adjacent shales, the release of overpressure within the formation of interest, seismic pumping, or fluid circulation round a supracrustal convective loop.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号