首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
海域天然气水合物的BSR成因   总被引:5,自引:0,他引:5  
根据海域天然气水合物的岩石物性研究成果,利用模型地震正演分析方法技术,对水合物沉积层的底界反射——BSR的成因进行了模拟分析研究。结果表明,BSR的成因及其振幅的强弱与水合物沉积层、含游离气沉积层的厚度、饱和度及地震反射波的主频都有着密切的关系,并对其进行了分析和总结。  相似文献   

2.
利用高分辨率地震资料,研究了南海北部白云凹陷中新世以来的陆坡峡谷沉积和迁移特征及其对动态似海底反射(BSR)的影响。白云凹陷陆坡区浊流和底流共同作用形成了大型单向迁移峡谷沉积体系。峡谷的沉积过程包括侵蚀为主阶段、侵蚀-沉积共同作用阶段及沉积为主阶段。峡谷沉积相主要包括峡谷侵蚀基底、谷底沉积、谷内滑塌块体搬运沉积及侧向倾斜沉积层等4个单元。峡谷的迁移造成含天然气水合物脊部两侧不同的侵蚀-沉积环境,因此,脊部两侧BSR反射特征也不同。随着峡谷迁移的进行,在峡谷侵蚀侧翼处,沉积物被侵蚀,天然气水合物稳定带底界将发生下移,BSR反射特征为多轴较连续反射;而峡谷沉积侧翼处,沉积物增厚,天然气水合物稳定带将发生上移,BSR反射特征为单轴连续反射。  相似文献   

3.
海洋拖缆主动源多道地震技术是应用于海洋天然气水合物资源调查的主要技术方法。不同于常规油气藏勘探,海底天然气水合物成藏机制复杂多样,海底似反射(Bottom Simulating Reflector,BSR)特征与水合物赋存并非完全对应。为提高海洋天然气水合物矿体识别的可靠性,地震属性技术在水合物资源调查中发挥着越来越重要的作用。本文对我国南海北部海域天然气水合物调查中的关键属性进行了对比、分析及筛选试验研究。试验针对海洋高分辨多道三维地震数据,采用三维地震层速度控制综合处理技术完成了BSR区域的成像,提取了与BSR相关的多种地震属性,并对BSR地震属性体的内部特性进行了分析,实现了BSR特征水合物矿体的识别,并提取了BSR上方和下部结合层带的地震属性。研究结果表明,在水合物赋存地层极其复杂的条件下,地震属性分析技术在海洋复杂浅地层水合物识别方面具有可行性和技术优势。  相似文献   

4.
利用地震反射法评价海底天然气水合物资源   总被引:4,自引:0,他引:4  
海底天然气水合物是21世纪的重要新能源,本文介绍了利用地震反射法来识别海底天然气水合物的存在和分布特征,并春资源量进行评价的方法。根据地震剖面上的拟海底反射层(BSR)识别水合物的存在,并结合地震弹必参数和利用沉积物的孔隙率等等征,来评估海底天然气水合物的资源前景。  相似文献   

5.
天然气水合物被认为是世界上各沉积盆地中大量聚集在一起的甲烷。人们普遍认为,似海底反射(BSR)与天然气水合物之间具有依存关系。但根据钻井资料,没有BSR分布的地区,同样也发现有天然气水合物的存在,且钻遇到了天然气水合物;而有BSR的地区,却可能发现不了天然气水合物。似乎BSR与天然气水合物的关系显得有些模糊不清。  相似文献   

6.
在斯瓦尔巴群岛西部的高分辨率地震剖面上可识别出强似海底反射(BSR)(振幅变化大)。据高频海底水听器(HF-OBH)资料计算,在BSR之上速度达1840m/s,暗示沉积物含气体水合物;BSR之下出现低速层,认为含气沉积物所致,厚度12-25m。另外,在经典的水合物稳定带(HSZ)之内。可识别出含游离气的两个低速层,而理论上这里不存在游离气。  相似文献   

7.
冲绳海槽天然气水合物BSR的地震研究   总被引:8,自引:0,他引:8       下载免费PDF全文
根据多道地震反射资料分析,在冲绳海槽南部和中部发现了拟海底反射层(BSR)现象。通过对海底异常反射层的振幅特征、速度异常和AVO属性分析,说明该BSR可能反映了天然气水合物的存在,并发现冲绳海槽断层与天然气水合物的形成有密切关系。  相似文献   

8.
我们通过印度西部大陆边缘(WCMI)的多道地震反射资料解释,以建立天然气水合物形成的可能模型。地震剖面上双程走时(TWT)为2950ms的反射界面被解释为甲烷水合物层底界,即似海底反射(BSR),它出现于海底以下500ms处。相似成因的KSRs在世界范围内广泛存在,不管其下有否游离气,它们通常是含天然气水合物的碎屑沉积物的底界。本文建立了一个天然气水合物/游离气模型,运用不用物性以合成地震记录,并与多道地震反射资料上所观察到的BSR振幅和不同震源一检波器偏移距的波形进行对比。初步结果为研究水合物分布和形成的预测模型提供了重要证据。不同偏移距的振幅恢复也为水合物特性的响应研究提供了依据。  相似文献   

9.
1993年6月,对在ODP第889B孔周围的BSR作了深入的地震研究。在两个航次中采用海底地震仪(OBHs)收集了大量的广角反射资料和单道地震资料。我们对工区内的一条测线的资料进行了新的2D旅行时反演。4个OBHs(广角反射资料)和单道地震资料的联合反演获得了在BSR上方P波的速度特征,结果发现这些速度略高于垂直地震(VSP)获得的速度和889B井声波测到的速度,BSR上方速度大约1.83-1.95km/s。两种不同方法估计的气体水合物含量大约为孔隙空间2%到24%。速度模型提供了该区BSR上方BSR反射强度和水合物含量之间关系。  相似文献   

10.
东海天然气水合物的地震特征   总被引:1,自引:0,他引:1  
使用中国科学院海洋研究所“科学一号”调查船于2001年以及20世纪80年代在东海地区采集的多道地震资料,以海域天然气水合物研究为目的,对这些资料进行了数据处理并获得了偏移地震剖面。通过对地震剖面的解释,在6条剖面上确定了6段异常反射为BSR,均有振幅强、与海底相位相反的特点。6段BSR基本上都没有出现和沉积地层相交的现象。分析认为,这与东海地区第四纪以来的沉积特征有关,并不能由此否认这些异常反射是BSR。6段BSR出现的水深为750~2 000 m,埋深在0.1~0.5 s(双程时间)之间。随着海底深度的增大,BSR埋深有增大的趋势。计算结果显示,6段BSR所处的温度和压力条件都满足水合物稳定赋存所需要的温度和压力条件。本文的BSR主要与北卡斯凯迪亚盆地以及智利海域水合物的温度、压力条件相似,而与日本南海海槽、美国布莱克海台等海域水合物的温度、压力条件相差比较大。在地震剖面上,6段BSR所处的局部构造位置都和挤压、断层有关,有利于水合物的发育;在空间上,它们主要分布在东海陆坡近槽底的位置以及与陆坡相近的槽底。在南北方向上,除分布在吐噶喇断裂和宫古断裂附近外,还与南奄西、伊平屋和八重山热液活动区相邻。热液活动和水合物虽然没有直接的成因关系,但岩浆活动为水合物气源的形成提供了热源条件,为流体和气体的运移、聚集提供了通道条件,从而有利于水合物的发育与赋存。根据地震剖面反射特征推断,剖面A1A2和A14A23发育BSR的位置应该有气体或者流体从海底流出,可能是海底冷泉发育的位置。剖面A14A23上BSR发育处,振幅比的异常增大和BSR埋深的降低是相关联的。这种关联支持该处发育海底冷泉的推测。  相似文献   

11.
Presence of gas hydrate and free gas in Iranian part of Makran accretionary prism changes the elastic properties of unconsolidated sediments and produces sharp bottom simulating reflectors (BSRs) which are observed on the 2-D seismic data. Different methods have been applied to estimate the gas hydrate and free gas saturations in marine sediments based on seismic measurements. Most of these methods are based on relating the elastic properties to the hydrate and free gas saturations and remotely estimating their concentration. In this regard, using the effective medium theory (EMT) which was developed for different modes of hydrate distribution is more considered among other rock physics theories. The main concern about saturation estimations based on EMT is that the velocities of the hydrate-bearing sediments primarily depend on how they are distributed within the pore space. Therefore, understanding the modes of hydrate distribution (at least cementing or non-cementing modes) is necessary to decrease the estimation uncertainties.The first intention of paper is to investigate amplitude variation versus offset (AVO) analysis of BSR to determine the hydrate distribution modes. The results from the probable saturation revealed that if the hydrate cements the sediment grains, BSR would show the AVO class IV and if hydrate does not cement the sediment grains, then BSR would show either the AVO class II or class III depending on the free gas saturation just beneath the BSR. The second intention of paper is to introduce some templates called reflectivity templates (RTs) for quantitative study of hydrate resources. These templates are provided based on the EMT to quantify the hydrate and free gas near the BSR. Validation of this approach by synthetic data showed that a reliable quantification could be achieved by intercept-gradient RTs, only if these attributes are determined with a high accuracy and good assumptions are made about the mineralogical composition and porosity of the unconsolidated host sediments. The results of this approach applied to a 2-D marine pre-stack time migrated seismic line showed that less than 10% of the gas hydrate accumulated near to the BSR in anticlinal-ridge type structure of Iranian deep sea sediments. The free gas saturation near to the BSR by assuming a homogeneous distribution was less than 3% and by assuming patchy distribution was about 3–10%.  相似文献   

12.
Multichannel seismic reflection data recorded between Arauco Gulf (37°S) and Valdivia (40°S), on the Chilean continental margin, were processed and modeled to obtain seismic images and sub-surface models, in order to characterize the variability of the bottom-simulating reflector (BSR), which is a geophysical marker for the presence of gas hydrates. The BSR is discontinuous and interrupted by submarine valleys, canyons, as well as by faults or fractures. The BSR occurrence is more common south of Mocha Island due to moderate slopes and greater organic matter contribution by rivers in that area. Tectonic uplift and structural instability change the stability gas hydrate zone and consequently the BSR position, creating in some cases missing or double BSRs. Our modeling supports the presence of gas hydrate above the BSR and free gas below it. Higher BSR amplitudes support higher hydrate or free gas concentrations. In the study area, gas hydrate concentration is low (an average of 3.5%) suggesting disseminated gas hydrate distribution within the sediments. Also higher BSR amplitudes are associated with thrust faults in the accretionary prism, which serve as conduits for gas flow from deeper levels. This extra gas supply produces a wider thickness of gas hydrates or free gas.  相似文献   

13.
The multichannel seismic data along one long-offset survey line from Krishna-Godavari (K-G) basin in the eastern margin of India were analyzed to define the seismic character of the gas hydrate/free gas bearing sediments. The discontinuous nature of bottom simulating reflection (BSR) was carefully examined. The presence of active faults and possible upward fluid circulation explain the discontinuous nature and low amplitude of the BSR. The study reveals free gas below gas hydrates, which is also indicated by enhancement of seismic amplitudes with offsets from BSR. These findings were characterized by computing seismic attributes such as the reflection strength and instantaneous frequency along the line. Geothermal gradients were computed for 18°C and 20°C temperature at the depth of BSR to understand the geothermal anomaly that can explain the dispersed nature of BSR. The estimated geothermal gradient shows an increase from 32°C/km in the slope region to 41°C/km in the deeper part, where free gas is present. The ray-based travel time inversion of identifiable reflected phases was also carried out along the line. The result of velocity tomography delineates the high-velocity (1.85–2.0 km/s) gas hydrate bearing sediments and low-velocity (1.45–1.5 km/s) free gas bearing sediments across the BSR.  相似文献   

14.
Seismic character of gas hydrates on the Southeastern U.S. continental margin   总被引:14,自引:0,他引:14  
Gas hydrates are stable at relatively low temperature and high pressure conditions; thus large amounts of hydrates can exist in sediments within the upper several hundred meters below the sea floor. The existence of gas hydrates has been recognized and mapped mostly on the basis of high amplitude Bottom Simulating Reflections (BSRs) which indicate only that an acoustic contrast exists at the lower boundary of the region of gas hydrate stability. Other factors such as amplitude blanking and change in reflection characteristics in sediments where a BSR would be expected, which have not been investigated in detail, are also associated with hydrated sediments and potentially disclose more information about the nature of hydratecemented sediments and the amount of hydrate present.Our research effort has focused on a detailed analysis of multichannel seismic profiles in terms of reflection character, inferred distribution of free gas underneath the BSR, estimation of elastic parameters, and spatial variation of blanking. This study indicates that continuous-looking BSRs in seismic profiles are highly segmented in detail and that the free gas underneath the hydrated sediment probably occurs as patches of gas-filled sediment having variable thickness. We also present an elastic model for various types of sediments based on seismic inversion results. The BSR from sediments of high ratio of shear to compressional velocity, estimated as about 0.52, encased in sediments whose ratios are less than 0.35 is consistent with the interpretation of gasfilled sediments underneath hydrated sediments. This model contrasts with recent results in which the BSR is explained by increased concentrations of hydrate near the base of the hydrate stability field and no underlying free gas is required.  相似文献   

15.
《Marine Geology》2001,172(1-2):1-21
In this paper we present and discuss the frequency-dependent behaviour of the acoustic characteristics of methane hydrate-bearing sediments in Lake Baikal, Siberia. Five different types of seismic sources (airgun-array, two types of single airguns, watergun and sparker) are used, encompassing a frequency bandwidth from 10 up to 1000 Hz. On low-frequency airgun-array data, the base of the hydrate stability zone (HSZ) is observed as a high-amplitude bottom-simulating reflection (BSR) with reversed polarity. The amplitude and continuity of the BSR decrease or even disappear on medium- to high-frequency data, a feature explained in terms of vertical and horizontal resolution. The increasing reflection amplitude of the BSR with increasing offset, the calculated reflection coefficient of the BSR and the occurrence of enhanced reflections below the BSR suggest the presence of free gas below the HSZ. The observation of some enhanced reflections extending above the BSR may be interpreted as an indication for free gas co-existing with hydrates within the HSZ. Amplitude blanking above the BSR is highly variable while the BSR itself appears to act as a low-pass frequency filter for medium- to high-frequency data.New single-channel airgun profiles provide the first seismic information across the Baikal Drilling Project (BDP-97) deep drilling site, at which hydrate-bearing sediments were retrieved at about 200 m above the base of the local HSZ. At the drilling site there are no seismic characteristics indicative of the presence of hydrates. Combination of the drilling and seismic information has allowed us to make a rough estimation of the volume of hydrates and carbon stored in the sediments of Lake Baikal, which lead us to conclude that the Lake Baikal gas hydrate reservoirs do not form a prospective energy resource.  相似文献   

16.
Seismic properties of sediments are strongly influenced by pore fluids. Stiffness of unconsolidated marine sediment increases with the presence of gas hydrate and decreases with the presence of gas. A strong bottom-simulating reflector (BSR) observed on a seismic profile in the Makran accretionary prism, offshore Pakistan, indicates the presence of gas hydrate and free-gas across the BSR. Elastic properties of gas depend largely on pressure and temperature. We, therefore, first determine the elastic modulus of gas at pressure and temperature calculated at the BSR depth in the study region. The interval velocities derived from the seismic data are interpreted by the effective medium theory, which is a combination of self-consistent approximation and differential effective medium theories, together with a smoothing approximation, for assessment of gas hydrate and free-gas. The results show the saturations of gas hydrate and free-gas as 22 and 2.4% of pore space, respectively, across the BSR.  相似文献   

17.
Velocity analysis of multi-channel seismic (MCS) data and amplitude-versus-offset (AVO) modeling provides an efficient way of identifying gas hydrate and free gas, and therefore the nature of the bottom-simulating reflector (BSR). Additionally, AVO modeling also yields estimates of the hydrate concentration and free gas saturation across the BSR in terms of velocity distribution. In the present study, we apply directivity correction in order to accentuate the AVO behavior. Modeling for AVO pattern of the observed BSR over the Kerala–Konkan Offshore Basin may provide the probable velocity distribution across the BSR and thereby infer whether hydrate or hydrate/free gas model governs the AVO observations. Initial results indicate the possible presence of free gas underlying the gas hydrates-saturated sediments in this region.  相似文献   

18.
An analysis of 3D seismic data from the northwestern part of the Ulleung Basin, East Sea, revealed that the gas hydrate stability zone (GHSZ) consists of five seismic units separated by regional reflectors. An anticline is present that documents activity of many faults. The seismic indicators of gas hydrate occurrence included bottom simulating reflector (BSR) and acoustic blanking in the gas hydrate occurrence zone (GHOZ). By the analysis of the seismic characteristics and the gradient of the sedimentary strata, the GHOZ was divided into four classes: (1) dipping strata upon strong BSR, (2) dipping strata below strong BSR, (3) parallel strata with acoustic blanking, and (4) parallel strata below weak BSR. Seismic attributes such as reflection strength and instantaneous frequency were computed along the GHOZ. Low reflection strength and high instantaneous frequency were identified above the BSR, indicating the occurrence of gas hydrate. A remarkably high reflection strength and low instantaneous frequency indicated the presence of free gas below the BSR. Considering the distribution of the gas hydrate and free gas, two gas migration processes are suggested: (1) stratigraphic migration through the dipping, permeable strata and (2) structural migration from below the GHSZ along faults.  相似文献   

19.
The presence of gas hydrates, one of the new alternative energy resources for the future, along the Indian continental margins has been inferred mainly from bottom simulating reflectors (BSR) and the gas stability zone thickness mapping. Gas hydrate reserves in Krishna Godawari Basin have been established with the help of gas-hydrate related proxies inferred from multidisciplinary investigations. In the present study, an analysis of 3D seismic data of nearly 3,420 km2 area of Mahanadi deep water basin was performed in search of seismic proxies related with the existence of natural gas hydrate in the region. Analysis depicts the presence of BSR-like features over a large areal extent of nearly 250 km2 in the central western part of the basin, which exhibit all characteristics of a classical BSR associated with gas hydrate accumulation in a region. The observed BSR is present in a specific area restricted to a structural low at the Neogene level. The coherency inversion of pre-stack time migration (PSTM) gathers shows definite inversion of interval velocity across the BSR interface which indicates hydrate bearing sediments overlying the free gas bearing sediments. The amplitude versus offset analysis of PSTM gathers shows increase of amplitude with offset, a common trend as observed in BSR associated with gas hydrate accumulation. Results suggest the possibility of gas hydrate accumulation in the central part of the basin specifically in the area of structural low at the Neogene level. These results would serve as preliminary information for selecting prospective gas hydrate accumulation areas for further integrated or individual study from geophysical, geological, geochemical and microbiological perspectives for confirmation of gas hydrate reserves in the area. Further, on the basis of these results it is envisaged that biogenic gas might have been generated in the region which under suitable temperature and pressure conditions might have been transformed into the gas hydrates, and therefore, an integrated study comprising geophysical, geological, geochemical and microbiological data is suggested to establish the gas hydrate reserves in Mahanadi deep water basin.  相似文献   

20.
This article provides new constraints on gas hydrate and free gas concentrations in the sediments at the margin off Nova Scotia. Two-dimensional (2-D) velocity models were constructed through simultaneous travel-time inversion of ocean-bottom seismometer (OBS) data and 2-D single-channel seismic (SCS) data acquired in two surveys, in 2004 and 2006. The surveys, separated by ∼5 km, were carried out in regions where the bottom-simulating reflection (BSR) was identified in seismic reflection datasets from earlier studies and address the question of whether the BSR is a good indicator of significant gas hydrate on the Scotian margin. For both datasets, velocity increases by 200–300 m/s at a depth of approximately 220 m below seafloor (mbsf), but the results of the 2006 survey show a smaller velocity decrease (50–80 m/s) at the base of this high-velocity layer (310–330 mbsf) than the results of the 2004 survey (130 m/s). When converted to gas hydrate concentrations using effective medium theory, the 2-D velocity models for both datasets show a gas hydrate layer of ∼100 m thickness above the identified BSR. Gas hydrate concentrations are estimated at approximately 2–10% for the 2006 data and 8–18% for the 2004 survey. The reduction in gas hydrate concentration relative to the distance from the Mohican Channel structure is most likely related to the low porosity within the mud-dominant sediment at the depth of the BSR. Free gas concentrations were calculated to be 1–2% of the sediment pore space for both datasets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号