首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
南海中部叶绿素a分布和光合作用及其与环境因子的关系   总被引:2,自引:0,他引:2  
本文描述了1983年9月—1984年12月4个航次南海中部(12°—19°30′N,111°—118°E)综合调查期间有关叶绿素a和光合作用的测定结果,并对叶绿素a时空分布,光合作用及其与环境因子的关系进行了讨论。调查表明:次表高值层为叶绿素分布的一个特征,其深度在50—100m左右,含量范围多在0.1—0.6mg/m~3之间。叶绿素a的垂直变化与温、盐跃层,营养盐以及光的分布有关,而垂直积分的总量平面分布则与不同水团的消长有关。光合作用随深度的变化说明某些浮游植物适于低光下生长,而这些生物的活动也影响着亚硝酸盐和溶解氧的生成。  相似文献   

2.
采用半连续培养方法,在光暗周期下研究了光强对一种海洋硅藻--伪矮海链藻(Thalassiosira pseudonana 3H)荧光特性和生化组成的影响.研究结果表明,随着生长光强的增强,DCMU增强荧光产额、荧光增强比、细胞碳水化合物含量、碳水化合物/叶绿素a、碳水化合物/蛋白质的比值均增高,荧光产额、细胞叶绿素a含量降低;而细胞蛋白质含量在10-100μE·m-2·s-1光强范围内,随光强的增强而降低,当光强大于100μE·m-2·s-1时则升高.取样时间对生长光强与细胞叶绿素a、碳水化合物含量、碳水化合物/叶绿素a比、碳水化合物/蛋白质比的关系有很大影响.  相似文献   

3.
利用被动示踪物模拟对黑潮入侵南海的数值研究   总被引:1,自引:1,他引:0  
由于缺少观测数据和对黑潮水准确定义,很难识别出从太平洋入侵到南海的黑潮水团。本文基于一个经过观测验证的三维模式MITgcm,利用被动示踪物标记黑潮水,研究了入侵南海的黑潮水的时空变化。研究表明,在冬季,黑潮水入侵的范围最广,几乎占据了18°N-23°N和114°E-121°E的区域;并有一个分支进入台湾海峡;黑潮入侵的范围随深度增加逐渐减小。在夏季,黑潮水被限制在118°E以东,且没有分支进入台湾海峡;入侵的范围从海面到约205米是增大的,之后随深度增加逐渐减小。通过分析从2003年到2012年黑潮入侵的年际变化,与厄尔尼诺年和正常年相比,冬季黑潮入侵后向台湾海峡的分支在拉尼娜年是最弱的,这可能与中国大陆东南方向的风应力旋度有关。通过吕宋海峡的黑潮入侵通量(KIT)是西向的,其年平均值约为-3.86×106 m3/s,大于吕宋海峡通量(LST,约-3.15×106 m3/s)。250米以上的KIT约占了全深度通量的60-80%。此外,从2003年到2012年KIT与Niño 3.4指数的相关系数到达0.41,小于LST与Niño 3.4指数的相关系数0.78。  相似文献   

4.
南黄海夏末叶绿素a的分布特征   总被引:3,自引:2,他引:1  
根据1995年9月利用日本《神鹰丸》号调查船在黄海32°00'–35°00'N,122°00'–127°00'E海区的19个站位上进行的中日联合调查研究中叶绿素a含量的调查资料,探讨南黄海海区夏末初叶绿素a含量的变化、平面分布、断面分布和垂直分布状况,以及与海域环境因子之间的关系。在每个测站上作垂直取样,表层水用圆塑料桶取自海表面,深层水用日本提供的专用采水器采集,取出水样立即量取200ml,用玻璃纤维滤膜过滤浓缩,并加入2%的饱和碳酸镁溶液,防止叶绿素脱镁,然后保存在冰箱内(-1°C),用冰桶带回实验室进行分析。将载有浮游植物的滤膜放入闪烁瓶内加入10ml 90%的丙酮溶液,在冰箱内提取24h。用萃取荧光法测定叶绿素a含量。结果表明,该海域的叶绿素a含量较高,平均值为1.14mg/m3,其变化范围为0.10–7.76mg/m3,最高值在次表层。(1)平面分布:各层次平面分布特征差异较大。33°00'–33°30'N之间叶绿素a含量均较低,低于0.50mg/m3。33°30'N以北,叶绿素a含量低于0.20mg/m3,而33°00'N以南,除济州岛附近的17–19导站以外,叶绿素a含量均较高,高于100mg/m3。(2)断面分布:水深在30m时,叶绿素a含量的高值区在20m以上水体的次表层中,而水深为50–80m时,其高值分布在20–40m的次表层中。(3)叶绿素a的垂直分布也体现了断面分布的特征。所以作者认为,光是浮游植物生长和繁殖的重要因子之一。  相似文献   

5.
本文利用日本气象厅在137°E断面获得的水温和盐度长期观测资料,分析了该断面温度场和盐度场的时空特征.结果表明,137°E断面的温度场和盐度场都存在着明显的季节差异和年际变化.冬季,温度场变化的关键区位于3°~18°N的300m以浅海域,而盐度场变化的关键区则位于18°~34°N的300m以浅海域.夏季,温度场变化的关键区位于3°~16°N的300m以浅海域,而盐度场则有两个关键区,分别位于3°~18°N的200m以浅海域和24°~34°N的300m以浅海域.温度场的年际变化与ENSO循环相联系,而盐度场的年际变化则比较复杂.  相似文献   

6.
热带太平洋西部及赤道暖水区的初级生产力   总被引:1,自引:2,他引:1  
描述了对热带太平洋西部(1991年11月WOCE调查)及赤道暖水区(1992年11月至1993年2月的TOGA-COARE调查)的叶绿素a分布和初级生产力(C),及其与理化环境的关系.西部海域叶绿素a平均总量达19.79mg/m2,暖水区为2.168mg/m2;暖水区的潜在初级生产量高于西部海域,量值分别为228mg/(m2·d)和171mg/(m2·d),次表层最大值成为调查海域水体叶绿素a分布的一个明显特点.叶绿素a总量平面分布趋向表明:高生物量主要位于巴士海峡邻近、菲律宾以及伊里安岛的近岸站位,此外,在2°~4°N之间的观测区.低生物量主要位于外洋海域.生物量的分布与不同海域的物理过程变化有关,而海水涌升可能是导致温度、盐度和营养盐分布产生变化,并因而导致高生物量的一个重要的物理过程.  相似文献   

7.
根据2004年7-8月台湾海峡南部台湾浅滩周边海域的温度、盐度和叶绿素a荧光的观测资料,分析了调查期间温度、盐度、叶绿素a荧光垂直分布特征及其相互关系.结果表明,温盐环境因子的变化对叶绿素a荧光垂直分布有重要影响.夏季浅滩西侧近岸区出现的温盐跃层控制着叶绿素a荧光的垂直分层特征;浅滩南部陆架斜坡区中下层涌升水较强,于温盐跃层之中出现叶绿素a荧光的单峰;浅滩区水浅,基本上无(或弱)温盐跃层,叶绿素a荧光的垂向分布也较均匀;在浅滩区边缘,受上升流与浅滩强潮混合作用影响,叶绿素a对温盐的响应呈线性关系.  相似文献   

8.
北太平洋鱿鱼渔场叶绿素a分布特点及其与渔场的关系   总被引:8,自引:3,他引:8  
根据2001年~8月对位于39°~43°N,152°E~171°W的北太平洋鱿鱼渔场进行的水温、盐度、叶绿素a、浮游植物和鱿鱼捕捞等的调查结果,主要分析北太平洋鱿鱼渔场表层叶绿素a分布特点及其与环境因子、中心渔场的关系.分析结果表明,调查区表层叶绿素a含量变化为0.03~0.32 mg/m3,平均为0.13 mg/m3,其中中部渔场表层叶绿素a含量值最大,东部渔场次之,西部渔场最低;调查海域表层叶绿素a含量分布与表层温度、盐度存在较好的对应关系,叶绿素a含量高值区对应高温区,冷涡区含量最低,暖涡区含量最高;叶绿素a含量随盐度的增加而增加;在西部、中部、东部渔场,表层叶绿素a含量与浮游植物数量呈正相关关系;表层叶绿素a的分布与鱿鱼中心渔场存在较好的对应关系,中心渔场主要位于0.1 mg/m3叶绿素a等值线舌状部分或叶绿素a水平梯度较大处,渔场中心的叶绿素a值大于0.1 mg/m3.叶绿素a分布与环境要素及渔场的相关性分析表明叶绿素a可作为鱿鱼渔场分析中的一个重要参考指标.  相似文献   

9.
基于卫星高度计观测的全球中尺度涡的分布和传播特征   总被引:7,自引:0,他引:7  
利用将近12 a的融合高度计资料获得了全球海洋中尺度涡的空间分布和传播特征。结果表明,中尺度涡在副热带海域呈明显的带状分布,反气旋涡和气旋涡的数目相当,但在某些海域它们的数目有很大不同;在40°S-60°N间,大多数涡的运动方向向西,然而在40°-60°S间约有70%的涡向东传播;对于西向传播的涡而言,纬向平均速度随纬度有明显的变化,在赤道附近的西向传播速度为13 cm/s,而在高纬度递减到不足1 cm/s,中尺度涡的传播表现出类似于Rossby波的传播特征。  相似文献   

10.
透明胞外聚合颗粒物(Transparent exopolymer particles,TEPs)在海洋中分布广泛,其沉降被认为是海洋中生物碳沉降的途径之一。本研究于2011年春季和夏季调查了长江口邻近海域TEPs的浓度和沉降速率,并且估算了其碳沉降通量。研究发现,TEPs浓度春季介于40.00~1040.00 μg Xeq L-1,平均值为209.70±240.93 μg Xeq L-1;夏季介于56.67~1423.33 μg Xeq L-1,平均值为433.33±393.02 μg Xeq L-1。两个季节,TEPs在水华站位的浓度明显高于非水华站位。相关性分析表明,TEPs与水体叶绿素a浓度呈显著正相关性,表明在调查区浮游植物是TEPs的主要生产者。TEPs沉降速率在春季介于0.08~0.57 m d-1,平均值为0.28±0.14 m d-1;夏季介于0.10~1.08 m d-1,平均值为0.34±0.31 m d-1。经估算,TEPs碳沉降通量春季介于4.95~29.40 mg C m-2 d-1,平均值为14.66±8.83 mg C m-2 d-1;夏季介于6.80~30.45 mg C m-2 d-1,平均值为15.71±8.73 mg C m-2 d-1。TEPs的碳沉降通量可以占到浮游植物碳沉降通量的17.81%~138.27%。水华站位TEPs的碳沉降通量明显高于非水华站位,这是由于水华站位较高的TEPs浓度及沉降速率所致。本研究表明,TEPs的沉降在长江口邻近海域是碳沉降的有效途径,在相应的碳沉降相关研究中应该被考虑进来。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号