首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
黄河口外沉积物氧化还原环境的表征   总被引:1,自引:0,他引:1  
为了评价黄河口外石油开发区沉积物的氧化还原特征,本文根据2002年9月航次所取得的黄河口外41个柱状沉积物样品,研究了该区沉积物氧化还原特征参数Fe^3 ,Fe^2 ,Fe^3 /Fe^2 及Eh,Es和有机碳、氧化还原度(ROD)等的分布特征,以及这些参数之间的相关关系。研究表明,Fe^3 ,Fe^2 ,Fe^3 /Fe^2 及Eh,Es和有机碳、氧化还原度(ROD)等在表层沉积物中各站之间的差别不大。Fe^3 和Fe^2 在0~40cm深度范围内变化比较复杂。40cm以后变的相对比较稳定。而Eh和Es有随深度减小的趋势,ROD在整个研究区都小于1,有机碳的含量高于整个渤海的平均值。综合所有氧化还原特征参数的特征,可确认该区沉积物的氧化还原环境为还原性,该还原性特征主要是由有机碳控制的,而活性铁的贡献不明显。  相似文献   

2.
南沙群岛海域表层沉积物中有机物、铁和锰的分布特征   总被引:1,自引:0,他引:1  
通过1997年11月(冬季)和1999年7月(夏季)两个航次对南沙群岛海域的现场调查,实测了南沙深海盆表层沉积物中的有机物,Fe和Mn的含量,讨论了沉积物中Fe、Mn的平面和深度分布。在沉积物的上层几厘米处Fe和Mn都出现了峰值,这是上层Mn^2 (Fe^2 )氧化,再沉淀引起的,沉积物中Fe和Mn的深度分布是氧化锰(铁)和氢氧化锰(铁)的还原,扩散和再沉淀的结果,细菌在海洋环境的Fe、Mn循环中起着重要的作用,在大洋底的厌氧环境中细菌将Fe、Mn还原为低价离子或可溶性化合物向间隙水和上覆水移动,在沉积物表层的氧化条件下细菌又使环境中的Fe、Mn沉淀,使其再次富集。  相似文献   

3.
以富营养化的胶州湾一个柱状沉积物为例,用细化的铁形态分析及量化的铁氧化物还原活性相结合的方法研究了沉积物中铁的成岩作用过程。结果表明,这两种方法相结合的结果能更详细示踪铁的转化并能从多视角提供铁成岩作用的细微差别。这一方法有望应用于其它研究中更好地揭示复杂的铁和硫的生物地球化学循环。铁微生物还原在上部沉积物铁的还原中起重要作用,但12 cm深度以下铁被硫化物的化学还原为主要过程。最具生物活性的无定形铁氧化物是铁微生物还原的主要参与者,然后依次为弱晶态铁氧化物和磁铁矿,晶态铁氧化物几乎不参与铁的成岩循环。沉积物上部铁微生物还原的重要作用主要是活性铁含量高而活性有机质含量低共同作用的结果,且后者也是沉积物中硫酸盐还原速率以及硫化物积累的最终制约因素。对比研究表明,通过还原性溶解动力学方法表征的微生物可还原的铁氧化物主要由无定形和弱晶态铁氧化物组成,其总体活性常数相当于老化的水铁矿,且随深度增加而减低。  相似文献   

4.
长江口崇明东滩地貌发育过程中的活性铁变化及环境意义   总被引:1,自引:0,他引:1  
利用2002—2003年在崇明东滩采得的CDS、CDM和CDN三个典型沉积物剖面样品,测定了其中的Fe3 、Fe2 、Fe3 /Fe2 以及有机碳、粒度等特征参数,分析了活性铁分布变化特征并对其沉积物氧化还原环境的变化进行了探讨。结果表明Fe3 含量在整个研究区域均是从表层向下逐渐递减的,Fe2 含量逐渐增加。从实验结果判断,所研究区域沉积环境上层以氧化环境为主,呈弱氧化型,中下层以还原环境为主。分析发现其分布变化受粒度、有机碳的影响,氧化还原界面与中、高潮滩划分界大致相当。  相似文献   

5.
沉积物可溶性Fe^3+、Fe^2+含量变化,是反映氧化还原环境的重要指标之一,海洋沉积物Fe^3+/Fe^2+比值已被应用于海洋地质及油气化探上。可溶性亚铁很容易被氧化,为此我们进行了海洋沉积物可溶铁样保存条件的试验研究。试验结果表明,在10℃以下温度条件保存的海洋沉积物样品其可溶铁Fe^3+/Fe^2+比值在90天内变化甚微。  相似文献   

6.
依据国内外最新研究成果,初步讨论了氧化还原敏感性微量元素(RSE)Re、Cd、Mo、U、V等的地球化学行为,其中包括海洋沉积物中RSE的来源、RSE在缺氧和无氧海区的沉淀富集机理及其环境指示意义。在此基础上讨论了利用RSE研究氧化还原环境时应注意的一些问题。RSE的沉淀富集机制不尽相同,但具有以下共同特点:①对底层海水的溶解氧浓度敏感。在正常溶解氧条件下,氧化还原敏感性微量元素在海水中呈溶解态稳定存在,而当底层海水处于缺氧或无氧条件时容易发生还原。②当底层海水处于缺氧或无氧条件时,经过沉积物—海水界面过程,受缺氧程度不同的制约,海水中呈溶解态的RSE依次在沉积物中沉淀,出现不同程度的富集。③持续还原条件下,RSE在沉积物中稳定存在;受氧化作用后,容易在沉积物中发生二次迁移和重新富集。不同的RSE其氧化还原电位不同,在氧化还原序列中的位置不同,Re在U之后Mo之前发生还原。因此,RSE在海洋沉积物中的不同富集特征和富集程度可作为还原程度指标研究底层海水的缺氧程度和底质的氧化还原环境。研究RSE的氧化还原环境指示意义,必须对RSE陆源碎屑来源组分进行剔除,同时,还应充分注意到还原沉积区发生氧化后,RSE在沉积物中会发生重新迁移和二次富集。  相似文献   

7.
沉积物中氧化还原敏感元素(Redox Sensitive Element,RSE)含量变化是上覆水体氧化还原环境良好的替代指标。本文通过冲绳海槽中南部两个柱状沉积物(深度:30 cm)粒度、总有机碳、总氮及其同位素含量和氧化还原敏感元素含量等指标,探究复杂环境背景下冲绳海槽柱状沉积物中RSE的赋存机理与环境指示意义。研究发现,柱状沉积物中除了Cr亏损,其他RSE均显示有不同程度的富集。“粒控效应”对冲绳海槽柱状沉积物的RSE含量影响较小;分析可知,海水表层生产力是影响沉积物氧化还原环境的主要因素,通过Mn(氢)氧化物的吸附或解吸附作用实现RSE的富集与亏损。δCe、V/Cr、Ni/Co和V/(V+Ni)等指标指示沉积物整体处于氧化?弱氧化环境。沉积物中Mn元素通过还原作用以Mn2+形式向上扩散,在25~30 cm处被含氧间隙水氧化富集形成锰峰,指示柱状沉积物0~25 cm处为氧化环境,25~30 cm处为弱氧化环境。  相似文献   

8.
主要研究了南沙群岛海域 湖及其礁外沉积物间隙水中的Fe2+,Mn2+,Mn/Fe值及礁外/ 湖值、沉积物—海水界面扩散通量、沉积类型及其氧化还原环境。结果表明,间隙水中Fe2+,Mn2+浓度 写湖高于礁外,锰高于铁,礁外/渴湖值Fe2+为0.28,Mn2+为0.66,Mn/Fe值 湖内为1.47,礁外为3.52,界面扩散Fe2+,Mn2+均是从沉积物向上覆海水扩散,扩散量的Mn/Fe值 湖为1.38,礁外为3.84,Fe2+,Mn2+浓度及其扩散特征的不同是由其氧化还原速率、扩散速度、控制体系及其氧化还原环境共同作用的结果。 湖沉积物以粗粉砂为主,为还原特征;礁外沉积物以粉砂质粘土软泥为主,为弱还原特征,从间隙水中Fe2+,Mn2+浓度,Mn/Fe值及其礁外/ 湖值,Fe2+,Mn2+界面扩散及其Mn/Fe值,沉积物氧化还原度(ROD)的研究得到一致的结论,南沙群岛海区湖沉积物的还原性比礁外沉积物强。  相似文献   

9.
2007年夏季航次对南海越南上升流区的三个站位进行现场采样,利用微电极技术测定了沉积物间隙水中的溶解氧(DO溶解氧分子)、锰(Mn2+)、铁(Fe2+)的浓度和氧化还原电位,估算了DO的通量、消耗速率和有机碳的消耗速率.在沉积物间隙水中DO浓度随深度的增加而迅速降低,渗透深度为9-48mm.在沉积物深处还检测到Mn2+和Fe2+.采用元素分析仪测定了沉积物中总有机碳(TOC)含量和总氮(TN)含量,三个站位沉积物中的TOC含量为0.7%-1.03%,TN含量为0.052%-0.10%,C/N为10.5-16.0.从C/N可以看出,该研究区域沉积物中的有机物有部分来源于陆源输入,其中一个站位位于湄公河冲淡水区域,其C/N最大.从氧化还原电位来看,三个站位的沉积环境都属于还原性环境.此研究首次测量了南海越南上升流区沉积物的氧化还原化学成分,对于认识该海区海底生物地球化学具有重要意义.  相似文献   

10.
利用Minolta CM-2002光谱光度计对南黄海陆架136个短柱样品20~25cm段的沉积物进行了颜色反射率数据测量,通过化学元素、粒度、磁化率等来确定影响沉积物颜色反射率变化的成分和因素,介绍了反射率光谱的一阶导数和因子分析的方法。分析结果表明,南黄海陆架沉积物颜色反射率受控于沉积物中的铁氧化物、有机质以及粘土矿物和钙质生物碎屑含量。主因子F1指示氧化环境,并与陆源物质相关,F2指示弱氧化环境,F3指示弱还原环境,主因子的波长范围分别是405~445 nm和495~595 nm,605~695 nm,445~485 nm。  相似文献   

11.
In the estuary of the river Scheldt, where an oxygen gradient exists in addition to the salinity gradient, redox processes will be of major importance for trace metal mobilisation. In this study, the influence of salinity and pH on the redox processes of dissolved Zn and Cd sulphides is investigated together with the effects on the ratio of the dissolved Zn and Cd concentrations. The speciation of these metals is calculated with the chemical equilibrium programme +. Zn sulphides are oxidised at lower oxygen concentrations than Cd sulphides, due to lower stability constants, causing a sudden increase or peak in the dissolved Zn/Cd ratio. The formation of dissolved Cd chloride complexes when oxidation occurs at high salinities (S=15) increases the mobility of Cd, causing a decrease in the Zn/Cd peak of the total dissolved concentrations. The peak is three to four times smaller at S=15 than when oxidation occurs at S=2. The simple model calculations compare very well with field data. The Scheldt estuary is suitable to illustrate these calculations. In the 1970s, the anoxic part of the estuary reached S=15–20, but since the early 1980s it has dropped to S=2–10. Historic data on metals in the estuary from 1978, 1987 and the 1990s were used to compare with the equilibrium calculations. The increase of the dissolved Zn/Cd peak at low salinity as a consequence, of the decreasing anoxic region is confirmed well by the data. The good agreement between model calculations and field data is a proof of the extreme importance of redox processes for the solubility of Zn and Cd sulphides in the estuary.  相似文献   

12.
The Neoproterozoic sedimentary succession of the Amadeus Basin, Central Australia, includes potential hydrocarbon source and reservoir rocks with maturity indicators in the oil to dry-gas window. However, petroleum well distribution across the basin is sparse and a general lack of organic geochemical data encourages the use of whole-rock inorganic geochemistry and mineralogy as proxy for the evaluation of the hydrocarbon-generating potential. The present study provides a detailed investigation of the geochemistry and mineralogy of the majority of Neoproterozoic strata across the Amadeus Basin and suggests that the Pertatataka and Aralka formations are the most favourable potential source rocks. A decreasing K/Rb ratio in these units is interpreted as higher degree of illitisation and therefore increased maturity. Sulphide versus sulphate abundance show that the Pertatataka and Aralka formations are the only units of significant stratigraphic thickness deposited under dominantly anoxic conditions. However, low concentrations of the redox-sensitive trace elements Mo, U and V, and low organic matter abundance suggest that these units were deposited under anoxic-ferruginous, not anoxic-sulphidic (euxinic) conditions. We interpret this to reflect an overall low hydrocarbon-generating potential. The present study highlights the benefit of using a multi-proxy approach for large-scale evaluation of the hydrocarbon potential in sedimentary successions, especially when organic geochemical data are sparse.  相似文献   

13.
14.
A study of inorganic iodine speciation in the waters of seven Croatian coastal caves is described. These are anchialine caves as they are connected hydraulically with Adriatic Sea surface water, with the tide inside the cave rising and falling with that outside, but replenishment of the water is restricted by the karst rock. In effect, the water in the cave probably acts more like a piston, and although moving slightly vertically, has a long residence time compared to a fully-flushing cave. Anchialine environments display a number of unusual features, e.g., a well-developed pycnocline, hypoxia and endemic fauna. Iodate and iodide were determined by differential pulse voltammetry and cathodic stripping square wave voltammetry, respectively. Low iodide concentrations (< 10 nM) have been consistently identified in the bottom water of the caves where concentrations of 90–100 nM would ordinarily be expected from intrusion of Eastern Adriatic surface seawater. Where total inorganic iodine concentrations behave conservatively with salinity the loss of the iodide implies oxidation to iodate. As iodide oxidation remains one of the enduring academic problems of the marine iodine system the study of iodine in anchialine caves may help unravel it. Iodate reduction was observed in mid-water, at the halocline, and mechanisms for the reduction involving either respiration or chemolitho-autotrophic bacteria are considered. The respiration mechanism is favoured because of enhanced alkalinity found in the near surface waters of the caves.  相似文献   

15.
The organic-rich Upper Ordovician sediments (Wufeng and Guanyinqiao Formations) on the Yangtze platform are considered to be one of the main source rocks. Here we present geochemical proxies, including redox indicator (S/C ratios and sulfur isotopes) and productivity indices (TOC, Mo and Ba contents), from Nanbazi section in North Guizhou province, South China, in order to investigate the mechanism of organic matter accumulation. The geochemical data suggest a stagnant and anoxic environment predominated the Yangtze Sea during the Wufeng period, whereas ventilated and oxygenated marine conditions pervaded the Yangtze Sea during the Guanyinqiao period. Variations in the concentration of TOC, Mo and Ba indicate that higher organic carbon export in the Wufeng intervals than those in the Guanyinqiao intervals. These variations in redox and productivity during the late Ordovician were associated with different mechanisms and forcing processes. The abrupt change from anoxic to oxygenated condition at the beginning of the Guanyinqiao was concomitant with the global glacial period, likely resulted from the glacio-eustatic sea-level fall and subsequent circulation of cold, dense oxygenated waters upon the shelf seabed. The productivity variations were related to the change of nutrient supply, which is consistent with volcanic activities and runoff to the Yangtze Sea. Redox changes, together with primary productivity fluctuations could have played a significant role on the variation of organic matter accumulation during the late Ordovician in South China.  相似文献   

16.
This study determined the factors contributing to the spatial distribution of 14 metal concentrations in the surface sediments of Beppu Bay on the basis of comparisons of the organic geochemical properties and environmental parameters through principal component analysis (PCA) and redundancy analysis (RDA). The results of PCA and RDA showed that the concentrations of V, Cr, Co, and As were closely related to the distances between the sampling sites and the Oita River. This indicated that these metals originated from the river's drainage area. The Mn, Cu, Mo, and Cd concentrations were related to the water depth. These results indicated that the Mo, Cd, and Cu deposition processes were controlled by oxygen depletion, and that these elements accumulated in the deeper parts of the bay under anoxic conditions.  相似文献   

17.
The behavior and budget of Mn, Cd and Cu in the Gironde estuary were investigated through data from both the water column (WC) and sediment depth profiles. In the estuarine freshwater reaches, Mn and Cd removal from and Cu addition to the dissolved phase occurs with a magnitude equivalent to 10%, 30% and 25% of their respective annual fluvial gross dissolved input, respectively. In the saline estuary, diffusive benthic outflow is the main source of dissolved Mn (74% of the total gross dissolved input within the estuary) to the WC. In contrast, Cd (96%) and Cu (89%) are mainly released into the dissolved phase of the WC from fluvial, estuarine and dredging-related particles through complexation (Cd) and organic carbon mineralization (Cu). Anthropogenic activities (sediment dredging) induce pore water inputs, particulate sulfide oxidation and sediment resuspension, significantly contributing to the metal budget of the WC. The related amounts of metals released could be equivalent to 20–50% (Cd) and up to 70% (Cu) of their respective net dissolved addition. Mass balances suggest that a large part of the metals previously released into the dissolved phase from processes within the estuary are removed by suspended particles due to (co-)precipitation of Fe/Mn (oxy)hydroxides and scavenging on autochthonous organic matter. On an annual basis, the Gironde estuary acts as a net sink of dissolved Mn, removing 60% of the dissolved fluvial inputs, and as a net source of dissolved Cd and Cu, contributing ∼ 85% and 20–45% to the dissolved Cd and Cu fluxes to the ocean.  相似文献   

18.
Variations in the concentration of redox sensitive elements combined with pyrite framboid size data documented from a Marcellus Formation (Middle Devonian) core recovered from southwestern Pennsylvania elucidate the redox, organic matter accumulation, and diagenetic history of these deposits in this region of the basin. Uranium and Mo enrichment and Fe/Al display sharp increases coincident with diminishing Th/U upward through the initial 3rd order trangressive systems tract (lower Union Springs Member). These data as well as abundant small (<6 μm) pyrite framboids record establishment of strongly reducing benthic conditions, perhaps related to the expansion of an oxygen minimum zone induced by increased surface productivity. Strongly anoxic, even euxinic, conditions were interrupted by episodes of dysoxia, perhaps seasonal or longer term. Overlying regressive systems tract (RST) deposits record modestly improved redox conditions, likely a reflection of a receding oxygen minimum zone as base level dropped. A subsequent 3rd order base level rise and renewed expansion of the oxygen minimum zone triggered by increased surface productivity resulted in the accumulation of the organic-rich lower Oatka Creek Member. Still, the mix of abundant small and subordinate large (>10 μm) framboids preserves the record of oxygen deficient to sulfidic bottom conditions frequently interrupted by episodes of (dys)oxia. Improving redox conditions through the overlying RST were accompanied by a two-fold increase in Al and consequent dilution of the organic matter flux and authigenic trace metal uptake at the sediment–water interface. The upper half of the Oatka Creek comprises a depositional sequence not obvious from core inspection or gamma-ray signature but revealed by Mo enrichment and Al concentration profiles. Diagenetic modification of the Marcellus includes several horizons of authigenic calcium carbonate concretions and marked Ba enrichment. Both features reflect the effects of non-steady state microbial diagenesis within a methane-rich sedimentary column.  相似文献   

19.
In order to further document the relation between redox conditions and the sedimentary record of Mn, U and Mo in a transitory anoxic water basin, their distribution has been studied along two profiles in the Thau lagoon (France). Sediments and pore-water have been sampled at two contrasting sites located, respectively, in the shellfish-farming area and in the centre of the lagoon. In the shellfish-farming area, the particulate organic carbon (POC) data indicate a more rapid organic matter mineralisation compared to the centre of the lagoon. This results in a sharper redox gradient characterized by the appearance of H2S in pore-water a few millimetres below the sediment–water interface. In the centre of the lagoon, H2S appears at a depth of 35 cm.In both cores, sedimentary Mn is relatively depleted through out the whole sedimentary column and varies with the proportion of clay minerals. After an initial release into solution at the sediment–water interface in relation to Mn-oxide reductive dissolution, authigenic U is immobilized when sulphides appear. Despite the occurrence of anoxic conditions at the sediment–water interface at the site influenced by shellfish farming, the burial of U is reduced by bioturbation, which raises reducing sediments to the surface. In the centre of the lagoon, Mo profiles reflect continuous diffusion into pore water and immobilization at 15 cm probably in anoxic microenvironments. At shellfish farms, dissolved Mo undergoes removal with sulphides but contrary to U, sedimentary Mo does not appear to be strongly affected by bioturbation. The profile indicates an increase in the frequency of anoxia crises during the second half of the 20th century.  相似文献   

20.
The distributions of iodate, iodide and dissolved organic iodine (DOI) were determined in two deep sub-basins in the Chesapeake Bay, the shallow waters at the mouth of the Bay and the adjacent North Atlantic between the late spring and the early fall along the net flow-path of the water entering and exiting the Chesapeake Bay by using an improved analytical scheme designed for the quantitative recovery of DOI. The concentration of R-DOI found in the surface mixed layer in the upper Bay was about twice of those found at the same location in previous studies. (R-X was the concentration of a dissolved iodine species X that had been normalized to a constant salinity of 35.) Thus, DOI in estuarine waters might have been underestimated significantly in the earlier studies. Following the water along its net flow-path, iodate initially constituted more than 60% of total iodine (TI) in the source water in the Middle Atlantic Bight off the Delmarva Peninsula. As this water entered the Chesapeake Bay through the northern part of its mouth, the concentration of R-iodate decreased while that of R-iodide increased progressively until the former became undetectable in the surface mixed layer while the latter reached a maximum of 0.42 μM in the deep water in the upper Bay. Then, the concentration of R-iodate rebounded while that of R-iodide decreased in the outflowing water that exited through the southern part of the mouth of the Bay and was later entrained by the Gulf Stream. The concentration of R-DOI in the surface waters followed the same pattern as R-iodide and reached a maximum of 0.20 μM in the upper Bay. However, R-DOI was depleted in the deep water in the sub-basins. Its concentration dropped to around the detection limit in the suboxic waters in the upper Bay. R-TI in the Bay far exceeded that in the incoming Middle Atlantic Bight water and reached 0.55 μM in the upper Bay. These distributions of the iodine species suggest that, as water from the Middle Atlantic Bight intruded into the Chesapeake Bay, in the well oxygenated surface mixed layer, iodate was reduced to iodide, and the inorganic iodine species could also be converted to DOI. In the deep water, iodate and DOI were converted to iodide. Superimposed on these inter-conversions among the iodine species, dissolved iodine, possibly in the form of iodide, was also added to the water column from the underlying sediments and the process was especially significant in the suboxic deep water in the upper Bay. Mixing between the surface mixed layer and the deep water could also have increased the concentrations of iodide and total iodine in the former.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号