首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 125 毫秒
1.
在水温(22±2)℃条件下,采用周期性停食胁迫方法研究鱼幼鱼摄食、生长和消化酶的变化情况。结果表明,饥饿组与对照组的特殊生长率差异性显著(P<0.05);不同停食时间胁迫下,试验组的摄食率和特殊生长率与对照组差异极显著(P<0.01),停食3天鱼幼鱼的食物转化率比对照组高,表明鱼幼鱼具有部分补偿能力;消化酶在不同的组织中变化情况各不相同,饥饿开始后各器官中的蛋白酶、脂肪酶和淀粉酶均下降。随饥饿时间延长,蛋白酶、脂肪酶和淀粉酶出现上升现象,但上升程度各不相同。恢复投喂后各组织中的蛋白酶、脂肪酶和淀粉酶均上升;随恢复投喂时间延长,各试验组中鱼幼鱼各器官组织中的消化酶变化情况也各不相同。  相似文献   

2.
为了解饥饿及过量投喂对银鲳幼鱼体重、肥满度、比肝重及体成分的影响,对平均体重2.61±0.65g的幼鱼进行了饥饿与分组投喂实验。分别测定了正常投喂组(C组)、饥饿5d(S5组)、饥饿9d(S9组)以及过量投喂组(D组)幼鱼的形体参数、肥满度、比肝重及鱼体基本营养成分。结果表明:(1)与C组相比,D组各项指标均有显著性增加(p0.05),增重率为(73.89±9.78)%,是正常组的1倍多,比肝重和肥满度分别增加了55.00%和25.10%;(2)饥饿胁迫下幼鱼的比肝重和肥满度显著性下降(p0.05),饥饿5d和9d后,比肝重分别下降了8.75%和11.25%,肥满度分别减小了21.18%和32.16%;(3)饥饿银鲳幼鱼以粗脂肪损失幅度最大,饥饿5d和9d时分别为正常组的22.55%和18.10%,与此同时,粗蛋白仅损失了4.06%和4.90%,说明饥饿银鲳幼鱼以脂肪供能为主,蛋白质和糖类供能为辅;(4)饥饿致死幼鱼的肥满度在不同体长组间无显著性差异(p0.05),但体重损失率受体长影响,2.20~2.80cm组的体重损失率为22.89%,体长2.80~3.40cm以后上升为35.79%~40.28%,肥满度则随体长增加大致呈下降趋势,体长与幼鱼的耐饥能力呈正相关。  相似文献   

3.
在水温17.6±0.2℃的条件下,分析了饥饿和恢复投喂对许氏平鲉幼鱼体组分、肌糖原和肝糖原的影响。实验分4组且每组有3个平行,其中饥饿0d组为对照组,即在实验过程中正常投喂;饥饿5d组恢复投喂50d;饥饿10d组,恢复投喂45d;饥饿15d组,恢复投喂40d,实验共进行55d。实验结果表明:在饥饿过程中肌糖原和肝糖原的含量下降,并且与对照组有显著性差异;体组分中粗脂肪的含量也下降而水分和灰分的含量相对增加,粗蛋白含量在饥饿处理时有下降趋势但不明显。实验结束时恢复投喂后各项生化指标均恢复到对照组水平。  相似文献   

4.
通过室内试验测定方斑东风螺Babylonia areolata在饥饿120d过程中体内生化组成、能值及消化系统主要消化酶活力的连续变化.结果表明, 随着饥饿时间延长, 螺体的水分与灰分含量逐渐上升, 而蛋白质、脂肪及糖原含量和能值均呈下降趋势.胃、肠道与肝胰脏中脂肪酶总活力在饥饿10d时较对照组略有上升, 随后呈下降趋势;淀粉酶总活力和蛋白酶总活力均随饥饿时间延长而降低.饥饿70d时, 脂肪酶、淀粉酶、蛋白酶分别降为对照的70.12%、63.66%、42.79%, 脂肪酶与淀粉酶总活力在70-90d时迅速下降;各酶活力在90-120d均降至较低的水平.结果进一步显示, 幼螺在饥饿前期主要消耗脂肪与糖原供能, 70d后加大对贮备蛋白质的动用量, 而后期 (90-120d)则以利用蛋白质为主;各消化酶活性在饥饿90d前快速下降, 之后呈恒定状态.饥饿时螺体含水量可作为预测其营养状态的指标.  相似文献   

5.
饥饿和再投喂对千年笛鲷幼鱼消化酶活性的影响   总被引:7,自引:0,他引:7       下载免费PDF全文
研究了饥饿和再投喂对千年笛鲷(Lutjanus sebae)幼鱼消化酶活性的影响.实验设计分成6组,分别饥饿处理0(对照),2,4,6,9和11 d,然后在饱食的条件下恢复投喂10 d.分别测定饥饿和恢复投喂过程中千年笛鲷幼鱼蛋白酶、淀粉酶、脂肪酶3种消化酶的活性.结果表明,在饥饿过程中,蛋白酶和脂肪酶活性下降明显,淀粉酶起伏较大;恢复投喂后,蛋白酶和脂肪酶活力与饥饿前相比都有所上升,但蛋白酶活力总体上仍低于同步取样对照组,脂肪酶活力总体上高于对照组水平,淀粉酶活力恢复到对照组水平,并且基本上没有变化.  相似文献   

6.
饥饿和恢复投喂对金鳟体组分和糖原含量的影响   总被引:2,自引:0,他引:2  
研究在(16±2)℃的条件下饥饿和恢复投喂不同时间后金鳟(Golden Rainbow Trout,Oncorhynchus mykiss)体组分和糖原含量的变化.试验鱼分为4个组,每组设3个平行,分别饥饿7 d,恢复投喂44 d(S7组);饥饿14 d,恢复投喂37 d(S14组);饥饿21 d,恢复投喂30 d(S21组),对照组(S0组)正常喂食.研究发现:饥饿使金鳟的水分和灰分含量升高,粗脂肪和糖原含量显著下降,粗蛋白含量无显著变化.饥饿7 d后,肝糖原和肌糖原含量与试验前和同期对照组相比下降极显著(P<0.01).饥饿至14 d,水分含量上升,与试验前和同期对照组有极显著差异(P<0.01),灰分含量与试验前和同期对照组相比上升显著(P<0.05),粗脂肪含量与试验前和对照组下降极显著(P<0.01).饥饿至21 d,水分含量与试验前和同期对照组相比上升显著(P<0.05),肝糖原和肌糖原含量均有不同程度的回升,但仍与试验前和同期对照组存在极显著差异(P<0.01).恢复投喂后,除S21组肌糖原含量仍极显著低于对照组(P<0.01)外,其他各组的各指标经统计学分析均恢复到与对照组无显著差异水平(P<0.05).结果表明:金鳟饥饿过程中动用储存物质的顺序是首先动用糖原然后动用脂肪,而蛋白质含量变化不明显.金鳟在贮存能源物质时优先积累肝糖原.  相似文献   

7.
在水温6,10,14,18和22 ℃条件下,研究饥饿0 d,10 d,20 d,30 d和40 d对体重(181.75±17.21) g,体长(7.84±0.44) cm红鳍东方鲀(Takifugu rubripes)幼鱼生长和耗氧率的影响.结果显示,10~18 ℃时饥饿对红鳍东方鲀幼鱼的存活无显著影响,经40 d饥饿,实验鱼的存活率为100%;而6 ℃和22 ℃时分别于饥饿32 d和36 d全部死亡.相同水温条件下,随饥饿时间增加,实验鱼的体重损失率增大,肥满度降低,而耗氧率下降.相同饥饿时间,随水温上升,体重损失率增大,肥满度下降,而耗氧率升高.同时,耗氧率昼夜节律显著,07:00和15:00时达到最高峰,而03:00时达到最低值.经方差分析表明,饥饿和水温对实验鱼体重损失率、肥满度和耗氧率的影响均存在显著差异(P<0.05).同时发现,饥饿10~20 d时,耗氧率明显降低,而20~40 d时趋于稳定,实验鱼耗氧率的降低随饥饿时间延长表现出一定的阶段性变化规律.  相似文献   

8.
采用实验生态学方法,在不同光照强度(0、100、500、1 000、2 000、4 000和6 000lx)条件下,研究了许氏平鲉(Sebastes schlegeli)幼鱼的生长、体组分和能量收支情况。结果表明,光照强度为1 000lx组的许氏平鲉幼鱼末体重最高,但与100、500和2 000lx组的末体重相比没有显著差异(P>0.05)。各处理组的饲料转化率和能量转化率随光照强度的增强均呈先升高后降低的趋势,且峰值均出现在1 000lx组;而消化率的最高值却出现在0lx组(P<0.05)。除灰分含量外,各处理组的体组分和体能值均不受光照强度的影响(P>0.05)。本研究由许氏平鲉幼鱼的特定生长率(SGRw和SGRe)与光照强度(L)的回归方程得出其生长的最适光照强度范围为610~630lx。各处理组的能量收支方程表明,生长能和呼吸能主导许氏平鲉幼鱼的能量分配模式。  相似文献   

9.
为了研究饥饿对大黄鱼(Larimichthys crocea)幼鱼体内消化酶活性的影响,以540尾40g左右的大黄鱼幼鱼为研究对象,分成6组(S0、S4、S8、S12、S16和S20),每组3个平行,分别禁食0、4、8、12、16和20d,禁食结束后每组取样9尾,每个平行3尾,测定并分析胃和肠道中消化酶(蛋白酶、脂肪酶和淀粉酶)活性。研究显示,禁食4d,胃和肠道中消化酶活性均出现较大幅度的降低(低于对照组28.32%~71.85%),随着禁食时间的延长,胃和肠道内3种消化酶活性均不同程度升高。在禁食4~20d时,胃内消化酶活性总体呈上升趋势,蛋白酶和脂肪酶活性在禁食16d时高于同期对照组,淀粉酶活性在禁食20d时高于同期对照组。肠道内消化酶活性呈先上升后下降趋势,其中,脂肪酶和淀粉酶活性在禁食8d时达到最高,蛋白酶活性在禁食12d时达到最高。禁食过程中,胃中蛋白酶活性始终高于肠道,但禁食过程中其变化幅度(-6.71%~63.72%)小于肠道(-64.79%~71.85%);脂肪酶和淀粉酶活性低于肠道,脂肪酶活性变化幅度(-62.88%~29.91%)小于肠道(-232.17%~46.28%),而淀粉酶活性的变化幅度(-81.71%~36.92%)大于肠道(2.35%~45.41%)。因此,与肠道相比,胃中蛋白酶和脂肪酶活性受到禁食的影响较大,淀粉酶活性受到的影响较小。此外,胃和肠道中淀粉酶活性均小于蛋白酶和脂肪酶。研究结果表明,脂肪酶和蛋白酶是大黄鱼幼鱼受到饥饿胁迫时参与代谢活动的主要酶类,而淀粉酶为从属酶类。本研究阐明了大黄鱼幼鱼饥饿过程中,体内消化酶活性的变化情况,为科学合理的投喂和大黄鱼的健康养殖提供了理论指导。  相似文献   

10.
以初始体质量为(2.75±0.31)mg的大黄鱼(Pseudosciaena crocea)稚鱼(15日龄)为实验对象,在基础饲料中分别添加0.00%(对照组)、0.60%、1.20%和1.80%的谷氨酰胺,并用甘氨酸调节总蛋白质水平一致,制作而成4种粗蛋白58%左右、粗脂肪16%左右的实验微颗粒饲料,在室内养殖系统中投喂大黄鱼稚鱼30 d,研究饲料谷氨酰胺对大黄鱼稚鱼生长、存活及消化酶活力的影响。实验结果表明,大黄鱼稚鱼的特定生长率和存活率随饲料中谷氨酰胺含量的升高有上升的趋势,但差异未达到显著水平(P0.05)。饲料中谷氨酰胺的添加未对大黄鱼稚鱼肠段、胰段胰蛋白酶活力和淀粉酶活力,肠段氨基肽酶活力和碱性磷酸酶活力产生显著的影响(P0.05)。饲料中添加谷氨酰胺未能对大黄鱼稚鱼的生长、存活和消化酶活力产生显著的影响,可能与基础饲料中鱼粉、鱼肉水解蛋白等蛋白源所含有的谷氨酰胺已经达到或超过稚鱼吸收、利用谷氨酰胺的阈值,额外添加的谷氨酰胺不能被吸收利用而未能表现出促进效果。本实验条件下,大黄鱼稚鱼基础饲料中无需额外添加谷氨酰胺即可满足稚鱼正常生长发育的需要。  相似文献   

11.
在工厂化循环水养殖系统中,将初始体质量为186 g±2.0 g的大菱鲆(Scophthalmus maximus)放养于低(9.4 kg/m~2±0.2 kg/m~2)、中(13.6 kg/m~2±0.8 kg/m~2)、高(19.1 kg/m~2±1.3 kg/m~2)3个养殖密度,以研究不同养殖密度对大菱鲆生长、消化酶和蛋白质代谢的影响。养殖120 d后,低、中、高试验组养殖密度分别增长至26.1 kg/m~2±1.2 kg/m~2、38.2 kg/m~2±2.5 kg/m~2、52.3 kg/m~2±3.6 kg/m~2。结果表明:低密度组和中密度组中大菱鲆增质量率、特定生长率、肥满度和蛋白质效率均显著(P0.05)高于高密度组;而饲料系数显著低于高密度组(P0.05)。低密度组和中密度组大菱鲆总蛋白酶和淀粉酶活力显著低于高密度组(P0.05);但脂肪酶活力在3个密度组之间无显著性差异。与低密度组相比,高密度组显著提高了谷氨酸脱氢酶活力,同时降低了谷草转氨酶和亮氨酸氨肽酶活力(P0.05),而对谷丙转氨酶活力无任何影响。综上所述,在工厂化循环水系统中,增加养殖密度能提高养殖的产量,但过高的养殖密度会对大菱鲆生长、消化酶活力以及蛋白质代谢产生不利的影响。  相似文献   

12.
饲料粗蛋白含量对刺参消化酶及消化道结构的影响   总被引:1,自引:0,他引:1  
本实验以鱼粉、酪蛋白以及藻粉等为主要原料配制了粗蛋白质量分数为12%、16%、20%、24%、28%、32%的6种半精制刺参(Apostichopus japonicus)饲料,研究饲料中粗蛋白含量对刺参生长、蛋白酶和淀粉酶活性以及肠道结构的影响。结果表明,刺参饲料中粗蛋白含量对刺参的生长、饲料系数、蛋白质效率以及消化道中蛋白酶和淀粉酶活性都有明显影响,肠道蛋白酶和淀粉酶活性对饲料粗蛋白含量有适应性,随饲养时间也有适应性变化。饲料中粗蛋白含量对刺参肠道结构也有一定的影响。  相似文献   

13.
关于高等动物消化酶对食物组成的适应,很多学者己做了不少研究工作,如Ben Abdeljlil等对哺乳动物,川合真一郎等对鱼类的研究。但在甲壳动物方面,以往研究得较少。对虾具有消化蛋白质和淀粉的酶类,因此可在对虾饵料中加进含蛋白质和淀粉丰富的物质。如果饵料中这两种物质的含量增加,对虾肝胰脏蛋白酶和淀粉酶的分泌量也随着增加,即谓有适应,饵料中的蛋白质和淀粉便可被很好地消化、吸收和利用;相反,如果没有适应或适应程度低,在饵料中加进过多的蛋白质或淀粉将造成浪费。本文对中国对虾Penaeus orientalis的蛋白酶和淀粉酶对饵料中蛋白质和淀粉含量的适应及其适应程度和速度进行了研究。  相似文献   

14.
盐酸甜菜碱对短盖巨脂鲤脂肪代谢的影响   总被引:8,自引:0,他引:8       下载免费PDF全文
采用现场实验的方法,以短盖巨脂鲤为对象进行了60天养殖实验,探讨盐酸甜菜碱对其脂肪代谢作用机理。结果表明,盐酸甜菜碱使整鱼水分和含脂量呈下降趋势,鱼肌肉含水量下降,肝脂量极显著降低;肌肉和肝脏中游离肉碱、酸不溶肉碱含量和酸不溶肉碱与游离肉碱的比例极显著提高;血清总胆固醇和甘油三酯极显著下降,脂肪酶活性呈升高趋势;甜菜碱对肠系膜脂肪酶活力产生影响,使鱼肌肉肌问脂肪分布发生明显变化。实验结果提示:甜菜碱可改善肉质,它参与机体代谢活动,使肝脏和肌肉中甲基化产物(肉碱)含量增加,影响肠系膜脂肪酶活力,改变体脂和鱼肉脂肪酸组成,进行体脂重分配。  相似文献   

15.
为探讨脱脂南极磷虾(Euphausia superba)粉对圆斑星鲽(Verasper variegatus)幼鱼体组成和消化性能的影响。作者以鱼粉和脱脂磷虾粉为蛋白源、鱼油为脂肪源,用脱脂磷虾粉蛋白替代0%、10%、20%、30%、40%、50%和100%的鱼粉蛋白,设计7种等蛋白(50%)、等脂肪(8%)的实验饲料(分别表示为F0、F10、F20、F30、F40、F50和F100)。每组设3个重复,每个重复20尾鱼,初始体质量为(68.13±0.20)g,经过8周的饲养实验。结果表明:F100组的肝体比和脏体比显著低于其他各组(P0.05),F20~F30组的肥满度显著高于F40组(P0.05);F100组全鱼的水分和灰分显著高于其他各组(P0.05),F10组和F100组全鱼的粗蛋白显著高于其他各组(P0.05),F30组和F50组全鱼的粗脂肪显著高于其他各组(P0.05),F100组全鱼的粗脂肪显著低于其他各组(P0.05)。F10、F20和F50组肌肉的水分显著高于F100组(P0.05),F20组和F30组肌肉的粗脂肪显著高于其他各组(P0.05),各替代组肌肉的粗蛋白、灰分无组间差异(P0.05);胃蛋白酶活性组间无差异(P0.05),F0和F20的胃脂肪酶活性显著低于F30组(P0.05),F30组的胃淀粉酶活性显著高于其他各组(P0.05),F30和F100组的肠脂肪酶活性显著低于其他各组(P0.05),F0组的肠淀粉酶活性显著高于其他各组(P0.05);脱脂南极磷虾粉替代组的皱襞高度呈现先升高后降低的趋势,F30组的皱襞高度显著高于其他组(P0.05),替代组和对照组的黏膜厚度和绒毛长度没有显著性差异(P0.05)。综合来看,脱脂南极磷虾粉10%~50%的替代比例对圆斑星鲽幼鱼的形态指标、体组成、消化酶活性和肠道形态指标有较好的效果。  相似文献   

16.
以初始体重为(10.57g±0.43g)的大黄鱼幼鱼为研究对象,用豆粕分别替代0%、35%、40%、45%的鱼粉来配制4种等氮(蛋白含量为46%)等脂(总脂肪为13%)的实验饲料,分别编号为FM,PP35,PP40和PP45。其中,在PP35、PP40和PP45组均添加肽聚糖、胆固醇、植酸酶、晶体氨基酸和复合益生菌,并以FM组和鲜鱼浆(FTF)组作为对照,在海水浮式网箱中进行为期60d的摄食生长实验,探讨不同豆粕替代水平对大黄鱼幼鱼生长、消化酶活性和消化道组织学的影响。结果表明,豆粕替代水平对大黄鱼幼鱼的生长和存活没有显著影响(P>0.05)。肠道胰蛋白酶的活性随着豆粕替代水平的升高而显著降低(P<0.05),FM组的胰蛋白酶活性最高,而FTF组的最低。肠道脂肪酶活性随着豆粕替代水平的升高呈现先升高后降低的趋势,FTF组脂肪酶活性最低。肠道淀粉酶活性随着豆粕替代水平的增高同样呈现降低趋势,但无显著差异(P>0.05)。高豆粕替代水平(PP40和PP45组)对肝脏组织和肠道组织结构有破坏作用,PP45组实验鱼肝脏空泡化现象严重,肠壁明显变薄,小肠绒毛受到严重机械性损伤。实验证明,在大黄鱼幼鱼饲料中可以使用豆粕来替代35%的鱼粉既不影响大黄鱼的生长和存活,也不影响其肠道、肝脏的组织结构。  相似文献   

17.
以体质量58.51 g±21.15 g、体长13.08 cm±1.856 cm的长鳍篮子鱼(Siganus canaliculatus)为实验材料,对其消化道指数和主要消化酶活性分布进行了研究.采用常规方法测定了长鳍篮子鱼的消化道指数,其比内脏重、比肝重、比胃重,比幽门盲囊重、比肠重、比肠长分别为0.1572±0.0230、0.0166±0.0060、0.0115±0.0070、0.004 3±0.002 1、0.020 2±0.0102、2.595±0.457;体质量与体长的回归方程为Y=0.080 6X2.5457(r=0.9777,P<0.01).蛋白酶在各消化器官中的比活力顺序为幽门盲囊>肠>肝脏>胃;淀粉酶的比活力顺序为肠>幽门盲囊>胃>肝脏;脂肪酶比活力顺序为幽门盲囊>肝脏>肠>胃;肠的总蛋白酶活、总淀粉酶活、总脂肪酶活在各消化器官中都最高.肝脏、胃、肠、幽门盲囊的A/P值分别为2.15、22.65、3.81,1.96.研究表明,肠道是长鳍篮子鱼消化食物的最重要的消化器官;根据消化道指数、消化酶分布、A/P值,表明长鳍篮子鱼是偏植食性为主的杂食性鱼类.  相似文献   

18.
1 IntroductionIt is well known that varying dietary fatty acidprofile affects the tissue fatty acid composition and e-ven the growth performance in fish ( Bell et al.,2002; Figueiredo -Silva et al., 2005; Harel andPlace, 2003; Schulz et al., 2005; Tocher et al.,2003). Docosahexaenoic acid (DHA), an importantessential fatty acid for marine species, has the effectnot only on the fatty acid profile of fish body tissue,but also on biological and physiological conditions(Ishizaki et al., 2000; …  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号