首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 125 毫秒
1.
海底峡谷在全球陆缘广泛分布,是浅海沉积物向深海运移的主要通道,对于理解深海浊流触发机制、深海沉积物的搬运模式、深海扇的发育历史和深海油气资源勘探等均具有重要意义。本文基于高分辨率高精度的多波束测深数据,首次对南海东北部海底峡谷体系进行了研究,精细刻画了高屏海底峡谷、澎湖海底峡谷、台湾浅滩南海底峡谷和东沙海底峡谷等4条大型海底峡谷的地貌特征并分析其发育控制因素。海底坡度、构造运动、海山与海丘是影响南海东北部峡谷群走向与特征的重要因素,其中,海底坡度对于峡谷上游多分支与“V”字特征有显著的控制作用;构造运动是控制高屏海底峡谷走向的因素,澎湖海底峡谷的走向则与菲律宾海板块与欧亚板块碰撞有关,东沙海底峡谷的走向则与东沙运动相关,台湾浅滩南海底峡谷上段受NW向断裂构造的控制;海山的阻挡作用造成峡谷局部走向和特征改变。海底峡谷群输送大量陆源沉积物到深海盆并形成大面积的沉积物波,海山和沉积物波的发育导致东沙海底峡谷下段“回春”和转向。  相似文献   

2.
南海北部陆坡发育众多海底峡谷,其形成、发育、演化过程都存在较大差异。本文选取南海北部陆坡典型的珠江口外海底峡谷群、东沙海底峡谷、台湾浅滩南海底峡谷和澎湖海底峡谷进行研究,通过高分辨率多道地震数据和多波束测深数据,结合前人研究成果,对4条典型海底峡谷的形态特征、沉积充填特征及结构、形成发育过程及控制因素进行研究。结果表明,南海北部陆缘各个海底峡谷的形成受多个控制因素的影响,其影响程度及方式都有差别。构造活动、海平面变化及沉积物重力流与海底峡谷的演化密切相关,而陆地河流和局部构造因素也以不同方式影响着海底峡谷的发育。对于发育在主动大陆边缘的台湾岛东南侧的澎湖海底峡谷,其板块运动和岩浆活动活跃,其上发育的海底峡谷的控制因素以内营力地质作用为主。而具有被动大陆边缘属性的其他3条峡谷,由于构造运动较少或停止,其上发育的海底峡谷的控制因素以外营力地质作用为主。  相似文献   

3.
海底峡谷沉积物来源、输运机制和沉积过程的研究一直是深水沉积体系研究的关键,也是近年来深海浊流沉积研究中的热点问题。对"蛟龙号"第140潜次在南海北部台湾峡谷中段3个站位获取的沉积物短柱的粒度、有孔虫和黏土矿物进行综合分析,结果表明3个短柱上部均以粒度较细、变化较小并含半深海—深海环境的底栖有孔虫为特征的半深海沉积,下部以粒度明显变粗、含有较多浅水种底栖有孔虫的浊流沉积为主。AMS~(14)C测年结果显示该浊流沉积形成于约150aBP,表明台湾峡谷中段有典型的近现代浊流活动。此外,黏土矿物组成表明研究区正常半深海沉积与浊流沉积物源主要来自台湾,其次为珠江和吕宋岛的碎屑沉积物。  相似文献   

4.
南海北部陆坡海底峡谷形成机制探讨   总被引:3,自引:0,他引:3  
通过对南海北部地震剖面的解释,并结合地貌以及区域地质特征等,对发育于南海北部陆坡区的珠江口外、台湾浅滩南以及澎湖海底峡谷的地貌和构造特征进行分析和对比,并对其形成机制进行探讨。研究结果显示,各海底峡谷具有相似的走向,并均具有转向的特征,但是其形成机制却各不相同,由此形成的地貌特征也各不同:珠江口外海底峡谷的形成与珠江带来的大量陆上沉积物的搬运相关,形成了喇叭型的水道;台湾浅滩南海底峡谷的形成受到NW向断裂构造的控制,这些断裂构造形成了薄弱带,经过沉积流的侵蚀而形成狭长的水道,当进入下陆坡后由于海山的阻隔作用而转为近EW向;澎湖海底峡谷带的上段主要是由陆坡沉积流的下向侵蚀、崩塌和滑移形成的,而其下段则主要具有沿马尼拉海沟北向延伸段发育的特征。  相似文献   

5.
莺歌海盆地乐东区峡谷水道成因及沉积特征   总被引:1,自引:0,他引:1  
峡谷水道储层近年来为油气勘探的重要领域,莺歌海盆地乐东区黄流组二段发育近南北向的大型峡谷水道体系。依据二维及三维地震资料,充分运用地震沉积学理论对峡谷水道成因、物源及峡谷内部砂体分布进行综合分析,认为乐东区峡谷水道发育于黄流组二段低位时期,其成因主要受控于T40时期区域大规模的海退事件及下部大量走滑断层活动。峡谷水道物源来源于海南隆起,周缘存在多条小型补给水道,受地形及水动力条件影响,峡谷水道分为侵蚀区、搬运卸载区、水道交汇区,不同区沉积特征及地震相特征差异明显,砂岩充填也呈现出明显的分段性,砂岩集中发育在搬运卸载区及水道交汇区部位。  相似文献   

6.
南海北部陆架陆坡沙波底形   总被引:2,自引:0,他引:2  
南海北部珠江口—台湾岛南端一线以南、东沙岛以东海区的水深变化较大,地形起伏亦较大,海底水流动力较强,沙源丰富,发育大片海底沙波底形。按成因可分成A、B、C 3个海底沙波区:A区在珠江口外的内陆架上,水深80和200~250m,在陆架底流(潮、浪、洋流)作用下,海底沙波波高数十厘米至2~3m,属于两坡强烈不对称、现代仍然运动的正常沙波;B区在陆坡上部,水深200~600m,在斜坡间局部平台上发育大片波高数米至数十米、波长相应较短的特大型砂质沙波,一些专家认为是不同密度水层间的偶发性内波能通量强烈集中并突然释放而塑造的底形;C区在陆坡下部水深3 200~3 400m的数条海底峡谷交汇处,峡谷西和南侧有粉砂泥质沉积物波,波高数十米,波长数十千米,是深水细粒浊流形成的非正常沙波。陆架底流变化、沙波迁移、陆坡上部偶发性内波塑造的巨型沙波和陆坡下部的细粒浊流沉积物波均对油气勘探海底管线和平台的稳定性构成威胁。  相似文献   

7.
琼东南盆地北礁凹陷梅山组单向迁移水道特征及成因探讨   总被引:2,自引:1,他引:1  
李俞锋 《海洋学报》2019,41(1):72-86
深水区重力流与底流交互作用的过程、响应及动力学机制是海洋沉积学研究的前沿和薄弱环节。本文通过三维地震资料,在深水区北礁凹陷南西部梅山组发现多条相间分布的长条形顺直强振幅水道,垂直于西沙隆起(南部隆起)北斜坡走向,向南西方向单向迁移,水道具有南西陡(凹岸或陡岸)北东缓(凸岸或缓岸)的特征,该类水道分为侵蚀界面和水道砂-堤岸泥过渡复合体系两个单元,侵蚀界面在凹岸的削截反射明显多于凸岸,水道砂-堤岸泥过渡复合体振幅强度由凹岸强振幅逐渐过渡为凸岸弱振幅。分析认为,该类水道发育于中中新世半深海环境,不同于向底流下游方向单向迁移的峡谷,它们向底流上游方向发生单向迁移,并提出其成因模式:前期来自南部的浊流下切形成负向地貌单元(水道),底流对这一地貌单元进行改造,形成迎流面缓(凸岸)背流面陡(凹岸)的地貌,同时驱使浊流上部顺底流方向偏移,形成溢岸浊流沉积,致凹岸沉积速率低,凸岸沉积速率高,这样就迫使水道逆底流方向偏移。沉积物源、中层水相关底流、古气候和海平面的变化、北礁凸起古地形控制是该区单向迁移强振幅水道发育的因素。本研究在南海首次发现这种向底流上游方向单向迁移的水道,是底流与重力流交互作用的新型类型,对古海洋、古气候研究,深水油气勘探有着重要的意义,希望引起地质学家的重视。  相似文献   

8.
东非鲁武马盆地陆坡深水区发育了挤压冲断带和伸展断陷两种类型的构造,这种特殊构造背景下的深水沉积特征尚无研究报道。利用高分辨率三维地震资料,详细描述了鲁武马盆地陆坡第四系深水沉积特征,并探讨其主控因素。结果表明,鲁武马盆地陆坡深水区主要发育5种深水沉积类型:陆坡峡谷-水道充填沉积、正断层改造的朵体、沉积物波、海底滑坡和等深流沉积。深水沉积主要受构造活动和地形地貌控制,西部挤压剥蚀区主要发育带状的峡谷-水道体系、丘状的等深流漂积体以及波状的沉积物波,东部拉张沉积区主要发育海底滑坡沉积及深水朵体。  相似文献   

9.
海砂是十分重要的海洋资源,基于对渤海海域1 366个表层沉积物样品的粒度分析,确定了渤海海峡北部、辽东浅滩、辽东湾东岸、兴城-绥中近岸、秦皇岛近岸、曹妃甸、莱州浅滩等7个海砂资源区,分布面积约12 800km2。通过对表层沉积物样品的重矿物分析,对比前人研究成果,对各海砂资源区进行了物源分析,渤海海峡北部海砂资源区主要为老铁山水道潮流长期冲刷形成的粗粒沉积物堆积,辽东浅滩海砂资源区物质来源为老铁山水道冲刷物质的再堆积,其他海砂资源区物质主要来源于沿岸河流的输运。  相似文献   

10.
南海北部陆坡深水区沉积物输送模式复杂多样,研究发现主要有碎屑流、浊流、砂质碎屑流、碳酸盐岩重力流、块体搬运、河流搬运、深水水道搬运7种类型,它们共同影响着南海北部陆坡沉积物类型和储层分布。其中(砂质)碎屑流沉积、块体搬运沉积、河流供给、深水水道砂是南海北部深水储层的主要成因,而纯粹的浊积岩在该地区发育不广泛。珠江口盆地的深水储层受到河流的供给和后期流体改造的影响,并且存在碳酸盐岩重力流沉积物薄层,证明该地区水动力条件较强;琼东南盆地深水储层分布受到了碎屑流控制和深水水道的影响,相对浅水区来看可能存在分选较好、干净的砂体储层,具有良好的勘探潜力。  相似文献   

11.
Bonanza Canyon is a complex canyon system on the slope from the intermittently glaciated Grand Bank on the south side of Orphan Basin. A 3D seismic reflection volume, 2D high-resolution seismic reflection profiles and ten piston cores were acquired to study the evolution of this canyon system in relation to glacial processes on the continental shelf and the effects of different types of turbidity currents on the development of deep water channels. Mapped reflector surfaces from the 3D seismic volume show that the Bonanza Canyons developed in a depression created by a large submarine slide of middle Pleistocene age, coincident with the onset of glacigenic debris flows entering western Orphan Basin. Two 3–5 km wide, flat-floored channels were cut into the resulting mass-transport deposit and resemble catastrophic glacial meltwater channels elsewhere on the margin. Both channels subsequently aggraded. The eastern channel A became narrower but maintained a sandy channel floor. The western channel, B, heads at a spur on the continental slope and appears to have been rather passively draped by muds and minor sands that have built 1500-m wave length sediment waves.Muddy turbidites recorded by piston cores in the channel and on the inter-channel ridges are restricted to marine isotope stage (MIS) 2 and were deposited from thick, sheet-like, and sluggish turbidity current derived from western Orphan Basin that resulted in aggradation of the channels and inter-channel ridges. Sandy turbidites in channels and on inner levees were deposited throughout MIS 2–3 and were restricted to the channels, locally causing erosion. Some coincide with Heinrich events. Channels with well-developed distributaries on the upper slope more readily trap the sediments on Grand Bank to form sandy turbidity currents. Channel B dominated by muddy turbidity currents has wide and relatively smooth floor whereas channel A dominated by sandy turbidity currents has a sharp geometry.  相似文献   

12.
Using an integrated multi-beam bathymetry, high-resolution seismic profile, piston core, and AMS 14C dating data set, the current study identified two sediment wave fields, fields 1 and 2, on the South China Sea Slope off southwestern Taiwan. Field 1 is located in the lower slope, and sediment waves within it are overall oriented perpendicular to the direction of down-slope gravity flows and canyon axis. Geometries, morphology, and internal seismic reflection configurations suggest that the sediment waves in field 1 underwent significant up-slope migration. Field 2, in contrast, is located more basinward, on the continental rise. Instead of having asymmetrical morphology and discontinuous reflections as observed in field 1, the sediment waves in field 2 show more symmetrical morphology and continuous reflections that can be traced from one wave to another, suggesting that vertical aggradation is more active and predominant than up-slope migration.Three sediment wave evolution stages, stage 1 through stage 3, are identified in both field 1 and field 2. During stage 1, the sediment waves are built upon a regional unconformity that separates the underlying mass-transport complexes from the overlying sediment waves. In both of these two fields, there is progressive development of the sediment waves and increase in wave dimensions from the oldest stage 1 to the youngest stage 3, even though up-slope migration is dominant in field 1 whereas vertical aggradation is predominant in field 2 throughout these three stages.The integrated data and the depositional model show that the upper slope of the study area is strongly dissected and eroded by down-slope gravity flows. The net result of strong erosion is that significant amounts of sediment are transported further basinward into the lower slope by gravity flows and/or turbidity currents. The interactions of these currents with bottom (contour) currents induced by the intrusion of the Northern Pacific Deep Water into the South China Sea and preexisting wavy topography in the lower slope result in the up-slope migrating sediment waves in field 1 and the contourites as observed from cores TS01 and TS02. Further basinward on the continental rise, turbidity currents are waned and diluted, whereas along-slope bottom (contour) currents are vigorous and most likely dominate over the diluted turbidity currents, resulting in the vertically aggraded sediment waves in field 2.The results from this study also provide the further evidence for the intrusion of the Northern Pacific Deep Water into the South China Sea and suggest that this intrusion has probably existed and been capable of affecting sedimentation in South China Sea at least since Quaternary.  相似文献   

13.
胡毅  陈坚 《台湾海峡》2007,26(3):334-341
2004年7~8月在台湾浅滩周边水域进行了两个断面的水体悬浮物浊度、叶绿素a荧光调查,通过对该区域夏季悬浮物质浊度、叶绿素a荧光的分布变化特征研究,结合水文相关要素分析,初步揭示了该区域海洋沉积和再悬浮过程对悬浮体浊度、叶绿素a荧光分布的影响.悬浮物质浊度在近岸与陆架外缘主要受再悬浮作用影响,而浅滩区再悬浮作用不明显;在陆架外缘区浮游植物的聚集作用对浊度有一定的贡献作用,而近岸区则不明显.  相似文献   

14.
2004年7~8月在台湾浅滩周边水域进行了两个断面的水体悬浮物浊度、叶绿素a荧光调查,通过对该区域悬浮物质浊度、叶绿素a荧光的夏季分布变化特征研究,结合水文相关要素分析,初步揭示了区域海洋沉积和再悬浮过程对悬浮体浊度、叶绿素a荧光分布的影响。指出悬浮物质浊度在近岸与陆架外缘主要受再悬浮作用影响,而浅滩区再悬浮作用不明显:在陆架外缘区浮游植物的聚集作用对浊度有一定的贡献作用,而近岸区则不明显。  相似文献   

15.
A series of submarine canyons on the southwest slope of Orphan Basin experienced complex failure at 7–8 cal ka that resulted in the formation of a large variety of mass-transport deposits (MTDs) and sediment gravity flows. Ultra-high-resolution seismic-reflection profiles and multiple sediment cores indicate that evacuation zones and sediment slides characterize the canyon walls, whereas the canyon floors and inner-banks are occupied by cohesive debris-flow deposits, which at the mouths of the canyons on the continental rise form large, coalescing lobes (up to 20 m thick and 50 km long). Erosional channels, extending throughout the length of the study area (<250 km), are observed on the top of the lobes. Piston cores show that the channels are partially filled by poorly sorted muddy sand and gravel, capped by inversely to normally graded gravel and sand. Such deposits are interpreted to originate from multi-phase gravity flows, consisting of a lower part behaving as a cohesionless debris flow and an upper part that was fully turbulent.The Holocene age and the widespread synchronous occurrence of these failures indicate a large magnitude earthquake as their possible triggering mechanism. The large debris-flow deposits on the continental rise originated from large failures on the upper continental slope, involving proglacial sediments. Retrogression of these failures led to the eventual failure of marginal sandy till deposits on the upper slope and outer shelf, which due to their low cohesion disintegrated into multi-phase gravity flows. The evacuation zones and slide deposits on the canyon walls were triggered either by the earthquake, or from erosion of the canyon walls by the debris flows. The slides, debris-flows, and multi-phase gravity flows observed in this study are petrographically different, indicating different sediment sources. This indicates that not all failures lead through flow transformation to the production of a multi-phase gravity flow, but only when the sediment source contains ample coarse-grained material. The spatial segregation of the slide, debris-flow, and multi-phase gravity-flow deposits is attributed to the different mobility of each transport process.  相似文献   

16.
Abstract

Large diapiric and nondiapiric masses of Jurassic salt and Tertiary shale underlie the northern Gulf of Mexico continental slope and adjacent outer continental shelf. These masses show evidence of being structurally active at present and in the very recent geologic past. Local steepening of the sea floor in response to the vertical growth of these structures is a serious concern to those involved in the site selection and the construction of future oil and gas production and transportation facilities in this frontier petroleum province.

The seabed of the northern Gulf slope is hummocky and consists of many hillocks, knolls, and ridges interspersed by topographic depressions and canyon systems. Topographic highs and lows relate respectively to vertical diapiric growth and to withdrawal of large volumes of salt and shale. Topographic highs vary considerably in shape and size, but all have very limited areas of nearly flat sea floor. Intraslope topographic lows consist of three principal types: (1) remnants of submarine canyons blocked by diapiric uplift that terminated active downslope sediment transport common during stages of low sea level; (2) closed depressions formed by subsidence in response to salt and shale withdrawal and flow into surrounding diapiric uplifts; and (3) small collapse basins formed by faulting in strata arched over structural crests of diapirs.

Distribution patterns of both diapiric features and sediment accumulations on the slope are the result of the complex relationship that exists between sediment loading and diapirism. Diapiric activity is proportional to the thickness of salt or underconsolidated shale available for mobilization, and to the sedimentary load distribution on these highly plastic deposits. Variations in overburden load, in turn, are dependent on rates, volumes, and bulk densities of depo‐sitional influx; proximity to sources of supply, erosion, and distribution of sediments; and topographic control of sediment accumulation. Sediment capture in diapirically controlled interdomal basins and canyon systems localizes overburden load, thus inducing further diapiric growth, and complex structural and stratigraphic patterns are induced throughout the continental slope region.

Drill cores in the slope province indicate that most of the slope sediments are fine‐grained muds; appreciable quantities of sand‐size sediment are present principally in canyon axes. Turbidite sand layers drilled on a topographic high adjacent to the Gyre Basin reflect uplift far above their original deposition level, and calculations yield rates of uplift that average 2 to 4 m per 100 years. Seismic reflection profiles provide considerable evidence of “fresh”; slumps and ero‐sional surfaces on the flanks of many topographic highs not yet blanketed by a veneer of young sediments. This evidence thus supports our conclusion that the present continental slope region of the northern Gulf of Mexico is undergoing active diapirism and consequent slope steepening. Because most of the sediment on the flanks of diapiric structures consists of underconsolidated muds, slumping will take place regularly in response to further diapiric movement.  相似文献   

17.
We investigated Oceanographer Canyon, which is on the southeastern margin of Georges Bank, during a series of fourteen dives in the “Alvin” and “Nekton Gamma” submersibles. We have integrated our observations with the results of previous geological and biological studies of Georges Bank and its submarine canyons. Fossiliferous sedimentary rocks collected from outcrops in Oceanographer Canyon indicate that the Cretaceous—Tertiary boundary is at 950 m below sea level at about 40°16′N where at least 300 m of Upper Cretaceous strata are exposed; Santonian beds are more than 100 m thick and are the oldest rocks collected from the canyon. Quaternary silty clay, deposited most probably during the late Wisconsin Glaciation, veneers the canyon walls in many places, and lithologically similar strata are present beneath the adjacent outer shelf and slope. Where exposed, the Quaternary clay is commonly burrowed by benthic organisms that cause extensive erosion of the canyon walls, especially in the depth zone (100–1300 m) inhabited by red crabs (Geryon) and/or jonah crabs (Cancer). Bioerosion is minimal on high, near-vertical cliffs of sedimentary rock, in areas of continual sediment movement, and where the sea floor is paved by gravel. A thin layer of rippled, unconsolidated silt and sand is commonly present on the canyon walls and in the axis; ripple orientation is most commonly transverse to the canyon axis and slip-faces point downcanyon. Shelf sediments are transported from Georges Bank over the eastern rim and into Oceanographer Canyon by the southwest drift and storm currents; tidal currents and internal waves move the sediment downcanyon along the walls and axis. Large erratic boulders and gravel pavements on the eastern rim are ice-rafted glacial debris of probable late Wisconsinan age; modern submarine currents prevent burial of the gravel deposits. The dominant canyon megafauna segregates naturally into three faunal depth zones (133–299 m; 300–1099 m; 1100–1860 m) that correlate with similar zones previously established for the continental slope epibenthos. Faunal diversity is highest on gravelly sea floors at shallow and middle depths. The benthic fauna and the fishes derive both food and shelter by burrowing into the sea floor. In contrast to the nearby outer shelf and upper slope, Oceanographer Canyon has not been extensively exploited by the fishing industry, and the canyon ecosystem probably is relatively unaltered.  相似文献   

18.
Sediments of the continental slope are commonly bioturbated by endo- and epibenthic organisms, particularly in and around submarine canyons and channels. This study reviews the architecture and depositional environments associated with canyons and channels on the continental slope, and assesses the key physical and chemical conditions encountered in and around these conduits. Hydrodynamic energy, concentration and quality of organic carbon, dissolved oxygen concentration and sedimentation rate are identified as key controls on the composition of benthic ecosystems in slope environments. Submarine canyons and channels focus a variety of turbid and clear-water currents, all of which serve to increase the concentration of oxygen, labile organic carbon and other nutrients, which tend to elevate the abundance and biodiversity in the seafloor sediments, compared with those of the surrounding slope. Ancient slope channel and canyon systems reflect some of the variation in ichnological assemblages that is seen in modern analogues, although processes of erosion and trace fossil preservation mean that the benthic environment is often incompletely preserved in the ancient record. By integrating current understanding of sedimentology, oceanography, biology and ichnology of slope environments it is possible to provide a first order summary of the inter-relationships between ichnology and depositional environments on the continental slope. The combination of these data has the potential to improve our understanding of changes in deep marine benthic ecosystems through geological time, and to further the use of ichnology in assessing hydrocarbon reservoir presence, quality and performance from bioturbated slope, canyon and channel-levee hydrocarbon reservoirs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号