首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 677 毫秒
1.
The depth-related distribution of seastar (Echinodermata: Asteroidea) species between 150 and 4950 m in the Porcupine Seabight and Porcupine Abyssal Plain is described. 47 species of asteroid were identified from ∼14,000 individuals collected. The bathymetric range of each species is recorded. What are considered quantitative data, from an acoustically monitored epibenthic sledge and supplementary data from otter trawls, are used to display the relative abundance of individuals within their bathymetric range. Asteroid species are found to have very narrow centres of distribution in which they are abundant, despite much wider total adult depth ranges. Centres of distribution may be skewed. This might result from competition for resources or be related to the occurrence of favourable habitats at particular depths. The bathymetric distributions of the juveniles of some species extend outside the adult depth ranges. There is a distinct pattern of zonation with two major regions of faunal change and six distinct zones. An upper slope zone ranges from 150 to ∼700 m depth, an upper bathyal zone between 700 and 1100 m, a mid-bathyal zone from 1100 to1700 m and a lower bathyal zone between 1700 and 2500 m. Below 2500 m the lower continental slope and continental rise have a characteristic asteroid fauna. The abyssal zone starts at about 2800 m. Regions of major faunal change are identified at the boundaries of both upper and mid-bathyal zones and at the transition of bathyal to abyssal fauna. Diversity is greatest at ∼1800 m, decreasing with depth to ∼2600 m before increasing again to high levels at ∼4700 m.  相似文献   

2.
Although the organization patterns of fauna in the deep sea have been broadly documented, most studies have focused on the megafauna. Bivalves represent about 10% of the deep-sea macrobenthic fauna, being the third taxon in abundance after polychaetes and peracarid crustaceans. This study, based on a large data set, examined the bathymetric distribution, patterns of zonation and diversity–depth trends of bivalves from the Porcupine Seabight and adjacent Abyssal Plain (NE Atlantic). A total of 131,334 individuals belonging to 76 species were collected between 500 and 4866 m. Most of the species showed broad depth ranges with some ranges extending over more than 3000 m. Furthermore, many species overlapped in their depth distributions. Patterns of zonation were not very strong and faunal change was gradual. Nevertheless, four bathymetric discontinuities, more or less clearly delimited, occurred at about 750, 1900, 2900 and 4100 m. These boundaries indicated five faunistic zones: (1) a zone above ∼750 m marking the change from shelf species to bathyal species; (2) a zone from ∼750 to 1900 m that corresponds to the upper and mid-bathyal zones taken together; (3) a lower bathyal zone from ∼1900 to 2900 m; (4) a transition zone from ∼2900 to 4100 m where the bathyal fauna meets and overlaps with the abyssal fauna and (5) a truly abyssal zone from approximately 4100–4900 m (the lower depth limit of this study), characterized by the presence of abyssal species with restricted depth ranges and a few specimens of some bathyal species with very broad distributions. The ∼4100 m boundary marked the lower limit of distribution of many bathyal species. There was a pattern of increasing diversity downslope from ∼500 to 1600 m, followed by a decrease to minimum values at about 2700 m. This drop in diversity was followed by an increase up to maximum values at ∼4100 m and then again, a fall to ∼4900 m (the lower depth limit in this study).  相似文献   

3.
Deep-sea benthic communities and their structural and functional characteristics are regulated by surface water processes. Our study focused on the impact of changes in water depth and food supplies on small-sized metazoan bottom-fauna (meiobenthos) along a bathymetric transect (1200–5500 m) in the western Fram Strait. The samples were collected every summer season from 2005 to 2009 within the scope of the HAUSGARTEN monitoring program. In comparison to other polar regions, the large inflow of organic matter to the sea floor translates into relatively high meiofaunal densities in this region. Densities along the bathymetric gradient range from approximately 2400 ind. 10 cm-2 at 1200 m to approximately 300 ind. 10 cm-2 at 4000 m. Differences in meiofaunal distribution among sediment layers (i.e., vertical profile) were stronger than among stations (i.e., bathymetric gradient). At all the stations meiofaunal densities and number of taxa were the highest in the surface sediment layer (0–1 cm), and these decreased with increasing sediment depth (down to 4–5 cm). However, the shape of the decreasing pattern differed significantly among stations. Meiofaunal densities and taxonomic richness decreased gradually with increasing sediment depth at the shallower stations with higher food availability. At deeper stations, where the availability of organic matter is generally lower, meiofaunal densities decreased sharply to minor proportions at sediment depths already at 2–3 cm. Nematodes were the most abundant organisms (60–98%) in all the sediment layers. The environmental factors best correlated to the vertical patterns of the meiofaunal community were sediment-bound chloroplastic pigments that indicate phytodetrital matter.  相似文献   

4.
Recent studies of deep-sea faunas considered the influence of mid-domain models in the distribution of species diversity and richness with depth. In this paper, I show that separating local diversity from regional species richness in benthic isopods clarifies mid-domain effects in the distribution of isopods in the Gulf of Mexico. Deviations from the randomised implied species ranges can be informative to understanding general patterns within the Gulf of Mexico. The isopods from the GoMB study contained 135 species, with a total of 156 species including those from an earlier study. More than 60 species may be new to science. Most families of deep-sea isopods (suborder Asellota) were present, although some were extremely rare. The isopod family Desmosomatidae dominated the samples, and one species of Macrostylis (Macrostylidae) was found in many samples. Species richness for samples pooled within sites ranged from 1 to 52 species. Because species in pooled samples were highly correlated with individuals, species diversity was compared across sites using the expected species estimator (n=15 individuals, ES15). Six depth transects had idiosyncratic patterns of ES15, and transects with the greatest short-range variation in topography, such as basins and canyons, had the greatest short-range disparity. Basins on the deep slope did not have a consistent influence (i.e., relatively higher or lower than surrounding areas) on the comparative species diversity. ES15 of all transects together showed a weak mid-domain effect, peaking around 1200–1500 m, with low values at the shallowest and deepest samples (Sigsbee Abyssal Plain); no longitudinal (east–west) pattern was found. The regional species pool was analyzed by summing the implied ranges of all species. The species ranges in aggregate did not have significant patterns across longitudes, and many species had broad depth ranges, suggesting that the isopod fauna of the Gulf of Mexico is well dispersed. The summed ranges, as expected, had strong mid-domain patterns, contrasting with the local species richness estimates. The longitudinal ranges closely matched a randomized pattern (species ranges placed randomly, 1000 iterations), with significant deviations in the east attributable to lower sampling effort. The depth pattern, however, deviated from the mid-domain model, with a bimodal peak displaced nearly 500 m shallower than the mode of the randomized distribution. The deviations from random expectation were significantly positive above 1600 m and negative below 2000 m, with the result that regional species richness peaked between 800 and 1200 m, and decreased rapidly at deeper depths. The highest species richness intervals corresponded to the number of individuals collected. Residuals from a regression of the deviations on individual numbers, however, still deviated from the randomized pattern. In this declining depth-diversity pattern, the Gulf of Mexico resembles other partially enclosed basins, such as the Norwegian Sea, known to have suffered geologically recent extinction events. This displaced diversity pattern and broad depth ranges implicate ongoing re-colonization of the deeper parts of the Gulf of Mexico. The Sigsbee Abyssal Plain sites could be depauperate for historical reasons (e.g., one or more extinction events) rather than ongoing ecological reasons (e.g., low food supply).  相似文献   

5.
Macrofaunal polychaete communities (>500 µm) in the South Eastern Arabian Sea (SEAS) continental margin (200–1000 m) are described, based on three systematic surveys carried out in 9 transects (at ~200 m, 500 m and 1000 m) between 7°00′and 14°30′N latitudes. A total of 7938 polychaetes belonging to 195 species were obtained in 136 grab samples collected at 27 sites. Three distinct assemblages were identified in the northern part of the SEAS margin (10–14°30′N), occupying the three sampled depth strata (shelf edge, upper and mid-slope) and two assemblages (shelf edge and slope) in the south (7–10°N). Highest density of polychaetes and dominance of a few species were observed in the shelf edge, where the Arabian Sea oxygen minimum zone (OMZ) impinged on the seafloor, particularly in the northern transects. The resident fauna in this region (Cossura coasta, Paraonis gracilis, Prionospio spp. and Tharyx spp.) were characteristically of smaller size, and well suited to thrive in the sandy sediments in OMZ settings. Densities were lowest along the most northerly transect (T9), where dissolved oxygen (DO) concentrations were extremely low (<0.15 ml l−1, i.e.<6.7 μmol l−1). Beyond the realm of influence of the OMZ (i.e. mid-slope, ~1000 m), the faunal density decreased while species diversity increased. The relative proportion of silt increased with depth, and the dominance of the aforementioned species decreased, giving way to forms such as Paraprionospio pinnata, Notomastus sp., Eunoe sp. and lumbrinerids. Relatively high species richness and diversity were observed in the sandy sediments of the southern sector (7–9°N), where influence of the OMZ was less intense. The area was also characterized by certain species (e.g. Aionidella cirrobranchiata, Isolda pulchella) that were nearly absent in the northern region. The gradients in DO concentration across the core and lower boundary of the OMZ, along with bathymetric and latitudinal variation in sediment texture, were responsible for differences in polychaete size and community structure on the SEAS margin. Spatial and temporal variations were observed in organic matter (OM) content of the sediment, but these were not reflected in the density, diversity or distribution pattern of the polychaetes.  相似文献   

6.
The deep sea has been shown to exhibit strong depth zonation in species composition and abundance. Examination of these patterns can offer ecological insight into how organisms adapt and respond to changing environmental parameters that co-occur with depth. Here we provide the first tropical study on bathymetric zonation and other depth-related trends (size, abundance, and species richness) spanning shelf to abyssal depths of scavenging megafauna. Baited time-lapse free-vehicle cameras were used to examine the deep-sea benthic and demersal scavenging communities of the Hawaiian Islands, an area for which the biology and ecology have remained poorly studied below 2000 m. Twenty-two deployments ranging in depth from 250 to 4783 m yielded 37 taxa attracted to bait, including the first known occurrence of the family Zoarcidae in the Hawaiian Islands. Cluster analysis of Bray–Curtis similarity of species peak abundance (nmax) revealed four main faunal zones (250–500, 1000, 1500–3000, and ?4000 m) with significant separation (ANOSIM, global R=0.907, p=0.001) between designated depth groups. A major faunal break was identified at the 500–1000 m transition where species turnover was greatest, coinciding with the location of the local oxygen minimum zone. Dominance in species assemblage shifted from decapod crustaceans to teleosts moving from shallow to deeper faunal zones. Significant size differences in total length with depth were found for two of the four fish species examined. A logarithmic decline was observed in scavenger relative abundance with depth. Evidence of interaction between scavenging species was also noted between Synaphobranchus affinis and Neolithodes sp. (competition) and Histiobranchus sp. and aristeid shrimp (predation), suggesting that interactions between scavengers could influence indices of abundance generated from baited camera data.  相似文献   

7.
Quantitative collections of tubeworm- and mussel-associated communities were obtained from 3 cold seep sites in the deep Gulf of Mexico: in Atwater Valley at 1890 m depth, in Alaminos Canyon at 2200 m depth, and from the Florida Escarpment at 3300 m depth. A total of 50 taxa of macro- and megafauna were collected including 2 species of siboglinid tubeworms and 3 species of bathymodiolin mussels. In general, the highest degree of similarity was between communities collected from the same site. Most of the dominant families at the well-characterized upper Louisiana slope seep sites of the Gulf of Mexico were present at the deep sites as well; however, there was little overlap at the species level between the upper and lower slope communities. One major difference in community structure between the upper and lower slope seeps was the dominance of the ophiuroid Ophioctenella acies in the deeper communities. The transition between upper and lower slope communities appears to occur between 1300 and 1700 m based on the number of shared species with the Barbados seeps at either end of this depth range. Seep communities of the deep Gulf of Mexico were more similar to the Barbados Accretionary Prism seep communities than they were to either the upper slope Gulf of Mexico or Blake Ridge communities based on numbers of shared species and Bray–Curtis similarity values among sites. The presence of shared species among these sites suggests that there is ongoing or recent exchange among these areas. An analysis of bathymodioline mussel phylogeography that includes new collections from the west coast of Africa is presented. This analysis also suggests recent exchange across the Atlantic equatorial belt from the Gulf of Mexico to the seeps of the West Nigerian margin.  相似文献   

8.
During the SoJaBio expedition, the deep sea fauna of the north-western Sea of Japan was sampled in August–September 2010. From this study, 11 epibenthic sledge stations are analyzed, with a focus on species composition, diversity and distribution patterns of polychaetes. A total of 92 polychaete taxa belonging to 70 genera and 28 families and 3 indeterminate species were found. Twelve species and eight genera have not been reported from the Sea of Japan before, but were registered from other deep-sea basins. Calculation of diversity (Shannon–Wiener Index, Pielou's Evenness) showed that the upper bathyal of the Sea of Japan is an area of higher polychaete diversity than the abyssal plain. The increased richness and diversity here could possibly be explained by a zoogeographic overlapping with the shallower species' assemblages of the shelf. At a higher taxonomic level the polychaete fauna of the deep Sea of Japan does not seem to differ from that of other deep-sea regions world-wide. In depths below 2000 m about 30% polychaete species have wide distributional ranges.  相似文献   

9.
Two new genera and three new species of large Vesicomyidae are described from cold-seep sites on pockmarks and other sulfide-rich environments in the Gulf of Guinea (tropical east Atlantic) off Gabon, Congo (Brazzaville) and northern Angola, from 500 to 4000 m depth: “Calyptogena” (s.l.) regab n. sp., Wareniconcha (n.g.) guineensis (Thiele and Jaeckel 1931), Elenaconcha guiness n.g. n. sp., and Isorropodon atalantae n. sp. For two other species already taken by the R/V Valdivia in 1898, Calyptogena valdiviae (Thiele and Jaeckel 1931) and Isorropodon striatum (Thiele and Jaeckel 1931) new localities were discovered, and the species are rediscussed. E. guiness n.g. n.sp. is also recorded from off Banc d’Arguin, Mauritania, collected by commercial fishing vessels. The vesicomyid species here treated were encountered in different depth ranges along the Gabon–Congo–Angola margin, between 500 and 4000 m depth, and it was found that, in comparison with the dredge samples taken by the Valdivia expedition off southern Cameroon and off Rio de Oro (both at 2500 m), the same species occur in other depth ranges, in some cases with a vertical difference of more than 1000 m. .That means that the species are not confined to a given depth thought being typical for them and that the characteristics of the biotope are likely to play a major role in the distribution of the vesicomyids associated to cold seeps or other reduced environments along the West African margin.  相似文献   

10.
A decrease in species richness with increasing latitude has been documented for a broad range of taxonomic groups. A number of hypotheses relating to biological, environmental, and historical factors have been proposed to explain this phenomenon, and the mid-domain effect (MDE) has been proposed in the form of a null model. This model considers only the geometry of spatial gradients and species’ range extents, excluding any assumptions of environmental, biological or historical causes, and predicts that species richness will peak in the centre of a domain in which species occur when their ranges are randomly distributed. This model has been applied to observed latitudinal, elevational and depth gradients as a test to quantify the extent to which non-random processes influence species richness patterns in comparison to those based on geographical boundary constraints alone. We apply the MDE model to empirical datasets for the ranges of the bottom-living fish species occurring in the Faroe-Iceland Ridge, Denmark Strait, Southern New England and Northern Gulf of Mexico regions of the North Atlantic Ocean. The observed patterns show a decline in richness with depth, and do not match the richness patterns produced by the null model. Therefore it can be said that non-random processes have resulted in the observed patterns. Applied to bathymetric ranges, Rapoport's rule predicts that richness decreases and range size increases with depth and latitude. The rule explained decreasing fish species richness with depth and between latitudes, but did not appear to explain increasing range size with depth.  相似文献   

11.
Hydrocarbon and brine seeps in the deep regions of the northern and western Gulf of Mexico often support populations of the bathymodiolin mussel, “Bathymodioluschildressi. In this study, we use two mitochondrial and six nuclear DNA markers to investigate relationships within the metapopulation of “B.childressi in the Gulf of Mexico from Mississippi Canyon to Alaminos Canyon over a range of 527–2222 m in depth and approximately 550 km in distance. Restriction fragment length polymorphism (RFLP) and size polymorphism analysis of the markers suggest that populations are not genetically differentiated. FST values were not significantly different from zero. The presence of a panmictic population of “B.childressi over such a broad range of depth suggests that this species may be quite different from most members of the Gulf of Mexico seep chemosynthetic communities.  相似文献   

12.
Cold-seep environments and their associated symbiont-bearing megafaunal communities create islands of primary production for macro- and meiofauna in the otherwise monotonous and nutrient-poor deep-sea environment. To examine the spatial variation and distribution patterns of metazoan meiobenthos in different seepage-related habitats, samples were collected in two regions off Norway: several pockmarks associated with the Storegga Slide including the Nyegga pockmark area (730 m; 64°N), and the active, methane-venting Håkon Mosby Mud Volcano (HMMV) west of the Barents Sea (1280 m; 72°N). Based on sediment geochemistry and associated epifauna, three different habitat types were distinguished across the two regions: (1) reduced sediment with suboxic conditions, sometimes covered by bacterial mats, (2) sediment colonised by chemosynthetic, siboglinid tubeworms, and (3) sediment outside the influence of seepage and without a large chemosynthetic fauna. Meiofaunal communities varied strongly in terms of generic diversity and dominance among the different habitat types. Control sites and Siboglinidae polychaete fields both supported high nematode genus richness similar to normal deep-sea sediments, whereas the reduced sediments yielded a genus-poor nematode community dominated by one or two successful species. Meiofaunal densities in the different habitats were negatively correlated with macrobenthic densities. An extremely dense (>11,000 ind. 10 cm–2), mono-specific nematode population appeared to be restricted to the bacterial mats at HMMV. It consisted of a new cryptic species of the Halomonhystera disjuncta complex, which has been described from intertidal habitats in the North Sea. The reduced seep sediments at Nyegga did not yield H. disjuncta but were dominated by Terschellingia longicaudata, another cosmopolitan nematode species known to be abundant in organic-rich, oxygen-poor, shallow-water environments. These observations point to a past or recent connection between margins and shallow-water habitats.  相似文献   

13.
Using industry inspection video and ROV imaging, we examined Lophelia pertusa (Linnaeus 1758) on 10 artificial structures of known ages (9 to 100 years) in the northern Gulf of Mexico (GoM). Five different types deep-water energy installations with depths ranging from 320 to 995 m, and three shipwrecks with depths ranging from approximately 530 to 615 m, were examined. Density, depth ranges, and growth rates of L. pertusa colonies were calculated from video and image analysis. L. pertusa colonies were present on all structures examined. Minimum calculated growth rates for the largest colonies ranged from 0.32 to 3.23 cm/yr on the different structures. The shallowest depth at which L. pertusa was observed was 201 m and the deepest was 801 m, considerably expanding the known depth range of this species in the northern GoM. Colony density varied with structure type, age, and depth, with the highest density between 503 and 518 m on the single structure that spanned the entire depth range of occurrence of L. pertusa observed in this study. L. pertusa colonies growing on thinner and deeper installations appear to have higher colonization rates, i.e. to develop higher densities over a shorter time period, compared to those on shallower and more massive types of installations. However, on average, colonies have slower growth rates on these installations than colonies on more massive, shallower installations (compliant and solid installations). In general, the calculated minimum growth rates were higher on the installations than on the shipwrecks, which were substantially older. A continuum of colony sizes was documented on all installations, suggesting multiple settlement events. L. pertusa thickets were observed on the oldest anthropogenic structures, with most of the components of these structures covered by colonies of L. pertusa. Brown, orange, and mottled color-variants were documented for the first time in the GoM. All installations examined for this study were colonized by L. pertusa and it is likely that most artificial surfaces in appropriate depths in the GoM will be as well.  相似文献   

14.
Surface concentrations and vertical fluxes of particulate organic carbon (POC) were assessed in the Amundsen Gulf (southeastern Beaufort Sea, Arctic Ocean) over the years 2004 to 2006 by using ocean color remote-sensing imagery and sequential sediment traps moored over the ca. 400 m isobath. Environmental conditions (sea ice, wind) and oceanographic variables (temperature, salinity, fluorescence and currents) were investigated to explain the variability of POC data. Annual downward POC fluxes in 2004, 2005 and 2006 cumulated, respectively, to 3.3, 4.2 and 6.0 g C m?2 yr?1 at ~100 m depth, and to 1.3, 2.2 and 3.3 g C m?2 yr?1 at ~210 m depth. The fraction of settling POC attributable to autochthonous processes occurring at or next to ice break-up was estimated to be 75–84% of the 100 m annual fluxes and to be 61–75% of the 210 m fluxes. Over the three ice-reduced seasons, distinct scenarios between ice conditions, surface POC pools and vertical POC export at 100 m were identified: (1) in 2004, despite a normal ice break-up, a weak primary production was measured and low vertical fluxes were collected as old ice moved across the region; (2) in 2005, a lengthened ice-free period allowed an extended season of surface POC production near-shore, while an intermediate increase of vertical fluxes was recorded offshore; and (3) in 2006, a late ice melt gave rise to a pulsed ice edge bloom and to large vertical fluxes also associated with extra ice-flushed material. Linear regressions of vertical POC fluxes against satellite-derived surface POC concentrations suggested that the pelagic POC retention in the upper 100 m of the Amundsen Gulf ranged from ca. 70% to 90% depending on the timing of ice cover melt. Regardless of the inter-annual variability, the estimated fraction of the surface POC reservoir reaching the 210 m water depth was reduced to ~5%. Therefore, as the Arctic Ocean warms up, our results support the expectation that the increasing extent of the seasonal ice zone will promote the POC pathways that benefit pelagic webs rather than benthic communities.  相似文献   

15.
Vertical changes in abundance, biomass and community structure of copepods down to 3000 m depth were studied at a single station of the Aleutian Basin of the Bering Sea (53°28′N, 177°00′W, depth 3779 m) on the 14th June 2006. Both abundance and biomass of copepods were greatest near the surface layer and decreased with increase in depth. Abundance and biomass of copepods integrated over 0–3000 m were 1,390,000 inds. m?2 and 5056 mg C m?2, respectively. Copepod carcasses occurred throughout the layer, and the carcass:living specimen ratio was the greatest in the oxygen minimum layer (750–100 m, the ratio was 2.3). A total of 72 calanoid copepod species belonging to 34 genera and 15 families occurred in the 0–3000 m water column (Cyclopoida, Harpacticoida and Poecilostomatoida were not identified to species level). Cluster analysis separated calanoid copepod communities into 5 groups (A–E). Each group was separated by depth, and the depth range of each group was at 0–75 m (A), 75–500 m (B), 500–750 m (C), 750–1500 m (D) and 1500–3000 m (E). Copepods were divided into four types based on the feeding pattern: suspension feeders, suspension feeders in diapause, detritivores and carnivores. In terms of abundance the most dominant group was suspension feeders (mainly Cyclopoida) in the epipelagic zone, and detritivores (mainly Poecilostomatoida) were dominant in the meso- and bathypelagic zones. In terms of biomass, suspension feeders in diapause (calanoid copepods Neocalanus spp. and Eucalanus bungii) were the major component (ca. 10–45%), especially in the 250–3000 m depth. These results are compared with the previous studies in the same region and that down to greater depths in the worldwide oceans.  相似文献   

16.
As part of the multidisciplinary programme BIOZAIRE devoted to studying deep-sea benthic ecosystems in the Gulf of Guinea, particulate input and its relationship with near-bottom hydrodynamics were monitored using long-term moorings from 2000 to early 2005. Particular attention was given to material input through the Congo (ex-Zaïre) submarine channel that extends 760 km from the Congo River mouth to the abyssal plain (>5100 m) near 6°S. Due to its direct connection to the Congo River, the Congo canyon and channel system are characterised by particularly active recent sediment transport. During this first in situ long-term monitoring along the channel, an energetic turbidity event was observed in January 2004 at three locations along the channel from 3420 to 4790 m in depth. This event tilted and displaced the moorings installed at 3420 m (site ZR′) and 4070 m (site ZD′), and resulted in high sediment deposition at all three mooring sites. The event moved at an average velocity of 3.5 m s−1 along the numerous channel meanders between 3420 and 4070 m, then at 0.7 m s−1 between 4070 m and the end of the channel at 4790 m. The particle cloud rose above the top of the valley at 4070 m (site ZD′), but not at 3420 m (site ZR′) where the channel was too deep. Lastly, the mooring line broke at site ZD′ in October 2004 probably due to a strong event like that of 2001 previously described by Khripounoff et al. [Khripounoff, A., Vangriesheim, A., Babonneau, N., Crassous, P., Denniellou, B., Savoye, B., 2003. Direct observation of intense turbidity activity in the Zaire submarine valley at 4000 m water depth. Marine Geology (194), 151–158]. Between these strong events, several peaks of high turbidity and particle flux occurred, but without noticeable current increases. These events were probably due to local sliding of sediment accumulated on the walls or terraces on the side of the channel. The area near 4000 m depth and the lobe appear to be the main depocentres of particulate input rich in organic matter derived from the Congo River.  相似文献   

17.
Seafloor mapping of the central Lomonosov Ridge using a multibeam echo-sounder during the Beringia/Healy–Oden Trans-Arctic Expedition (HOTRAX) 2005 shows that a channel across the ridge has a substantially shallower sill depth than the ∼2500 m indicated in present bathymetric maps. The multibeam survey along the ridge crest shows a maximum sill depth of about 1870 m. A previously hypothesized exchange of deep water from the Amundsen Basin to the Makarov Basin in this area is not confirmed. On the contrary, evidence of a deep-water flow from the Makarov to the Amundsen Basin was observed, indicating the existence of a new pathway for Canadian Basin Deep Water toward the Atlantic Ocean. Sediment data show extensive current activity along the ridge crest and along the rim of a local Intra Basin within the ridge structure.  相似文献   

18.
Five moorings ML1–ML5 were deployed on the slope of the Solomon Rise in the Melanesian Basin in the western North Pacific, northeastward at increasing water depths. We measured the velocities of the western branch current of the deep western boundary current (DWBC) and the upper deep current carrying the Lower and Upper Circumpolar Waters (LCPW, UCPW), respectively. The daily mean velocity data from 1–3 February 1999 to 24–26 February 2000 were analyzed, and variability of the DWBCs was clarified. Although the current meters did not entirely cover the western branch current of the DWBC composed of two or three streams, a stream of the western branch current was observed at a depth of 4700 m at ML4 or 4260 m at ML5 for more than half of the observation period. The stream had a mean velocity of 3.7 cm s−1 and alternated between ML4 and ML5 at 20- to 40-day intervals without occupying both of ML4 and ML5 simultaneously. This shows that the width of the stream is less than 120 km (distance between ML4 and ML5), and the position changes in a similar range. In contrast to the velocity of the eastern branch current of the DWBC, that of the western branch current did not decrease with decreasing depths to 4000 m. This reflects the vertical division into the branch currents by the bifurcation of the DWBC. The western branch current of the DWBC is located at the deep side of the countercurrent which was almost always observed at depths of 3880 and 4080 m at ML3. The countercurrent was thought to be the return flow of the western branch current that is partly reversed in the East Mariana Basin. The previous estimate of geostrophic transport of LCPW at the time of the mooring deployment was corrected to 1.4 Sv (106 m3 s−1) in the western branch current, 1.7 Sv in the countercurrent, and 1.1 Sv in the inflow to the East Caroline Basin. The upper deep current was located over the slope of the Solomon Rise with water depth less than 4500 m including ML1–ML3. It flowed at depths of approximately 2000–3500 m with the highest velocity in the middle of this layer and seldom reached the near-bottom where eddy-like disturbances existed. Its volume transport at the mooring deployment was 10.4 Sv. The upper deep current during the first half of the observation period had double cores divided by the countercurrent at ML1, whereas that during the second half had a single core, as the countercurrent at ML1 disappeared in early September 1999. The vector mean velocities of the upper deep current were 5.0 (2650 m, ML2) and 3.6 cm s−1 (1880 m, ML3) during the first half of the observation period and 7.0 cm s−1 (2670 m, ML1) during the second half; they ranged from 3 to 7 cm s−1. Similarly, those of the countercurrent at ML1 during the first half were 6.4, 3.8, 4.6 cm s−1 (2170, 2670, 3570 m).  相似文献   

19.
The population structure, dynamics and distribution of Spisula solida, Diogenes pugilator and Branchiostoma lanceolatum, common species in the south coast of Portugal, were studied in a spatial–temporal manner in order to understand the influence of cross-shore sediment transport and anthropogenic activities. Spisula solida is harvested commercially, whereas D. pugilator and B. lanceolatum are non-target species, with little information available on the population dynamics of these species. The study was performed in 2001–2002, and along a gradient of 100–5000 m from the coastline, corresponding to a depth gradient of between 1 and 32 m deep. Spisula solida was distributed preferentially at 3–12 m deep, and its distribution appeared to be influenced seasonally by the cross-shore sediment dynamics. Results suggested benthic recruitment in June. Some recruitments had no expression (year 2001) since adults were not present, which seems to be a direct impact of clams' fisheries. Diogenes pugilator showed preferential distribution at shallow depths, from 1.3 to 8 m. Results suggested recruitments every 4 months, in June, February and October. Branchiostoma lanceolatum showed the widest distribution, from 7 to 26 m deep. Recruitment seemed to start in June until October, when it attained an abundance peak of juveniles. For both non-target species no clear effects of the cross-shore dynamics or the clams' fisheries impact were visible.  相似文献   

20.
The effects of the invasive polychaete Marenzelleria spp. on sediment processes and meiobenthos with an emphasis on free-living nematodes of the Vistula Lagoon (southern Baltic Sea) were investigated in a laboratory microcosm experiment. Marenzelleria occupies an open niche and its deep burying behaviour and feeding strategy represent a new function in the study area. Halos of oxidized sediment along Marenzelleria burrow walls indicated oxygen penetration into the burrows but the polychaete had no significant effect on porewater nutrient concentrations. The results showed, however, the density dependent effects of Marenzelleria on ammonium transport. An enhanced ammonium efflux was recorded at high polychaete densities (2000 ind. m 2) but not at low polychaete densities (300 ind. m 2).There was no observable impact of the polychaete on total meiobenthic numbers. There was, therefore, no indication that Marenzelleria caused meiofauna mortality. On the contrary, the polychaete significantly affected vertical distribution of meiofauna facilitating the colonization of deeper sediment depths and thus extending the habitat to be used by meiobenthos. In addition, Marenzelleria had a positive impact on the survival of turbellarians.Nevertheless, there was no effect of Marenzelleria on nematode assemblage structure and diversity, indicating that neither the physical presence nor the biological activity of the worm affected the nematode community. This suggests either 1. the limited impact of Marenzelleria on nematodes, resulting from the creation of simple, narrow and un-branched burrows, 2. poor response of nematode community resulting from their low abundance and diversity in the study area, or 3. the overriding role of the harsh chemical environment typical of sediments of the Vistula Lagoon, masking the effect of the bioturbator.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号