首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
A blind estimator of the ocean acoustic channel impulse response envelope is presented. The signal model is characterized by a deterministic multipath channel excited by a highly nonstationary deterministic source signal. The time-frequency (TF) representation of the received signal allows for the separation between the channel and the source signal. The proposed estimator proceeds in two steps: First, the unstable initial arrivals allow for the estimation of the source signal instantaneous frequency (IF) by maximization of the radially Gaussian kernel distribution; then, the Wigner-Ville distribution (WV) is sequentially windowed and integrated, where the window is defined by the previously estimated IF. The integral gives the channel impulse response envelope, which turns to be an approximation to the blind conventional matched filter (MF). The blind channel estimator (CE) is applicable upon the following conditions: that the multipath channel contains at least one dominant arrival well separated from the others, and that the IF of the source signal is a one-to-one function. Results obtained on real data from the INternal TIde Measurements with Acoustic Tomography Experiments (INTIMATE'96), where the acoustic channel was driven by an linear frequency modulation signal, show that the channel's envelope detailed structure could be accurately and consistently recovered, with the correlation of the estimates ranging from 0.796 to 0.973, as compared to the MF result  相似文献   

2.
High-speed phase coherent communications in the ocean channel are made difficult by the combined effects of large Doppler fluctuations and extended, time-varying multipath. In order to account for these effects, we consider a receiver which performs optimal phase synchronization and channel equalization jointly. Since the intersymbol interference in some underwater acoustic channels spans several tens of symbol intervals, making the optimal maximum-likelihood receiver unacceptably complex, we use a suboptimal, but low complexity, decision feedback equalizer. The mean squared error multiparameter optimization results in an adaptive algorithm which is a combination of recursive least squares and second-order digital phase and delay-locked loops. The use of a fractionally spaced equalizer eliminates the need for explicit symbol delay tracking. The proposed algorithm is applied to experimental data from three types of underwater acoustic channels: long-range deep water, long-range shallow water, and short-range shallow water channels. The modulation techniques used are 4- and 8-PSK. The results indicate the feasibility of achieving power-efficient communications in these channels and demonstrate the ability to coherently combine multiple arrivals, thus exploiting the diversity inherent in multipath propagation  相似文献   

3.
Two adaptive algorithms for multipath time delay estimation   总被引:1,自引:0,他引:1  
The problem of time delay estimation (TDE) with multipath transmissions arises often in many sonar and radar systems. Two adaptive algorithms based on a parameter estimation approach are proposed to estimate the difference in arrival times of a signal at two separated sensors in the presence of multipath propagation. The first method uses an adaptive IIR filter to eliminate the multipath signal in each transmission channel prior to applying a constrained delay estimation algorithm to extract the time difference between the two received outputs. The second employs two constrained adaptive FIR filters to perform equalization of the multipath arrivals, and time delay is then derived using a constrained delay estimator similar to that in the first method. Computer simulations are presented to compare and contrast the tracing capability and convergence behavior of these multipath TDE methods  相似文献   

4.
Spatial diversity equalization applied to underwater communications   总被引:1,自引:0,他引:1  
Underwater acoustic digital communication is difficult because of the nature of the fading multipath channels. Digital signal processing, such as adaptive equalization, is known to greatly improve the communication data rate by limiting intersymbol interference (ISI). However, existing underwater acoustic equalization studies are limited to single-channel techniques, and spatial diversity processing is limited to selection or combining. In this paper, we design minimum mean-square error (MMSE) equalizers jointly among all spatial diversity channels. We call this spatial diversity equalization (SDE). Results are based on a very sparse vertical array in a midrange underwater acoustic channel. We study the effect of element number and placement, the length of the equalization filters, and linear feedforward versus nonlinear decision feedback algorithms. A suboptimum equalizer combiner (EC) is studied to alleviate the computational intensity of JCE. We first design the system for a known acoustic channel; later, some results are verified using adaptive algorithms. Results are presented both in terms of the mean-square error (MSE) and the probability of a symbol error. The latter is important as it is the ultimate interest for a digital communication system. We found that system performance improves rapidly with an increase in the number of spatial channels  相似文献   

5.
A key research area in underwater acoustic (UWA) communication is the development of advanced modulation and detection schemes for improved performance and range-rate product. In this communication, we propose a variable-rate underwater data transmission system based on direct sequence spread spectrum (DSSS) and complementary code keying (CCK), particularly for shallow-water acoustic channels with severe multipath propagation. We provide a suboptimum receiver that consists of a bidirectional decision feedback equalizer (BiDFE) to cancel both postcursor and precursor intersymbol interference (ISI). We also develop iterative signal processing and time-reversal (TR) diversity processing to mitigate the effect of error propagation in BiDFE. We present performance analysis on bit error rate (BER) for different data rates. Our works show that this new variable-data-rate DSSS-CCK is a suitable candidate for UWA communications over varying channel conditions and distance.   相似文献   

6.
The Shipborne acoustic communication system of the submersible Shenhai Yongshi works in vertical, horizontal and slant channels according to the relative positions. For ease of use, an array combined by a vertical-cone directional transducer and a horizontal-toroid one is installed on the mothership. Improved techniques are proposed to combat adverse channel conditions, such as frequency selectivity, non-stationary ship noise, and Doppler effects of the platform’s nonlinear movement. For coherent modulation, a turbo-coded single-carrier scheme is used. In the receiver, the sparse decision-directed Normalized Least-Mean-Square soft equalizer automatically adjusts the tap pattern and weights according to the multipath structure, the two receivers’ asymmetry, the signal’s frequency selectivity and the noise’s spectrum fluctuation. The use of turbo code in turbo equalization significantly suppresses the error floor and decreases the equalizer’s iteration times, which is verified by both the extrinsic information transfer charts and bit-error-rate performance. For noncoherent modulation, a concatenated error correction scheme of nonbinary convolutional code and Hadamard code is adopted to utilize full frequency diversity. Robust and low-complexity synchronization techniques in the time and Doppler domains are proposed. Sea trials with the submersible to a maximum depth of over 4500 m show that the shipborne communication system performs robustly during the adverse conditions. From the ten-thousand communication records in the 28 dives in 2017, the failure rate of the coherent frames and that of the noncoherent packets are both below 10%, where both synchronization errors and decoding errors are taken into account.  相似文献   

7.
Reliable,with high data rate,acoustic communication in time-varying,multipath shallow water environment is a hot research topic recently.Passive time reversal communication has shown promising results in improvement of the system performance.In multiuser environment,the system performance is significantly degraded due to the interference among different users.Passive time reversal can reduce such interference by minimizing the cross-correlated version of channel impulse response among users,which can be realized by the well-separated users in depth.But this method also has its shortcomings,even with the absence of relative motion,the minimization sometimes may be impossible because of the time-varying environment.Therefore in order to avoid the limitation of minimizing the cross-correlated channel function,an approach of passive time reversal based on space-time block coding (STBC) is presented in this paper.In addition,a single channel equalizer is used as a post processing technique to reduce the residual symbol interference.Experimental results at 13 kHz with 2 kHz bandwidth demonstrate that this method has better performance to decrease bit error rate and improve signal to noise ratio,compared with passive time reversal alone or passive time reversal combined with equalization.  相似文献   

8.
Scattering functions from several experiments demonstrate that acoustic underwater channels are doubly spread. Receivers used on these channels to date have difficulty with large Doppler spreads. A receiver to perform coherent communication over Doppler spread channels is presented in this first paper of two. The receiver contains a channel tracker and a linear decoder. The tracker operates by means of a modified recursive least squares algorithm which makes use of frequency-domain filters called Doppler lines. The decoder makes use of the channel tracker coefficients in order to perform minimum mean square error decoding. This first paper treats theoretical aspects whereas the second part presents implementation issues and results  相似文献   

9.
The paper discusses the development of a simulation tool to model high data-rate acoustic communication in shallow water. The simulation tool is able to generate synthetic time series of signals received at a transducer array after transmission across a shallow-water communication channel. The simulation tool is suitable for testing advanced signal processing techniques for message recovery. A channel model has been developed based on the physical aspects of the acoustic channel. Special emphasis has been given to fluctuations of the signal transmission caused by time-varying multipath effects. At shorter ranges, the temporal variations are dominated by acoustic scattering from the moving sea surface. Therefore, the channel model produces a coherence function which may be interpreted as a time-varying reflection coefficient for the surface scattered acoustical path. A static, range-independent ray model identifies the significant multipaths, and the surface path is modulated with the time-varying reflection coefficient. The advantages and limitations of the channel model are discussed and assumptions necessary to overcome the limitations are emphasised. Based on the assumptions, an algorithm has been developed and implemented to model how a binary message will be modulated when transmitted by a transducer, is distorted in the channel and finally is received by a transducer array  相似文献   

10.
Underwater acoustic networks   总被引:8,自引:0,他引:8  
With the advances in acoustic modem technology that enabled high-rate reliable communications, current research focuses on communication between various remote instruments within a network environment. Underwater acoustic (UWA) networks are generally formed by acoustically connected ocean-bottom sensors, autonomous underwater vehicles, and a surface station, which provides a link to an on-shore control center. While many applications require long-term monitoring of the deployment area, the battery-powered network nodes limit the lifetime of UWA networks. In addition, shallow-water acoustic channel characteristics, such as low available bandwidth, highly varying multipath, and large propagation delays, restrict the efficiency of UWA networks. Within such an environment, designing an UWA network that maximizes throughput and reliability while minimizing the power consumption becomes a very difficult task. The goal of this paper is to survey the existing network technology and its applicability to underwater acoustic channels. In addition, we present a shallow-water acoustic network example and outline some future research directions  相似文献   

11.
A Doppler compensation system is presented which is suitable for high-data-rate acoustic communication between rapidly moving platforms such as autonomous underwater vehicles. The proposed approach provides a generic preprocessor to conventional adaptive receiver structures with only a marginal increase in computational load and hardware cost. The preprocessor employs a novel Doppler estimation technique and efficient sample rate conversion to remove Doppler shift induced by platform velocity and acceleration. Performance predicted by simulation is compared to that of sea trials of a prototype communication system in the North Sea. Successful communication is demonstrated at 16 kbit/s with a transmitting platform moving at up to ±2.6 m/s  相似文献   

12.
Underwater acoustic (UWA) channels are wideband in nature due to the small ratio of the carrier frequency to the signal bandwidth, which introduces frequency-dependent Doppler shifts. In this paper, we treat the channel as having a common Doppler scaling factor on all propagation paths, and propose a two-step approach to mitigating the Doppler effect: 1) nonuniform Doppler compensation via resampling that converts a “wideband” problem into a “narrowband” problem and 2) high-resolution uniform compensation of the residual Doppler. We focus on zero-padded orthogonal frequency-division multiplexing (OFDM) to minimize the transmission power. Null subcarriers are used to facilitate Doppler compensation, and pilot subcarriers are used for channel estimation. The receiver is based on block-by-block processing, and does not rely on channel dependence across OFDM blocks; thus, it is suitable for fast-varying UWA channels. The data from two shallow-water experiments near Woods Hole, MA, are used to demonstrate the receiver performance. Excellent performance results are obtained even when the transmitter and the receiver are moving at a relative speed of up to 10 kn, at which the Doppler shifts are greater than the OFDM subcarrier spacing. These results suggest that OFDM is a viable option for high-rate communications over wideband UWA channels with nonuniform Doppler shifts.   相似文献   

13.
An unexplained result of broad-band transmission experiments made more than ten years ago by DeFerrari in the Straits of Florida (center frequency ~500 Hz, bandwidth ~100 Hz, water depth ~200-m, range ~20 km) is that the measured pulse response functions failed to show the expected multipath replicas of the transmitted pulse and instead were smeared into a single broad cluster (duration ~50-~350 ms) in which the unresolved multipaths fluctuated rapidly in geophysical time (coherence time ≪12 min) leaving only a relatively stable envelope that is useful for oceanographic inversion. It is demonstrated here that the effects of internal waves on sound pulse propagation in the Straits of Florida can explain these observed results, and it is suggested that similar instabilities of acoustic multipaths due to internal waves are to be expected in other shallow-water propagation conditions. The demonstration is based on numerical simulations with the broad-band UMPE acoustic model that includes multiple forward scattering from volume inhomogeneities induced by internal wave fluctuations that are described by a broad spectrum of excitation. The simulated temporal variability, stability, and coherence of acoustic pulse arrivals are displayed on geophysical time scales from seconds to many hours and are qualitatively in agreement with the measured data in the Straits of Florida  相似文献   

14.
The inversion of broad-band low-frequency acoustic signals received on sparse arrays can lead to robust and efficient estimations of sea-bed properties. This paper describes a shallow-water geoacoustic inversion scheme based on the use of a model-based matched-impulse response on a single hydrophone. Results from the INTIMATE'96 experiment on the Portuguese shelf break are reviewed. In order to minimize the effects of strong time variability due to internal tides, only the time-stable waterborne bottom-surface reflected arrivals are exploited. A quasi-linear inversion algorithm is first applied to refine the geometry of the experiment. Then, inversion of bottom parameters is performed with an objective function that only makes use of the bottom-surface reflected arrivals' amplitudes. The experimental results show that broad-band transmissions (300-800 Hz) received on a single hydrophone, combined with the use of a simple eigenray code, are sufficient to correctly resolve geometrical parameters and bottom features. The analysis of the reflection coefficients both on simulated and real data helps to understand the validity of the inverted parameters and to derive the basis of an equivalent medium concept for geoacoustic inversion based on a "through-the-sensor" approach.  相似文献   

15.
Recent advances in high-speed underwater acoustic communications   总被引:4,自引:0,他引:4  
In recent years, underwater acoustic (UWA) communications have received much attention as their applications have begun to shift from military toward commercial. Digital communications through UWA channels differ substantially from those in other media, such as radio channels, due to severe signal degradations caused by multipath propagation and high temporal and spatial variability of the channel conditions. The design of underwater acoustic communication systems has until recently relied on the use of noncoherent modulation techniques. However, to achieve high data rates on the severely band-limited UWA channels, bandwidth-efficient modulation techniques must be considered, together with array processing for exploitation of spatial multipath diversity. The new generation of underwater communication systems, employing phase-coherent modulation techniques, has a potential of achieving at least an order of magnitude increase in data throughput. The emerging communication scenario in which the modern underwater acoustic systems mill operate is that of an underwater network consisting of stationary and mobile nodes. Current research focuses on the development of efficient signal processing algorithms, multiuser communications in the presence of interference, and design of efficient modulation and coding schemes. This paper presents a review of recent results and research problems in high-speed underwater acoustic communications, focusing on the bandwidth-efficient phase-coherent methods. Experimental results are included to illustrate the state-of-the-art coherent detection of digital signals transmitted at 30 and 40 kb/s through a rapidly varying one-mile shallow water channel  相似文献   

16.
The shallow-water acoustic channel supports far-field propagation in a discrete set of modes. Ocean experiments have confirmed the modal nature of acoustic propagation, but no experiment has successfully excited only one of the suite of mid-frequency trapped modes propagating in a coastal environment. The ability to excite a single mode would be a powerful tool for investigating shallow-water ocean processes. A feedback control algorithm incorporating elements of adaptive estimation, underwater acoustics, array processing, and control theory to generate a high-fidelity single mode is presented. This approach also yields a cohesive framework for evaluating the feasibility of generating a single mode with given array geometries, noise characteristics, and source power limitations. Simulations and laboratory wave guide experiments indicate the proposed algorithm holds promise for ocean experiments  相似文献   

17.
浅海信道中,多途干扰是水声遥控指令可靠检测的首要障碍,本文探讨频率编码遥控指令的抗多途对策,即通过阻塞多途来削落多途干扰。  相似文献   

18.
1 .Introduction Underwater acoustic (UWA) communicationis a fast developingfield,and its applicationis notlimitedto military affairs ,but is also extendinginto commercial fields .Catipovic (1990) ,Stojanovic(1996) and Kilfoyle and Baggeroer (2000) pointed…  相似文献   

19.
一个水声扩频通信系统设计与实现   总被引:2,自引:0,他引:2  
黄晓萍  桑恩方 《海洋工程》2007,25(1):127-132
严重的多途衰落、多普勒频偏是水声通信中引起误码的主要原因。低功耗、远距离、高隐蔽性、低信噪比检测、高可靠性的数据传输是水声通信的一个发展方向。设计并实现了一个水声扩频通信系统,有效地解决了以上问题,并采用快速相关算法,代替传统的矢量与矩阵相乘运算,极大地减少了程序的运行量,从而实时地处理接收信号。通过湖试和海试,验证了此通信系统的优良性能。  相似文献   

20.
Adaptive decision feedback equalization (DFE) has recently been used to enable high-rate data transmission through shallow-water acoustic channels. This adaptive receiver successfully tracks and suppresses intersymbol interference due to a dispersive multipath channel. However, acoustic modems which are used for network applications must also contend with interference due to cochannel signals from proximal modems. In this work, we propose and evaluate a multiuser receiver with cochannel interference suppression. The advantages of this multiuser receiver in the presence of strong cochannel interference are shown by a performance comparison to a bank of the single-user DFEs described above. Conclusions are supported in part by the demodulation of experimental data for two simultaneous cochannel signals and by a steady-state performance analysis  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号