首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 93 毫秒
1.
本文通过杰氏风暴潮预报方法对历史上给珠海和粤西海域造成较大影响的台风增水事件进行后报试验,并通过统计分析方法对原有的预报公式进行订正,总结出适合珠海及粤西海域的风暴潮预报公式.利用5a的时间对珠海及粤西海域的台风增水进行试报,结果表明预报准确率分别达95.0%和87.6%,尤其对一些增水较大、影响较严重的台风增水预报相对更加准确,预报准确率均达90.0%以上.这说明订正后的公式对珠海及粤西海域的风暴潮预报能得到较好的预报效果.  相似文献   

2.
近年来,在美国风暴潮数值预报中,Jelesnianski提出了一个剖面预报模式(以下简称杰氏模式),在作业上是很独特的。这一模式在某种合理规定的限度内,充分显示出预报基本风暴潮的技巧,并已成功地对美国东海岸及墨西哥湾沿岸的风暴潮进行了预报。因此,目前已被美国国家天气服务局确定为风暴潮的业务预报工具。 杰氏模式源于风暴潮的流体动力学方程组的数值解。与其他研究者不同的是:它在业务预报实践中,只要利用事先算好的一个在“标准海域”中、由“标准风暴”引起的内边界增水剖面,然后,通过预报海域的风场订正因子和深度订正因子进行修正,使其与实际海域和实际风暴相一致,就可作出预报。由于用这种方法所给出的结果是一条沿海域内边界的风暴潮剖面图,故称为风暴潮剖面预报方法。应用这种方法所需的基本资料是:风暴移行速度、风暴相对于海岸线的移动方向、最大风速半径、风暴中心气压及风暴登陆点附近的海域水深。因此,只要深度剖面订正值为已知,台风强度及登陆点预报得准确,利用杰氏模式就可以很快作出离风暴登陆点不同距离的沿岸增水高度及最大增水出现位置的预报。为此,我们进行了杰氏风暴潮剖面预报方法在我国的应用试验和研究。应该指出,这种方法不仅对台风暴潮的预报有用,而且对确定港工建筑,防潮工程等极值水位的设计也有其重要的应用价值。 杰氏模式能否应用到我国台风暴潮预报业务中的问题,关键在于如何确定最大风速半径以及我国沿岸的深度订正因子。实践表明:当我们确定了这两个参数后,应用杰氏方法对我国东南沿海登陆型台风进行后报,获得满意的结果。本文中,我们将着重讨论如何确定最大风速半径和给出深度订正因子问题。并简单介绍其他参数的选取方法及怎样预报台风暴潮剖面,对杰氏模式则不拟过多涉及。  相似文献   

3.
本文依据粤西海岸历史上台风暴潮实况,经对文献[1]的台风暴潮数值预报模式进行必要的可靠性和敏感性试验之后,确定取用该模式作为粤西海岸台风风暴潮数值预报模式。 4年来的试报结果表明,本文所及的粤西台风风暴潮数值预报模式和诺模图,具有一定的预报能力,可用其进行粤西岸段台风增水极值剖面及单站台风增水过程预测。  相似文献   

4.
基于目前国际上应用广泛的ADCIRC水动力模型在南黄海海域建立了重点岸段网格分辨率达到100 m的精细化风暴潮数值预报模型,该模型采用非结构三角网格及并行计算技术,能够准确地刻画出南黄海海域复杂的岸线分布和地形情况。通过对历史典型台风风暴潮和温带风暴潮的模拟、预报检验发现:台风风暴潮的后报平均相对误差为14%,温带风暴潮24 h预报平均相对误差为12.9%。  相似文献   

5.
温州港台风暴潮高潮最大增水分析和预报   总被引:1,自引:0,他引:1  
林克式 《海洋预报》1997,14(4):59-66
本文统计分析了温州港台风暴潮的情况,着重分析预报登陆型台风在登陆前和登陆后高潮时温州港的增水,并分析了海上转向型台风在高潮时的最大增水。通过统计相关建立起相应的预报公式,为温州港台风暴潮预报提供一定依据。  相似文献   

6.
为研究江苏近海海域风暴潮的特性以及为该海域风暴潮增水变化机理及后报做铺垫,本文基于FVCOM(Finite Volume Coast and Ocean Model)海洋模式和Jelesnianski圆形台风风场模型,建立了江苏近海风暴潮数值模型,并对江苏近海的天文潮以及1109号台风和1210号台风引起的风暴潮进行模拟。结合验潮站水位观测,研究了连云港站和吕泗站的天文潮和风暴潮增水过程。我们将风暴潮与天文潮非线性作用下的风暴潮增水和纯风暴潮增水过程进行对比,讨论了天文潮与1109号和1210号台风风暴潮之间的非线性作用引起的增水特征。结果均表明,在天文潮高潮时,天文潮和风暴潮之间的非线性作用可以抑制增水,在天文潮低潮时,天文潮和风暴潮之间的非线性作用有利于增水。除了气象因子以及天文潮和风暴潮之间的非线性作用外,该海区的地理环境也对台风风暴潮增水产生影响。因此对江苏近海的海岸线变化和浅滩地形变化进行敏感性试验,结果表明,本文所设计的海岸线变化对该海域的风暴潮增水影响较小,江苏沿海岸线的向外推移使得江苏海域风暴潮的增水略微上涨,而本文所设计的地形的变化对风暴潮增水影响较大。  相似文献   

7.
珠江口地区台风风暴潮的数值模拟试验   总被引:1,自引:0,他引:1  
本文选取了3个珠江口对造成严重风暴潮灾害的南海西北向路径的台风作为个例,利用国家海洋环境预报中心建立的业务化的台风风暴潮模式进行风暴潮后报检验.将结果与珠江口地区三个验潮站实际观测资料进行对比发现:模式的后报效果比较理想,对业务预报中最为关心的最大风暴增水值模拟较好,说明该模式对模拟这类型路径台风引起的风暴增水有较好的预报适用性.并且进一步发现:强度越大的台风,增水峰值模拟效果越好;该地区各验潮站的最大增水通常发生在台风中心距离验潮站最短的几个小时内.  相似文献   

8.
福建沿海精细化台风风暴潮集合数值预报技术研究及应用   总被引:5,自引:0,他引:5  
该文首先基于高级环流模型(ADCIRC)建立了一个适合台湾海峡及福建沿海区域的精细化台风风暴潮数值预报模式。利用所建立的精细化数值预报模式对影响台湾海峡及福建沿海的8次台风风暴潮个例进行了模拟,对模拟的24个站次的风暴潮增水峰值与实测值进行了对比,平均绝对误差小于15 cm;其次,为了尽可能减小由于台风路径预报误差而造成的风暴潮增减水误差,本文采用了集合数值预报技术,试报证明此方法可以在一定程度上减小风暴潮增减水误差。  相似文献   

9.
风暴潮增水是风暴潮与天文潮相互作用理论研究的基本内容,也是风暴潮预报中的重要问题。最大余水位的产生机制对于提高预报精度及海岸带防护有着重要意义。为研究全日潮海域风暴潮增水中的全日扰动和半日扰动,对Horsburgh与Wilson的风暴潮余水位模型进行了改进和扩展,建立了包括多个分潮的余水位分解方法并将其应用于防城港站,对台风"启德"和"山神"影响下的潮位过程进行了分析。结果显示,建立的余水位的分解方法对于全日分潮和半日分潮有良好的适用性。由于高频分潮产生机制的复杂性,该方法对高频分潮应用尚需进一步研究。在全日潮的防城港海域,全日扰动与半日扰动具有相同的量级,二者的和约占总增水的15%~19%。台风过程不同,相位变化项和局地变化项对增水的贡献有较大差异。  相似文献   

10.
利用基于有限元方法的ADCIRC模式,并耦合SWAN波浪模式,建立了一个适用于长江口及其邻近海区风暴潮的数值预报模式。该模式采用对岸线有较好拟合能力的无结构网格,综合考虑了波浪、天文潮、风暴潮、径流相互作用。利用该模型对长江口及其邻近海区一系列台风风暴潮进行后报检验,计算结果与实测资料有较好的一致性。最后,利用建立的模式,针对影响长江口地区的两类典型路径台风——近转向型台风和登陆型台风,讨论了气压、风应力、台风路径等因素对增水的贡献;并对台风移动路径与外高桥实测增水强度进行统计分析,给出了台风移动路径、气压梯度和增水强度的定量关系。  相似文献   

11.
本文建立一个温带风暴潮模式,包括海上边界层风场模式和风暴潮数值模式。利用建立的温带风暴潮模式,模拟了影响连云港的几次显著温带风暴潮过程,结果表明,本模式所采用的海上边界层风场模式和风暴潮数值模式是匹配的,能够满足海洋工程中的风暴潮数值计算的需要,甚至可以成为日常温带风暴潮数值预报的有用手段。  相似文献   

12.
覆盖中国沿海地区的精细化台风风暴潮模型的研究及适用   总被引:1,自引:1,他引:0  
精细化风暴潮预报是目前风暴潮预报重点发展方向之一,本文首次建立起了一个覆盖整个中国沿海地区的精细化台风风暴潮数值模型,克服了以往分区域数值模型的不足,该模型在中国沿海地区的分辨率达到300m左右。模型采用了并行计算,并对2012年和2013年灾害性台风风暴潮过程进行了数值检验,计算精度和计算所用时间都能够满足业务化运行的要求。本文同时还根据中国气象局、美国国家气象局等5家主要台风预报机构给出的24h台风预报,对2013年度灾害性台风风暴潮过程进行了24h数值预报检验,检验结果表明:根据中国气象局台风登陆前24h预报可以得到更准确的风暴潮预报结果,其预报结果优于其他各家预报结果。该结论可以为今后的台风风暴潮预报中台风路径的选取提供重要的参考。  相似文献   

13.
广东省沿海防潮减灾研究概述   总被引:5,自引:0,他引:5  
马经广 《海洋预报》2003,20(2):34-40
广东濒临南海,海岸线长,热带气旋活动频繁,历史风暴潮灾害严重。例如1969年7月28日的6903号风暴潮在粤东造成严重的灾害;1980年7月22日的8007号台风造成粤西的南渡站最高风暴潮达594cm,是我国有验潮记录以来的最大值(也是西太平洋沿岸国家的最大值),居世界第5位。针对广东沿海风暴潮灾的主要特点,本文就其防潮减灾提出以下3个观点:(1)深入了解和研究广东省沿海潮灾史,对做好防潮减灾工作具有十分重要的现实意义,同时对防潮减灾规划的制定与沿海防潮工程的设计也具有不可代估的参考价值:(2)做好广东省沿海防潮减灾的工程措施有着同样重要性,一般的防潮工程,甚至高标准防潮堤,在灾难性风暴潮袭击下也会产生一定的风暴潮灾害;(3)加强广东省的非工程防潮措施方面工作和研究,准确及时的风暴潮预报是预防和减轻灾害的主要非工程措施:要求作业人员对经验预报能熟练运用及掌握;普遍推广风暴潮数值预报;开展业务化高分辨率风暴潮漫滩数值预报研究工作。  相似文献   

14.
辐射应力对台风风暴潮预报的影响和数值研究   总被引:2,自引:0,他引:2  
台风过程期间,风暴潮和海浪是相伴相生的,相互作用的.波致辐射应力对于近岸风暴增、减水起着十分重要的作用,传统的海浪模式计算辐射应力耗时较多,不能满足业务化预报的要求.根据已有波浪辐射应力的理论表达式,经过严密的数学推导,适当的简化处理,提出了一个较为简单的波浪辐射应力表达式,并将其应用到业务化风暴潮数值预报模式中去,通...  相似文献   

15.
0814号强台风"黑格比"风暴潮分析与数值模拟   总被引:2,自引:0,他引:2  
2008年第14号强台风“黑格比”是12年来袭击粤西最强的台风,由于它移动速度快、登陆强度强,给粤西沿海带来了严重的风暴潮灾害,珠江口至阳江一带有多个潮位站的高潮位超过历史极值。本文根据珠江口、粤西、雷州半岛等几个潮位站资料探讨了“黑格比”台风的风暴增水特征;利用国家海洋环境预报中心业务化的风暴潮集合预报模式对本次过程进行了模拟,并分析了模拟效果。  相似文献   

16.
海口湾沿岸风暴潮风险评估   总被引:13,自引:1,他引:12  
参考内陆洪水损失评估的方法,建立适用于海口湾沿岸风暴潮风险区的损失评估模型,分析了海口湾沿岸风暴潮的风险区域,并根据100a一遇极值高水位、100a一遇风暴潮与最高天文潮位的组合水位、可能最大风暴潮与最高天文潮位的组合高水位条件,分析淹没范围;统计100a一遇极值高水位淹没区内的建筑物,估计可能受灾人口.该文对海口湾沿岸的基本社会经济资料作了一、二级分类,并逐项进行统计,同时还根据需要作了抽样调查.对分部门的损失率计算方法作了详细介绍,得出个人家庭财产、国家集体财产、农作物和海水养殖等分部门的损失率分别为:30%,4%,70%和100%;以2001年社会经济资料为基础,100a一遇极值高水位为条件,计算出潮灾经济损失约为8.32亿元,个人家庭财产、国家集体财产、农作物及海水养殖、人员伤亡损失、间接损失等分部门的损失金额占总损失的比率分别为:13.0%,70.0%,0.7%,0.8%和15.5%.  相似文献   

17.
根据粤西沿海4个海洋站潮位资料分析、讨论了“灿都”台风风暴潮特征:利用改进的Jelesnianski风场,并采用耦合天文潮模拟与非耦合天文潮两种方案,对1003号台风“灿都”进行模拟、分析,模拟结果显示:在改进的杰氏风场驱动下,两种预报结果误差都比较小,但耦合天文潮预报结果优于非耦合天文潮预报结果.  相似文献   

18.
广东省风暴潮时空分布特征及重点城市风暴潮风险研究   总被引:1,自引:0,他引:1  
收集、整理、分析1949年以来广东省10个典型验潮站的近500站次台风风暴潮过程,开展了广东省台风风暴潮和超警戒风暴潮时空分布特征研究。结果表明:广东省台风风暴潮主要发生时间为7—9月,其中7月最多、9月次之,雷州半岛东岸无论发生次数还是强度都明显偏多、偏强,其次为阳江;风暴潮灾害则主要发生在7—10月,以7月最多;风暴潮灾害频发区依次为珠江口、雷州半岛东岸、阳江和汕头,风暴潮灾害严重区依次为汕头、阳江和雷州半岛东岸,阳江和雷州半岛东岸为风暴潮灾害频发区和严重区。选取受台风风暴潮影响频繁和严重的典型区域阳江市。利用业务化的台风风暴潮模式开展了不同等级台风影响下阳江市的最大风暴潮风险研究,中心最低气压为970hPa的台风在最有利路径下产生的风暴潮为185cm,约20a一遇,940hPa的台风产生的风暴潮为310cm,约为500a一遇。  相似文献   

19.
本文基于海洋站潮位观测数据、海平面变化影响调查信息以及长江口水文站径流量数据等,重点分析了2009?2018年长江口咸潮入侵的变化特征及其影响因素,分析结果表明:(1)长江口咸潮入侵季节变化特征明显。咸潮一般从每年的9?10月开始入侵,翌年4?5月结束。3月咸潮入侵次数最多,达12次。2009?2018年,长江口咸潮入侵次数和咸潮持续时间均呈下降趋势,2009年长江口咸潮入侵次数最多,达13次,时间均发生在10月至翌年的4月;咸潮持续时间年际变化较大,2011年咸潮入侵持续时间最长,累计为55 d。2015?2018年,咸潮入侵次数和入侵持续时间均明显减少,2018年没有监测到咸潮入侵过程。(2) 1?4月,长江口处于季节性低海平面期,且同期径流量少,但是受东亚季风影响,持续的增水过程使得增减水?径流量综合影响指数明显偏高,其中1月、2月、3月的影响指数分别为1.5、1.9和1.6,该时段长江口的咸潮入侵过程主要受增减水的影响。5?7月,长江口径流量明显增加,海平面?径流量综合影响指数均小于0,径流的作用强于海水上溯。8月,长江口径流量开始下降,虽然季节海平面较高,但是长江口呈现明显的减水过程,海平面?径流量和增减水?径流量的综合影响指数分别为0.1和?1.6,基本不会发生咸潮入侵。9月,长江口处于季节高海平面期,并且以增水为主,海平面?径流量和增减水?径流量的综合影响指数较大,分别为1.2和1.0,易发生咸潮入侵。10月、11月长江口海平面?径流量的综合影响指数分别为1.5和0.8,径流影响弱于海水上溯,易发生咸潮入侵。(3) 2009?2018年发生的48次咸潮入侵过程有2/3恰逢天文大潮。在某些年份长江口沿海基础海平面偏高,若持续增水恰逢天文大潮,则加剧咸潮入侵的影响程度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号