首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study investigated the eastern Pacific Intertropical Convergence Zone (ITCZ) as an atmospheric forcing to the ocean by using various observed and reanalysis data sets over 29 years. Climatologically, a zonal band of positive wind stress curl (WSC) with a 10° meridional width was exhibited along the ITCZ. A southward shift of the positive WSC band during the El Niño phase induced a negative (positive) WSC anomaly along the northern (southern) portion of the ITCZ, and vice versa during the La Niña phase. This meridional dipole accounted for more than 25 % of interannual variances of the WSC anomalies (WSCAs), based on analysis of the period 1993–2008. The negative (positive) WSCA in the northern portion of the ITCZ during the El Niño (La Niña) phase was collocated with a positive (negative) sea surface height anomaly (SSHA) that propagated westward as a Rossby wave all the way to the western North Pacific. This finding indicates that this off-equatorial Rossby wave is induced by the WSCA around the ITCZ. Our analysis of a 1.5-layer reduced gravity model revealed that the Rossby waves are mostly explained by wind stress forcing, rather than by reflection of an equatorial Kelvin wave on the eastern coastal boundary. The off-equatorial Rossby wave had the same SSHA polarity as the equatorial Kelvin wave, and generation of a phase-preserving Rossby wave without the Kelvin wave reflection was explained by meridional movement of the ITCZ. Thus, the ITCZ acts as an atmospheric bridge that connects the equatorial and off-equatorial oceanic waves.  相似文献   

2.
Changes in the sea surface heights (SSH) and geostrophic transports in the NE Pacific are examined during the 1997–1998 El Niño using altimeter data, sea level pressure (SLP) fields, proxy winds and satellite sea surface temperature (SST). Most of the signal occurs along the boundaries of the basin from Panama to the Alaska Peninsula. Changes in the SSH and alongshore transports along the boundaries are caused both by propagation of signals from the south (stronger between the equator and the Gulf of California) and by local and basin-scale winds (stronger between the Pacific Northwest and the Alaska Peninsula). Two periods of high SSH occur at the equator, May–July 1997 and October 1997–January 1998. The first coastal SSH signal moved quickly polewards to approximately 24°N in early June, then stalled and moved farther north during transient events in July–September. Large-scale wind forcing combined with the equatorial signals during the second period of high equatorial SSH (Fall 1997) to move the high SSH and poleward transports quickly around the Alaska Gyre. A connection between the boundary currents and the interior North Pacific developed as part of the large-scale response to the basin-scale winds, after changes in the boundaries. Decreases in anomalies of SSH and poleward transports began in January 1998 south of 40°N and in February 1998 farther north.  相似文献   

3.
The Hawaiian Lee Countercurrent (HLCC) is an eastward surface current flowing against the broad westward flow of the North Pacific subtropical circulation. Analyses of satellite altimeter data over 16 years revealed that the HLCC is characterized by strong interannual variations. The strength and meridional location of the HLCC axis varied significantly year by year. The eastward velocity of the HLCC was higher when the location of the axis was stable. Mechanisms for the interannual variations were explored by analyses of the altimeter data and results from a simple baroclinic model. The interannual variations in the strength of the HLCC did not correlate with those of the wind stress curl (WSC) dipole formed on the leeward side of the Hawaii Islands, although the WSC dipole has been recognized as the generation mechanism of the HLCC. Meridional gradients of the sea surface height anomaly (SSHA) across the HLCC generated by baroclinic Rossby waves propagating westward from the east of the Hawaii Islands were suggested as a possible mechanism for the interannual variations in the HLCC. The spatial patterns in the observed SSHAs were reproduced by a linear baroclinic Rossby wave model forced by wind fields from a numerical weather prediction model. Further analysis of the wind data suggested that positive and negative anomalies of WSC associated with changes in the trade winds in the area east of the Hawaii Islands are a major forcing for generating SSHAs that lead to the HLCC variations with a time lag of about 1 year.  相似文献   

4.
有界赤道大洋波包解及其年际年代际变率   总被引:1,自引:0,他引:1  
Linearized shallow water perturbation equations with approximation in an equatorial β plane are used to obtain the analytical solution of wave packet anomalies in the upper bounded equatorial ocean. The main results are as follows. The wave packet is a superposition of eastward travelling Kelvin waves and westward travelling Rossby waves with the slowest speed, and satisfies the boundary conditions of eastern and western coasts, respectively.The decay coefficient of this solution to the north and south sides of the equator is inversely proportional only to the phase velocity of Kelvin waves in the upper water. The oscillation frequency of the wave packet, which is also the natural frequency of the ocean, is proportional to its mode number and the phase velocity of Kelvin waves and is inversely proportional to the length of the equatorial ocean in the east-west direction. The flow anomalies of the wave packet of Mode 1 most of the time appear as zonal flows with the same direction. They reach the maximum at the center of the equatorial ocean and decay rapidly away from the equator, manifested as equatorially trapped waves. The flow anomalies of the wave packet of Mode 2 appear as the zonal flows with the same direction most of the time in half of the ocean, and are always 0 at the center of the entire ocean which indicates stagnation, while decaying away from the equator with the same speed as that of Mode 1. The spatial structure and oscillation period of the wave packet solution of Mode 1 and Mode 2 are consistent with the changing periods of the surface spatial field and time coefficient of the first and second modes of complex empirical orthogonal function(EOF)analysis of flow anomalies in the actual equatorial ocean. This indicates that the solution does exist in the real ocean, and that El Ni?o-Southern Oscillation(ENSO) and Indian Ocean dipole(IOD) are both related to Mode 2.After considering the Indonesian throughflow, we can obtain the length of bounded equatorial ocean by taking the sum of that of the tropical Indian Ocean and the tropical Pacific Ocean, thus this wave packet can also explain the decadal variability(about 20 a) of the equatorial Pacific and Indian Oceans.  相似文献   

5.
Time-longitude diagrams of monthly anomalies of TOPEX/Poseidon sea surface height (SSH), Levitus steric height, COADS wind stress curl, as well as meridional surface wind averaged over the northern South China Sea (SCS) from 18° to 22°N, exhibit a coherent westward phase propagation, with a westward propagation speed of about 5 cm s−1. The consistency between oceanic and atmospheric variables indicates that there is a forced Rossby wave in the northern SCS. The horizontal patterns of monthly SSH anomalies from observations and model sensitivity experiments show that the forced Rossby wave, originating to the northwest off Luzon Island, actually propagates west-northwestward towards the Guangdong coast because of zonal migration of the meridional surface wind. The winter Luzon Cold Eddy (LCE), which has been found from field observations, can be identified as a forced Rossby wave with a negative SSH anomaly in winter. It corresponds to strong upwelling and a negative temperature anomaly. Sensitivity experiments show that the wind forcing controls the generation of the LCE, while the Kuroshio is of minor importance.  相似文献   

6.
The sea surface height anomaly in the Pacific equatorial area was separated into equatorial modes using satellite altimeter data. The power-spectral density (PSD) was obtained for the east-west wavenumber and frequency for each separated mode. The PSD distribution was compared with the theoretical dispersion curve for the equatorial modes derived by Matsuno (1966). The first Rossby modes have a high-density distribution that is slightly lower than the theoretical dispersion curve, but the Kelvin mode and the higher Rossby modes have high-density distribution that almost matches each dispersion curve. Results of analyses of satellite observational data show that wave motion near the equator mainly shows characteristics of equatorial waves, especially for a intraseasonal time scale.  相似文献   

7.
分析了1979—2018年两类厄尔尼诺事件期间月平均热带太平洋海面温度(sea surface temperature,SST)异常、对流降水异常、大气环流异常等特征,发现东部型、中部型厄尔尼诺期间海洋及大气加热场并不是赤道对称,赤道以南热源强度大于赤道以北。大气对热源的响应表现在:1)低层在大气热源西侧出现南、北半球热带相对应的气旋环流异常,但是赤道以南气旋的涡度大于赤道以北,且两类厄尔尼诺事件期间涡度中心的位置不同;到高层赤道中东太平洋呈现赤道对称的反气旋环流控制。2)低层热源的西侧出现西风异常,东侧为东风异常,西风异常的强度与范围明显大于东风异常,且东部型西风异常的强度大于中部型;而到高层,纬向风的风向和低层正好相反。3)低层东部型、中部型厄尔尼诺上升运动异常分别位于赤道中东太平洋和赤道中太平洋,下沉运动出现在热源东西两侧及赤道两侧5°N以北、5°S以南的热带地区;东部型到中层上升运动异常强度达到最大,而中部型到高层上升运动异常强度达到最大。4)低层东部型、中部型厄尔尼诺期间位势高度在中东太平洋为负异常,西太平洋为正异常;到高层,整个赤道中东太平洋地区均为位势高度正异常,并且在赤道两侧分别出现位势高度正异常中心,与反气旋环流涡度中心及下沉运动异常中心相对应。5)除西风异常范围大于东风异常,其他特征与赤道非对称热源GILL响应的理论计算模态基本一致。  相似文献   

8.
Seasonal variation in the tropical Pacific is studied by use of climatological monthly mean data of upper layer thickness of a linear reduced-gravity model with realistic basin geometry. Complex empirical orthogonal function (CEOF) analysis is applied to the data on a closed circuit which consists of the equator, eastern boundary, 7° latitude, and western boundary. The first and second CEOF represent the annual and semiannual variations, respectively. At the equator, absolute maximum anomalies associated with the first CEOF can be found near 160°W in spring and fall. Westward propagation of the annual variation is remarkable west of 130°W. However, similar westward propagation cannot be detected in either the eastern or western part of the equator. Maximum anomalies at 7° and the equator can be found in similar longitude and time. These maxima at both latitudes originate from the annual variation of Ekman pumping associated with the meridional movement of wind fields. We also decomposed the model results into Kelvin and Rossby modes. The Kelvin mode is characterized by seminnual variation, while first and third-mode Rossby waves have annual variations. In the present results, first and third-mode Rossby waves do not appear to be a trigger for Kelvin waves.  相似文献   

9.
厄尔尼诺/拉尼娜信号循环回路及其传播特性研究   总被引:4,自引:0,他引:4  
基于1992~2001年卫星高度计资料分析了海面高度距平在厄尔尼诺/拉尼娜(El Niño/La Niña)现象中的演变过程,发现:(1)在El Niño过程中,海面高度正距平信号从西太平洋沿赤道海域向东传播至东海岸,然后分成南北两支,北支在10°N附近从东太平洋传回西太平洋的信号最强,到达西太沿岸海域再传回赤道,表明El Niño信号传播在北半球存在一明显循环回路.赤道以南循环圈不及赤道以北环路清晰.东太平洋的季节变化信号主要通过6°N,10°N和8°S附近的3个通道向西太平洋传播.La Niña信号主要从5°N和7°S向西传播;(2)在大洋海盆尺度快速传播信号背景下,存在波长700~800km的慢速传播信号,两类信号将信息在太平洋内传送.传播速度分析表明,慢速传播信号的相速与Rossby波相速相符,而快速传播信号应该是海洋对大气变异的响应.  相似文献   

10.
The mechanism governing the mean state and the seasonal variation of the transports through the straits of the Japan Sea is studied using a newly presented, simple analytical model and a basin scale general circulation model (GCM). The GCM reproduces the transports through the straits of the Japan Sea realistically owing to its fine horizontal resolution of about 20 km and realistic topography. A series of experiments conducted by changing surface forcing shows that the annual mean wind-driven circulation in the North Pacific Ocean is most responsible for the formation of the mean transports. It is also found that the seasonal variation of the alongshore component of monsoonal wind stress over the North Pacific basin, especially that over the Okhotsk Sea, is responsible for the seasonal variation of the transports. The simple analytical model can explain these simulated features very well. The physical concept of this model is based on the formation of the around-island circulation through the adjustment of coastally trapped waves and Rossby waves and geostrophic control at the narrow straits. It solves the sea surface heights (SSHs) at the edge of each strait and the transport through it. The value of the line integral of the SSH along the island is determined by the baroclinic Rossby waves approaching the island from the east and the alongshore wind stress around the island. The basin scale seasonal variation of SSH along the coast induced by the variation of the alongshore monsoonal wind stress can also be incorporated into this model by giving the SSH anomaly at the northeastern point of the Soya Strait. Thus, it is suggested that both the mean state and the seasonal variation are caused mainly by wind stress forcing. Minor modification by the seasonal heat flux forcing brings the amplitude and the phase of the seasonal variation closer to the observed values.  相似文献   

11.
We conducted 1-year-long mooring observations four times below 2000?m, slightly south of the equator (2°39?? to 4°35??S) at 162°E in the Melanesian Basin in order to detect the southward deep western boundary return current crossing the equator. Contrary to our initial expectation of the deep flow scheme in the equatorial western boundary region, the observed results indicated a fairly complicated flow configuration. We analyzed the results with the help of a high-resolution model simulation. The ensemble average of the horizontal flow at each level near the deep western boundary indicates a significant westward flow at 2000 and 2250?m, with an insignificant southward component at 2500 and 2750?m. The annual mean meridional transports are very small (>1?Sv) and insignificant, with an ensemble-averaged value of 0.3?Sv (southward) ±0.4?Sv at most. Combining this with high-resolution model results, it is deduced that the southward transport of the deep western boundary current (DWBC) leaving the equator may be smaller than those obtained by low-resolution models, because of trapping of its fairly large fraction in the equatorial zone. Annual-scale flow patterns are classified into several categories, mainly based on the meridional-flow dominating or the zonal-flow dominating pattern. A case of the meridional-flow dominating patterns may possibly capture an annual-scale variability of DWBC, because its meridional transport variation, though somewhat weak, is consistent with that simulated. The zonal-flow dominating regime includes two types: long-lasting, almost steady westward flows and long-term zonal flow oscillations. The former seems to comprise well-known zonally elongated and meridionally narrow structures of the zonal flow beneath the thermocline in the equatorial region. The ensemble-averaged flow mentioned above is dominated by this type at the upper two levels 2000 and 2250?m, with total westward transport of 1.6?±?0.7?Sv. The latter type seems to be a manifestation of the vertically propagating equatorial annual Rossby waves.  相似文献   

12.
Rossby波对菲律宾以东太平洋海平面年际变化的影响研究   总被引:1,自引:0,他引:1  
采用能够反映斜压大洋对大尺度海表面风应力旋度响应的一层半约化重力模式研究菲律宾以东太平洋海区Rossby波与海平面年际变化的关系.模式分别利用海区东侧验潮站和卫星高度计海表面数据作初始东边界,对Rossby波西传路径上的风应力旋度进行积分,得到西侧海平面信号.结果发现,模拟的海平面信号跟验潮站和卫星高度计资料相关性很高,并能模拟出海平面年际变化特征和低(高)异常信号由东侧产生并向西传播的过程,反映了一阶斜压Rossby波对菲律宾以东太平洋海区年际海平面变化的动力机制.  相似文献   

13.
Several westward propagation properties of the Indian monsoon depression were neglected by previous studies. They include:(1) the slower propagation speed of the depression depicted by a quasi‐geostrophic model, (2) the initiation of the asymmetric secondary circulation with respect to the depression center, and (3) the absence of the depression perturbation in the upper troposphere. Some further insights into these neglected propagation properties of the depression are obtained from the streamfunction budget analysis with the ECMWF (European Centre for Medium Range Weather Forecasts) reanalysis data. (1) The inclusion of relative vorticity stretching, which is neglected in a quasi‐geostrophic model, increases the depression's westward propagation speed. (2) Within the large‐scale environment of the summer monsoon, the coupling of the east‐west differentiation of the meridional absolute vorticity advection with the CISK mechanism is conducive to the initiation and development of the asymmetric secondary circulation associated with the depression. (3) The Tibetan high is formed by summertime global‐scale stationary waves which are maintained by a Sverdrup balance. The positive streamfunction tendency induced by the upper‐tropospheric vortex stretching over the monsoon region suppresses the development of the monsoon depression in the upper troposphere.  相似文献   

14.
Observations suggest that the large-scale tropical atmospheric circulations, associated with intraseasonal variabilties, are dominated more by the vorticity than the divergence. The present paper examines the consistency of the above observations with linear equatorial wave theories. Both free and forced linear waves are considered. The free equatorial waves are classified into two major categories: (1) the Rossby waves, strongly dominated by vorticity and (2) the inertial-gravity waves, relatively dominated by the divergence. Both the Kelvin and the mixed-Rossby gravity waves are intermediate of these two major categories.
In the forced case, the wave response is predominantly inertial-gravity wave-like for periods less than 5 d, thus predominantly divergent. On the other hand, for forcing with the longer periods, the wave response closely following free Rossby-wave structures, asymptotically approaches to a non-divergent state. The asymptotic tendency for non-divergence is found to be much stronger than observed. The difference is so stark that, notably, the tropical intraseasonal variability cannot be consistent with linear equatorial waves theories.  相似文献   

15.
Changes in the sea surface heights (SSH) and geostrophic currents along the eastern boundaries of the Pacific (North, Central and South America) are examined during the 1997–1998 El Niño using altimeter data and proxy winds. These show that ‘symmetric’ SSH signals left the equator and propagated into both Hemispheres in two episodes, with primary periods of high equatorial SSH during May–July and October–December 1997. These are the ‘distant signals’ from the mid-latitude perspective. As the signals spread poleward in each Hemisphere, their loss of symmetry demonstrates the degree to which they were altered by topographic features, local winds, and/or local currents. The first four EOFs are calculated for 2-D SSH fields in 10° wide strips along the eastern margins (60°N–60°S) and extending out along the equator from the coast to 110°W. These account for approximately 40% of the overall variability and represent the main features of the seasonal cycles and El Niño interannual variability. Snapshots of the 2-D SSH fields depict the structure of the El Niño signal at different phases of its evolution.  相似文献   

16.
Based on the TOGA-TAO buoy chain observed data in the equatorial Pacific and the assimilation analysis results from SODA(simple ocean data assimilation analysis), the role of the meridional cells in the subsurface of the tropical Pacific was discussed. It was found that, the seasonal varying direction of EUC (the quatorial Undercurrent)in the Peacific is westwards beginning from the eastern equatorial Pacific in the boreal spring. The meridional cell south of the equator plays important role on this seasonal change of EUC.On the other hand, although the varying direction is westwards,the seasonal variation of temperature in the same region gets its minimum values in the boreal autumn beginning from the eastern equatorial Pacific.The meridional cell north of the equator is most responsible for the seasonal temperature variation in the eastern equatorial Pacific while the meridional cell south of the equator mainly controls the seasonal temperature change in the central Pacific. It is probably true that the asymmetry by the equator is an important factor influencing the seasonal cycle of EUC and temperature in the tropical Pacific.  相似文献   

17.
Sea Surface Height (SSH) variability in the Indian Ocean during 1993-1995 is studied using TOPEX/POSEIDON (T/P) altimetry data. Strong interannual variability is seen in the surface circulation of the western Arabian Sea, especially in the Somali eddy structure. During the Southwest (SW) monsoon, a weak monsoon year is characterized by a single eddy system off Somalia, a strong or normal monsoon year by several energetic eddies. The Laccadive High (LH) and Laccadive Low (LL) systems off southwest India are observed in the altimetric SSH record. The variability of the East India Coastal Current (EICC), the western boundary current in the Bay of Bengal, is also detected. Evidence is found for the propagation of Kelvin and Rossby waves across the northern Indian Ocean; these are examined in the context of energy transfer to the western boundary currents, and associated eddies. A simple wind-driven isopycnal model having three active layers is implemented to simulate the seasonal changes of surface and subsurface circulation in the North Indian Ocean and to examine the response to different wind forcing. The wind forcing is derived from the ERS-1 scatterometer wind stress for the same period as the T/P altimeter data, enabling the model response in different (active/weak) monsoon conditions to be tested. The model output is derived in 10-day snapshots to match the time period of the T/P altimeter cycles. Complex Principal Component Analysis (CPCA) is applied to both altimetric and model SSH data. This confirms that long Rossby waves are excited by the remotely forced Kelvin waves off the southwest coast of India and contribute substantially to the variability of the seasonal circulation in the Arabian Sea.  相似文献   

18.
The circulation of the eastern tropical Pacific: A review   总被引:5,自引:9,他引:5  
During the 1950s and 1960s, an extensive field study and interpretive effort was made by researchers, primarily at the Scripps Institution of Oceanography, to sample and understand the physical oceanography of the eastern tropical Pacific. That work was inspired by the valuable fisheries of the region, the recent discovery of the equatorial undercurrent, and the growing realization of the importance of the El Niño phenomenon. Here we review what was learned in that effort, and integrate those findings with work published since then as well as additional diagnoses based on modern data sets.Unlike the central Pacific, where the winds are nearly zonal and the ocean properties and circulation are nearly independent of longitude, the eastern tropical Pacific is distinguished by wind forcing that is strongly influenced by the topography of the American continent. Its circulation is characterized by short zonal scales, permanent eddies and significant off-equatorial upwelling. Notably, the Costa Rica Dome and a thermocline bowl to its northwest are due to winds blowing through gaps in the Central American cordillera, which imprint their signatures on the ocean through linear Sverdrup dynamics. Strong annual modulation of the gap winds and the meridional oscillation of the Intertropical Convergence Zone generates a Rossby wave, superimposed on the direct forcing, that results in a southwestward-propagating annual thermocline signal accounting for major features of observed thermocline depth variations, including that of the Costa Rica Dome, the Tehuantepec bowl, and the ridge–trough system of the North Equatorial Countercurrent (NECC). Interannual variability of sea surface temperature (SST) and altimetric sea surface height signals suggests that the strengthening of the NECC observed in the central Pacific during El Niño events continues all the way to the coast, warming SST (by zonal advection) in a wider meridional band than the equatorially trapped thermocline anomalies, and pumping equatorial water poleward along the coast.The South Equatorial Current originates as a combination of equatorial upwelling, mixing and advection from the NECC, and Peru coastal upwelling, but its sources and their variability remain unresolved. Similarly, while much of the Equatorial Undercurrent flows southeast into the Peru Undercurrent and supplies the coastal upwelling, a quantitative assessment is lacking. We are still unable to put together the eastern interconnections among the long zonal currents of the central Pacific.  相似文献   

19.
Sea Surface Height (SSH) variability in the Indian Ocean during 1993-1995 is studied using TOPEX/POSEIDON (T/P) altimetry data. Strong interannual variability is seen in the surface circulation of the western Arabian Sea, especially in the Somali eddy structure. During the Southwest (SW) monsoon, a weak monsoon year is characterized by a single eddy system off Somalia, a strong or normal monsoon year by several energetic eddies. The Laccadive High (LH) and Laccadive Low (LL) systems off southwest India are observed in the altimetric SSH record. The variability of the East India Coastal Current (EICC), the western boundary current in the Bay of Bengal, is also detected. Evidence is found for the propagation of Kelvin and Rossby waves across the northern Indian Ocean; these are examined in the context of energy transfer to the western boundary currents, and associated eddies. A simple wind-driven isopycnal model having three active layers is implemented to simulate the seasonal changes of surface and subsurface circulation in the North Indian Ocean and to examine the response to different wind forcing. The wind forcing is derived from the ERS-1 scatterometer wind stress for the same period as the T/P altimeter data, enabling the model response in different (active/weak) monsoon conditions to be tested. The model output is derived in 10-day snapshots to match the time period of the T/P altimeter cycles. Complex Principal Component Analysis (CPCA) is applied to both altimetric and model SSH data. This confirms that long Rossby waves are excited by the remotely forced Kelvin waves off the southwest coast of India and contribute substantially to the variability of the seasonal circulation in the Arabian Sea.  相似文献   

20.
This study compares the seasonal and interannual-to-decadal variability in the strength and position of the Kuroshio Extension front(KEF) using high-resolution satellite-derived sea surface temperature(SST) and sea surface height(SSH) data. Results show that the KEF strength has an obvious seasonal variation that is similar at different longitudes, with a stronger(weaker) KEF during the cold(warm) season. However, the seasonal variation in the KEF position is relatively weak and varies with longitude. In contrast, the low-frequency variation of the KEF position is more distinct than that of the KEF strength even though they are well correlated. On both seasonal and interannual-to-decadal time scales, the western part of the KEF(142°–144°E) has the greatest variability in strength, while the eastern part of the KEF(149°–155°E) has the greatest variability in position. In addition, the relationships between wind-forced Rossby waves and the low-frequency variability in the KEF strength and position are also discussed by using the statistical analysis methods and a wind-driven hindcast model. A positive(negative) North Pacific Oscillation(NPO)-like atmospheric forcing generates positive(negative) SSH anomalies over the central North Pacific. These oceanic signals then propagate westward as Rossby waves, reaching the KE region about three years later, favoring a strengthened(weakened) and northward(southward)-moving KEF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号