首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Remote Sensing and Geographic Information System has become one of the leading tools in the field of hydrogeological science, which helps in assessing, monitoring and conserving groundwater resources. It allows manipulation and analysis of individual layer of spatial data. It is used for analysing and modelling the interrelationship between the layers. This paper mainly deals with the integrated approach of Remote Sensing and geographical information system (GIS) to delineate groundwater potential zones in hard rock terrain. The remotely sensed data at the scale of 1:50,000 and topographical information from available maps, have been used for the preparation of ground water prospective map by integrating geology, geomorphology, slope, drainage-density and lineaments map of the study area. Further, the data on yield of aquifer, as observed from existing bore wells in the area, has been used to validate the groundwater potential map. The final result depicts the favourable prospective zones in the study area and can be helpful in better planning and management of groundwater resources especially in hard rock terrains.  相似文献   

2.
高光谱遥感水文地质应用新进展   总被引:1,自引:0,他引:1       下载免费PDF全文
高光谱遥感是一种利用成像光谱仪同时获取地物目标辐射、光谱和空间等多重信息遥感的技术,水文地质是高光谱遥感重要的应用领域之一,通过高光谱遥感图像分析,能够提取大区域包气带及含水系统的水文地质信息,可为水文地质环境的识别及实时监测、地下水资源高效管理、地下水数值模型构建等提供科学数据。通过调研凝练了高光谱遥感基本原理方法及其在水文地质方面的应用研究,重点总结了地下水环境污染和水文信息反演方面的高光谱遥感应用研究进展,分析了高光谱遥感水文地质应用所面临的挑战,并展望了高光谱遥感水文地质应用研究的发展趋势,主要包括:通过土壤和植被的光谱信息实现对研究区包气带土壤重金属污染状况的大面积、短周期连续快速监测;在高光谱图像中提取构造、地层岩性等地质和水文地质特征,以环境指示因子(如植被)为有效补充,获取饱和带地下水环境信息;通过高光谱图像识别植被类型、计算植被覆盖度、分析叶片反射光谱特征并建立模型反演土壤含水量和地下水位,为研究和保护缺水地区生态环境提供数据支撑。  相似文献   

3.
Water is an essential natural resource without which life wouldn’t exist. The study aims to identify groundwater potential areas in Vepapanthattai taluk of Perambalur district, Tamil Nadu, India, using analytic hierarchy process (AHP) model. Remote sensing and magnetic parameters have been used to determine the evaluation indicators for groundwater occurrence under the ArcGIS environment. Groundwater occurrence is linked to structural porosity and permeability over the predominantly hard rock terrain, making magnetic data more relevant for locating groundwater potential zones in the research area. NE-SW and NW-SE trending magnetic breaks derived from reduction to pole map are found to be more significant for groundwater exploration. The lineaments rose diagram indicates the general trend of the fracture to be in the NE-SW direction. Assigned normalised criteria weights acquired using the AHP model was used to reclassify the thematic layers. As a result, the taluk’s low, moderate, and high potential zones cover 25.08%, 25.68% and 49.24% of the study area, respectively. The high potential zones exhibit characteristics favourable for groundwater infiltration and storage, with factors as gentle slope of <3°, high lineament densities, magnetic breaks, magnetic low zones as indicative of dykes and cracks, lithology as colluvial deposits and land surface with dense vegetation. The depth of the fracture zones was estimated using power spectrum and Euler Deconvolution method. The groundwater potential mapping results were validated using groundwater level data measured from the wells, which indicated that the groundwater potential zoning results are consistent with the data derived from the real world.  相似文献   

4.
安国英 《现代地质》2013,27(6):1445
以ETM+遥感数据为主要遥感信息源,应用遥感技术对喀喇昆仑山温泉地区进行1∶25万图幅的水文地质调查。根据地质体的影像特征并与前人地质填图结果对比,建立了遥感解译标志。重点对新生代地层及与水文地质有关的要素等进行解译,编制1∶25万新生代遥感解译图。根据遥感图像对研究区的第四纪沉积物的成因类型和分布范围、地貌特征及河流、湖泊、泉群、地下水溢出带、湿地等水文地质特征进行了研究。基于区内地下水形成环境的差异,地下水资源体系可以分为南部河谷冲积层地下水系统和北部内流湖盆地下水系统。总结地下水的分布特征认为,南部冲积层储水条件较为优越,且补给充分,其地下水与地表水构成一个统一的水资源系统;北部内流湖盆地区多为湖相沉积,受气象因素制约,山前巨大的冲洪积扇存在丰富的地下水外,地下水资源总体贫乏。遥感水文地质调查表明,遥感技术在高原区域填图与水文地质调查中具有高效率低成本的优点,可以在青藏高原水文地质调查中发挥重要作用。  相似文献   

5.
A hydrogeological study was completed within a sub-catchment of the Zerka River drainage basin, in western Jordan. The system is characterized by anticlinal bending with an axis trending SSW–NNE and plunging a few degrees in the SSW direction. The anticlinal structure diverts groundwater flow towards the SSW while the strike-slipe faults cause the groundwater to diverge where the fault is perpendicular to the groundwater flow lines, and to converge where the fault is parallel to the groundwater flow lines. A direct relationship was found between the location of springs and the type of groundwater flow with regard to the amount of discharge wherein large spring discharges are located in zones of converging groundwater flow lines. In areas where faults are not abundant, the groundwater retention time in the aquifers is long and a zonation of the electrical conductivity was detected due to mineral dissolution. By controlling groundwater flow, the anticlinal setting produces three genetic groups of groundwater flow systems: (1) alkaline–earth alkaline water which is predominately a bicarbonate-type composition, (2) alkaline–earth alkaline water which is predominately bicarbonate–sulfate, and (3) alkaline–earth alkaline water with a high alkaline component.  相似文献   

6.
Hydrogeologically, faults may impede, conduit, exert no influence, or may play a combination of these roles on groundwater flow. The object of this paper is to study the hydrogeological role of the Tabarteh fault, which is located on the border of Zagros and Central Iran tectonic zones in an alluvial aquifer. The recorded data of water table levels, chemical parameters, and discharge rate of wells, in addition to geological maps and geophysical results, were collected and evaluated. The outcrop of travertine in limited areas and the emergence of a few small springs within the alluvium show a barrier role of the fault in the groundwater flow. The spatial analysis of chemical components, head time series, and groundwater flow direction assessment demonstrated that the fault acts as both a barrier and a non-barrier in different sections. The multivariate statistical methods of cluster and discriminant analyses also confirm the dual role of the fault.  相似文献   

7.
岛屿是我国领土的重要组成部分,对国家安全和国防军事意义非凡。岛屿的地下水资源尤为珍贵,地下水流场模拟是研究地下水分布规律的重要手段。水文地质条件复杂、可利用的观测井较少等原因,造成了基岩岛屿水文地质模型概化精度不高、初始条件难以获取等问题。为克服基岩岛屿地下水流场模拟的诸多困难,将珠海外伶仃岛作为研究区,利用数字高程模型数据开展地质地貌建模; 利用探地雷达法、直流电法与地质分析对岛屿进行探测,获取了地层数据; 采用地下水遥感评估法,利用实测井位数据,确定了地下水的初始水位,进而对基岩岛屿地下水流场进行建模; 最终,通过对外伶仃岛地下水流场的数值模拟得出地下水模拟流场图。岛上多个测点的探测水位值与模拟水位相关性较好,其拟合优度R2为0.872 2。由此可见,综合遥感、物探、水文地质手段等技术方法获取的数据,采用地下水模拟软件或程序实现基岩岛屿地下水流场的数值模拟,是基岩岛屿地下水资源研究的一个有效方法。  相似文献   

8.
Complex flow circulation patterns are likely to be present in fault‐controlled groundwater flow systems, such as carbonate aquifers. Nevertheless, not much information is available for faults in carbonates, and their hydrogeological behaviour is often neglected in conceptual and numerical models. The understanding of this aspect of subsurface fluid flow has been improved in a carbonate aquifer, where hydrogeological investigations at site scale demonstrated the existence of fault zones that act as barriers. The hydraulic conductivity of the fault core is as low as that of siliciclastic rocks that represent the regional aquitard of the carbonate aquifer. Despite the lower permeability, the fault zones allow a significant groundwater flowthrough and a good interdependence of piezometric heads upgradient and downgradient of the faults. Because of this discontinuous heterogeneity, the aquifer looks like a basins‐in‐series system, where seasonal springs can be detected along some fault zones, as a function of groundwater level fluctuations.  相似文献   

9.
http://www.sciencedirect.com/science/article/pii/S1674987111001137   总被引:12,自引:1,他引:11  
Integration of remote sensing data and the geographical information system(GIS) for the exploration of groundwater resources has become a breakthrough in the field of groundwater research, which assists in assessing,monitoring,and conserving groundwater resources.In the present paper, various groundwater potential zones for the assessment of groundwater availability in Theni district have been delineated using remote sensing and GIS techniques.Survey of India toposheets and IRS-1C satellite imageries are used to prepare various thematic layers viz.lithology,slope,land-use,lineament, drainage,soil,and rainfall were transformed to raster data using feature to raster converter tool in ArcGIS.The raster maps of these factors are allocated a fixed score and weight computed from multi influencing factor(MIF) technique.Moreover,each weighted thematic layer is statistically computed to get the groundwater potential zones.The groundwater potential zones thus obtained were divided into four categories,viz.,very poor,poor,good,and very good zones.The result depicts the groundwater potential zones in the study area and found to be helpful in better planning and management of groundwater resources.  相似文献   

10.
Ismailia Canal is the principle source of drinking water supply to Suez Canal and Sinai governorates. However, Ismailia Canal is endangered from unwise activities in the surrounding environment. Drinking water resources protection can be implemented using land-use monitoring system or through land-use controls based on hydrogeologic mapping to study the impacts of development on water quality. Our approach is to protect the direct and indirect catchment areas for surface water supply, especially the sensitive areas, those that are more vulnerable to contamination than other areas. Remote sensing and geographic information system techniques are applied to construct and integrate the hydrogeological data, inventory for potential sources of contamination and mapping the sensitive areas in order to construct the a protected buffer zone for Ismailia Canal, and to constrain the development activities in all the surrounding areas of surface water supply. The sensitive areas are delineated, where extra protection is required, based on soils properties, geology, and specific hydrogeological criteria. Industrial areas, drains, and septic tanks in the surrounding villages are the common potential sources of contamination. The hydrologic relation between Ismailia Canal and groundwater has great variations. Comprehensive plan for water protection were composed. It includes maintaining three natural protection zones of at least 300-m width along the main course of the Canal and delineating vulnerable zones depending on the aerial extension of the sensitive areas within 10 km on both sides of the Canal. Specific protection measures are recommended over the sensitive areas. The natural ecosystems of swamps around Ismailia Canal should be conserved and the processes of continuous burial prevented.  相似文献   

11.
Sustainable management of groundwater resources has now become an obligation,especially in arid and semi-arid regions given the socio-economic importance of this resource.The optimization in zoning for groundwater exploitation helps in planning and managing groundwater supply works such as boreholes and wells in the catchment.The objective of this study is to use remote sensing and GIS-based Analytical Hierarchy Process(AHP)techniques to evaluate the groundwater potential of Wadi Saida Watershed.Spatial analysis such as geostatistics was also used to validate results and ensure more accuracy.Through the GIS tools and remote sensing technique,earth observation data were converted into thematic layers such as lineament density,geology,drainage density,slope,land use and rainfall,which were combined to delineate groundwater potential zones.Based on their respective impact on groundwater potential,the AHP approach was adopted to assign weights on multi-influencing factors.These results will enable decision-makers to optimize hydrogeological exploration in large-scale catchment areas and map areas.According to the results,the southern part of the Wadi Saida Watershed is characterized as a higher groundwater potential area,where 32%of the total surface area falls in the excellent and good class of groundwater potential.The validation process revealed a 71%agreement between the estimated and actual yield of the existing boreholes in the study area.  相似文献   

12.
Demand for groundwater for drinking, agricultural and industrial purposes has increased due to uncertainty in the surface water supply. Agriculture is the main occupation of the rural people in Guntur district, Andhra Pradesh, India. Development of groundwater in the district is very less, indicating a lot of scope for further development of groundwater resources. However, assessment of groundwater conditions, particularly in a crystalline terrain, is a complex task because of variations in weathering and fracturing zones from place to place. Systematic studies for evaluation of groundwater potential zones have been carried out in a crystalline terrain of the district. Information on soils, geological formations and groundwater conditions is collected during the hydrogeological survey. Topographical and drainage conditions are derived from the Survey of India topographical maps. Geomorphological units and associated landform features inferred and delineated from the Indian remote sensing satellite imagery (IRS ID LISS III FCC) are moderately buried pediplain (BPM), shallow buried pediplain (BPS), valley fills (VF), structural hill (SH), residual hills (RH), lineaments and land use/land cover. A groundwater potential index (GPI) is computed for relative evaluation of groundwater potential zones in the study area by integrating all the related factors of occurrence and movement of groundwater resources. Accordingly, the landforms, BPM, BPS, VF, SH and RH, of the area are categorized as very good groundwater potential zone, good to moderate groundwater potential zone, moderate to poor groundwater potential zone, poor to very poor groundwater potential zone and very poor groundwater potential zone, respectively, for development and utilization of both groundwater and surface water resources for eliminating water scarcity. This study could help to improve the agrarian economy for better living conditions of the rural people. Taking the total weight-score of the GPI into account, a generalized classification of groundwater potential zones is evaluated for a quick assessment of the occurrence of groundwater resources on regional scale.  相似文献   

13.
Zarif  Fardous  Slater  Lee  Mabrouk  Mohamed  Youssef  Ahmed  Al-Temamy  Ayman  Mousa  Salah  Farag  Karam  Robinson  Judy 《Hydrogeology Journal》2018,26(4):1169-1185

Understanding and developing groundwater resources in arid regions such as El Salloum basin, along the northwestern coast of Egypt, remains a challenging issue. One-dimensional (1D) electrical sounding (ES), two-dimensional (2D) electrical resistivity imaging (ERI), and very low frequency electromagnetic (VLF-EM) measurements were used to investigate the hydrogeological framework of El Salloum basin with the aim of determining the potential for extraction of potable water. 1D resistivity sounding models were used to delineate geoelectric sections and water-bearing layers. 2D ERI highlighted decreases in resistivity with depth, attributed to clay-rich limestone combined with seawater intrusion towards the coast. A depth of investigation (DOI) index was used to constrain the information content of the images at depths up to 100 m. The VLF-EM survey identified likely faults/fractured zones across the study area. A combined analysis of the datasets of the 1D ES, 2D ERI, and VLF-EM methods identified potential zones of groundwater, the extent of seawater intrusion, and major hydrogeological structures (fracture zones) in El Salloum basin. The equivalent geologic layers suggest that the main aquifer in the basin is the fractured chalky limestone middle Miocene) south of the coastal plain of the study area. Sites likely to provide significant volumes of potable water were identified based on relatively high resistivity and thickness of laterally extensive layers. The most promising locations for drilling productive wells are in the south and southeastern parts of the region, where the potential for potable groundwater increases substantially.

  相似文献   

14.
This paper summarizes the findings of groundwater potential zonation mapping at the Bharangi River basin, Thane district, Maharastra, India, using Satty’s Analytical Hierarchal Process model with the aid of GIS tools and remote sensing data. To meet the objectives, remotely sensed data were used in extracting lineaments, faults and drainage pattern which influence the groundwater sources to the aquifer. The digitally processed satellite images were subsequently combined in a GIS with ancillary data such as topographical (slope, drainage), geological (litho types and lineaments), hydrogeomorphology and constructed into a spatial database using GIS and image processing tools. In this study, six thematic layers were used for groundwater potential analysis. Each thematic layer’s weight was determined, and groundwater potential indices were calculated using groundwater conditions. The present study has demonstrated the capabilities of remote sensing and GIS techniques in the demarcation of different groundwater potential zones for hard rock basaltic basin.  相似文献   

15.
Morphometric analysis using remote sensing (RS) and geographical information system (GIS), in the recent study, has become an efficient method in the assessment of groundwater potential of a river basin. The present study focused on the morphometric analysis of Araniar river basin using RS and GIS techniques in the identification of groundwater potential zones for effective planning and management of groundwater resources of the basin. The study area was divided into six subbasins for the purpose of micro-level morphometric analysis. The main stream of the basin is of fifth order and drainage patterns of subbasins are mostly of dendritic and parallel type. Based on the linear, areal and relief parameters of subbasins, the groundwater potential zones of the basin were identified and the results substantiated with geomorphology map derived from RS data. The elongated shape, favourable drainage network, permeable geologic formation and low relief of the subbasins WS3, WS5 and WS6 make them the promising groundwater potential zones of Araniar river basin. The statistical analysis and overlay analysis of the morphometric parameters also indicated the subbasins WS3, WS5 and WS6 as high groundwater potential zones. The groundwater potential zone map when overlaid with groundwater fluctuation map indicated the suitable sites for artificial recharge structures.  相似文献   

16.
山东淄博市地下水资源评价及其合理开发利用研究   总被引:12,自引:4,他引:8  
本文采用有限单元法进行地下水资源评价以解决评价区供水面积大、精度要求高的矛盾。首先根据实际的开采量和长期观测孔的水位资料,校正数学模型,反求有关参数;然后给定开采方案进行未来水头的预测;最后研究地下水资源的合理开发利用问题。利用有限单元法进行水源地或单一含水层的地下水资源评价已被证明是先进的、有效的。本文是对水文地质条件非常复杂的大面积的区域,用有限单元法进行地下水资源评价的一种尝试,可供类似地区参考。  相似文献   

17.
地下水的赋存和埋深是地下水资源勘察的重要内容。遥感技术具有数据获取快、综合成本低、观测尺度大等诸多优势。基于遥感的地下水资源评估技术一直受到研究人员的关注,也是遥感应用研究中的热点和难点。回顾总结了遥感技术在评估地下水赋存和埋深领域的应用与研究进展,根据不同评估技术的特点将其划分为单因子模型评估法、多因子综合模型评估法、重力卫星数据评估法3种。得出以下结论①地下水遥感评估技术经过多年发展,模型方法更加多样,精确度不断提高,可以作为传统地下水资源勘察的重要辅助手段;②遥感评估地下水赋存的研究发展迅速,但针对地下水埋深信息的评估研究进展相对缓慢;③高时空分辨率遥感技术和机器学习技术的结合运用、无人机遥感技术的应用是地下水资源遥感评估技术的未来发展方向。  相似文献   

18.
地下水的赋存和埋深是地下水资源勘察的重要内容。遥感技术具有数据获取快、综合成本低、观测尺度大等诸多优势。基于遥感的地下水资源评估技术一直受到研究人员的关注,也是遥感应用研究中的热点和难点。回顾总结了遥感技术在评估地下水赋存和埋深领域的应用与研究进展,根据不同评估技术的特点将其划分为单因子模型评估法、多因子综合模型评估法、重力卫星数据评估法3种。得出以下结论: ①地下水遥感评估技术经过多年发展,模型方法更加多样,精确度不断提高,可以作为传统地下水资源勘察的重要辅助手段; ②遥感评估地下水赋存的研究发展迅速,但针对地下水埋深信息的评估研究进展相对缓慢; ③高时空分辨率遥感技术和机器学习技术的结合运用、无人机遥感技术的应用是地下水资源遥感评估技术的未来发展方向。  相似文献   

19.
Remote sensing, evaluation of digital elevation models (DEM), geographic information systems (GIS) and fieldwork techniques were combined to study the groundwater conditions in Eritrea. Remote sensing data were interpreted to produce lithological and lineament maps. DEM was used for lineament and geomorphologic mapping. Field studies permitted the study of structures and correlated them with lineament interpretations. Hydrogeological setting of springs and wells were investigated in the field, from well logs and pumping test data. All thematic layers were integrated and analysed in a GIS. Results show that groundwater occurrence is controlled by lithology, structures and landforms. Highest yields occur in basaltic rocks and are due to primary and secondary porosities. High yielding wells and springs are often related to large lineaments, lineament intersections and corresponding structural features. In metamorphic and igneous intrusive rocks with rugged landforms, groundwater occurs mainly in drainage channels with valley fill deposits. Zones of very good groundwater potential are characteristic for basaltic layers overlying lateritized crystalline rocks, flat topography with dense lineaments and structurally controlled drainage channels with valley fill deposits. The overall results demonstrate that the use of remote sensing and GIS provide potentially powerful tools to study groundwater resources and design a suitable exploration plan.The online version of the original article can be found at  相似文献   

20.
Remote sensing, evaluation of digital elevation models (DEM), geographic information systems (GIS) and fieldwork techniques were combined to study the groundwater conditions in Eritrea. Remote sensing data were interpreted to produce lithological and lineament maps. DEM was used for lineament and geomorphologic mapping. Field studies permitted the study of structures and correlated them with lineament interpretations. Hydrogeological setting of springs and wells were investigated in the field, from well logs and pumping test data. All thematic layers were integrated and analysed in a GIS. Results show that groundwater occurrence is controlled by lithology, structures and landforms. Highest yields occur in basaltic rocks and are due to primary and secondary porosities. High yielding wells and springs are often related to large lineaments, lineament intersections and corresponding structural features. In metamorphic and igneous intrusive rocks with rugged landforms, groundwater occurs mainly in drainage channels with valley fill deposits. Zones of very good groundwater potential are characteristic for basaltic layers overlying lateritized crystalline rocks, flat topography with dense lineaments and structurally controlled drainage channels with valley fill deposits. The overall results demonstrate that the use of remote sensing and GIS provide potentially powerful tools to study groundwater resources and design a suitable exploration plan.An erratum to this article can be found at  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号