首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
The West Bohemian shear zone (WBSZ) forms a steep collapse structure along which east-side-down normal movements led to the juxtaposition of the relatively cold Cadomian basement of the Tepla-Barrandian unit against high grade Moldanubian rocks. Synkinematic plutons straddle the WBSZ. The Mut3nin pluton intruded into Moldanubian crust at a depth of 23dž km as derived by using Al-in-hornblende barometry. The Tepla-Barrandian Babylon pluton intruded at <12 km depth as indicated by phengite barometry and petrogenetic considerations. Both emplacement depths, together with mineral cooling ages, result in a minimum vertical displacement of 10 km between 340 and 320 Ma. This large throw could be explained by over-thickened crust that was weakened from below. The alkaline signature of the Mut3nin diorite indicates that mantle melting was important to thermally weaken the crust at 340 Ma. The cold Tepla-Barrandian upper crust sank into its weak, partly molten Moldanubian substratum, resulting in elevator-style movements, not only along the WBSZ, but also along the Hoher Bogen and Central Bohemian shear zone. All these ductile normal shear zones were active simultaneously during the Lower Carboniferous and dip steeply towards the Tepla-Barrandian unit that probably formed a highly elevated plateau at this time.  相似文献   

2.
A characteristic feature of the Moldanubian part of the central European Variscides is late-orogenic high-T/low-P metamorphism. Its past history and the possible reasons for this metamorphism are highlighted by the tectonometamorphic development at the south– eastern margin of the Bohemian massif. During the Variscan orogeny, at ca. 340?Ma, two different crustal segments were juxtaposed by thrusting (the Drosendorf unit on top of the Monotonous unit). This probably marks a collisional event that is widespread in the southeastern Moldanubian zone. The collision was followed by crustal uplift accompanied by strong heating in the lowermost structural unit (Monotonous unit). During the subsequent orogenic collapse, the Moldanubian nappe pile was thrust over parts of the Moravo-Silesian terrane. A late stage of crustal extension under greenschist-facies conditions is linked with pluton emplacement. In general, magmatic underplating as well as delamination of the lithospheric mantle explains the high-T/low-P metamorphism and the large-scale plutonism in the southeastern Moldanubian zone.  相似文献   

3.
Variscan collision of peri-Gondwanan terranes led to a doubly vergent crustal wedge that was thicker than 55 km in the area of the Bohemian Massif. This crustal thickness resulted in a highly elevated Bohemian plateau with a topographic height >3–4 km. The Bohemian plateau was covered with unmetamorphic Paleozoic strata, all of which are today well preserved in the Tepla–Barrandian unit because of crustal-scale vertical slip along the Bohemian shear zone (BSZ). The BSZ forms a subvertical, ca. 500-km long and up to 2-km wide belt of dip–slip mylonites which show several 90° deflections in map view. Tepla-Barrandian-down movements were active under retrograde metamorphic conditions, starting with granulite and ceasing with greenschist facies conditions. As slip along the BSZ was largely vertical and led to a minimum throw of 10 km, this type of crustal-scale deformation is referred to as elevator tectonics. The elevator-style movements caused the juxtaposition of the supracrustal Tepla–Barrandian lid (the “elevator”) against high-grade rocks of the extruding orogenic root. The BSZ has further governed the foci of mantle-derived plutonism. New U–Pb zircon and monazite TIMS dating of six plutons suggest that emplacement of mantle-derived melts along the BSZ lasted for at least 20 m.y., starting with the emplacement of the Klatovy granodiorite at 347 +4/−3 Ma and ceasing with the emplacement of the Drahotin pluton at 328 ± 1 Ma. When taking into account the new ages of synkinematic plutons, the simultaneous vertical slip along the individual segments of the BSZ (North, West, and Central Bohemian shear zone) is bracketed to the period 343–337 Ma. Elevator tectonics was probably controlled by delamination of thickened mantle lithosphere that caused a dramatic thermal turnover and heating-up of the orogenic root. The overheated lower crust was thermally softened by anatexis and diffusion creep resulting in channel flow, vertical extrusion, fast uplift, and exhumation of the orogenic root.  相似文献   

4.
The Central Bohemian Plutonic Complex (CBPC) consists of episodically emplaced plutons, the internal fabrics of which recorded tectonic evolution of a continental magmatic arc. The ~354–350 Ma calc-alkaline plutons were emplaced by multiple processes into the upper-crustal Teplá-Barrandian Unit, and their magmatic fabrics recorded increments of regional transpression. Multiple fabrics of the younger, ~346 Ma Blatná pluton recorded both regional transpression and the onset of exhumation of mid-crustal orogenic root (Moldanubian Unit). Continuous exhumation-related deformation during pluton cooling resulted in the development of a wide zone of sub-solidus deformation along the SE margin of the CBPC. Finally, syn-exhumation tabular durbachitic pluton of ultrapotassic composition was emplaced atop the intrusive sequence at ~343–340 Ma, and the ultrapotassic Tábor pluton intruded after exhumation of the orogenic root (~337 Ma). We suggest that the emplacement of plutons during regional transpression in the upper crust produced thermally softened domain which then accommodated the exhumation of the mid-crustal orogenic root, and that the complex nature of the Teplá-Barrandian/Moldanubian boundary is a result of regional transpression in the upper crust, the enhancement of regional deformation in overlapping structural aureoles, the subsequent exhumation of the orogenic root domain, and post-emplacement brittle faulting.  相似文献   

5.
Abstract

The tectonic contact between low-grade metase-dimentary series and high-grade rocks in the Hlinsko region (Bohemian Massif) is commonly interpreted as a thrust of the Barrandian sediments over the upper Moldanubian nappe.

The sediments occur in an E-facing synform that contains a tonalitic laccolith on its eastern boundary with the Moldanubian, and is truncated by a granodiorite pluton to the west. The synform represents a late deformational folding event related to the granodiorite intrusion. NW-oriented normal shear in the tonalite is indicated by S-C microstructures. Kinematic criteria associated with the major foliation and lineation development in the metasediments also indicate a north-westward, normal shear. In addition, Moldanubian gneiss display late shear bands due to north-westward, normal shear. Consequently, the presumed thrust is a low-angle, normal shear zone.

Low-pressure type metamorphism (3 < P < 4 x 102 MPa) coeval with the major deformational phase in pelites of the Hlinsko synform is attributed to both the tonalite aureole and the extensive HT metamorphism (under P > 6 x 102 MPa) that has affected the underlying Moldanubian.

The possibly polyphase normal fault is consistent with the meta-morphic pressure jump between the metasediments and the Moldanubian.

We suggest that the tonalite intruded syntectonically within the normal ductile shear zone active during waning stages of the Variscan orogeny.  相似文献   

6.
The ∼354–336 Ma Central Bohemian Plutonic Complex is a Variscan magmatic arc that developed in the central Bohemian Massif in response to subduction of the Saxothuringian lithosphere beneath the Teplá–Barrandian microplate. Magmatic to solid state fabrics in the most voluminous portion of this arc (the ∼346 Ma Blatná pluton) record two superposed orogenic events: dextral transpression associated with arc-parallel stretching and arc-perpendicular shortening, and normal shearing associated with exhumation of the high-grade core of the orogen (Moldanubian unit). This kinematic switch is an important landmark in the evolution of this segment of the Variscan belt for it marks the cessation of subduction-related compressive forces in the upper crust giving way to gravity-driven normal movements of the Teplá–Barrandian hanging wall block relative to the high-grade Moldanubian footwall. We use thermal modeling to demonstrate that the emplacement of huge volumes of arc magmas and their slow cooling produced a thermally softened domain in the upper crust and that the magmatic arc granitoids may have played a major role in initiating the orogenic collapse in the Bohemian Massif through lubrication and reactivation of a pre-existing lithospheric boundary and decreasing the overall strength of the rigid orogenic lid.  相似文献   

7.
Garnet‐bearing ultramafic rocks (GBUR) enclosed in granulite or high‐grade gneiss are rare, yet typical constituents of alpine‐type collisional orogens. The Bohemian Massif of the European Variscides is exceptional for the occurrence of a large variety of mantle‐derived rocks, including GBUR (garnet peridotite and garnet pyroxenite). GBUR occur in several metamorphic units belonging to both the Saxothuringian and the Moldanubian zones of the Bohemian Massif. The northernmost outcrops of GBUR in the Bohemian Massif are situated in the Saxonian Granulitgebirge Core Complex in the Saxothuringian zone and are the subject of this study. Thermobarometric results and exsolution textures imply that the Granulitgebirge GBUR belong to the ultra high temperature group of peridotites. They experienced a decompression‐cooling path being constrained by the following four stages: (i) ~1300–1400 °C and 32 kbar, (ii) 1000–1050 °C and 26 kbar, (iii) 900–940 °C and 22 kbar, and (iv) 860 °C and 12–13 kbar. Occasional layers of garnet pyroxenite within GBUR lenses are interpreted as high pressure cumulates that crystallized at 32–36 kbar by cooling below 1400 °C. The GBUR were most probably derived from upwelling asthenosphere and came in contact with crustal granulite at ~60 km depth. Slab break‐off is suggested here as the most probable cause for: (i) asthenosphere upwelling and cooling of the latter as well as (ii) ultra high temperature granulite facies metamorphism of the crustal host rocks. The Granulitgebirge‐type peridotite is very similar to the Mohelno‐type peridotite from the Gföhl unit, Moldanubian zone, in the southern part of the Bohemian Massif. In contrast, peridotite from the adjacent Erzgebirge (also within the Saxothuringian zone) is derived from the subcontinental mantle and much resembles the Nove Dvory‐type peridotite from the Gföhl unit (Moldanubian zone). The fact that the Saxothuringian and Moldanubian zones host the same types of mantle rocks (asthenospheric and lithospheric) of the same metamorphic ages suggests that the classic distinction into the Saxothuringian and Moldanubian zones cannot be supported, at least as far as high‐grade units hosting GBUR are concerned.  相似文献   

8.
ABSTRACT In the Hlinsko region (Variscan Bohemian Massif, Czech Republic) a major extensional shear zone separates low-grade metasedimentary series (Hlinsko schists) and high-grade rocks of the Moldanubian terrane (Svratka Crystalline Unit). During late-Variscan extension, a tonalite intruded syntectonically into the normal ductile shear zone, and caused contact metamorphism of the overlying schists. Concurrent syntectonic sedimentation of a flysch series took place at the top of the hangingwall schists. In order to decipher the detailed petrological evolution of the Hlinsko unit situated in the hangingwall of this tectonic contact, a phase diagram approach and petrogenetic grids, calculated with the thermocalc computer program, were used. The crystallization/deformation relationships and the paragenetic analysis of the Hlinsko schists define a P–T path with an initial minor increase in pressure followed by cooling. Calculated pseudosections constrain this anticlockwise P-T evolution to the upper part of the andalusite field between 0.36 and 0.40 GPa for temperatures ranging from 570 to 530°C. A low aH2O is required to explain the presence of andalusite-biotite-bearing assemblages, and could be related to the presence of abundant graphite. In contrast, the footwall rocks of the Svratka Crystalline Unit record decompression from around 0.8 GPa at a relatively constant temperature, followed by cooling. Thus, the footwall and the hangingwall units display opposite, but convergent P–T histories. Decompression in the footwall rocks is related to a rapid exhumation. We propose that the inverse, anticlockwise P–T path recorded in the hangingwall pelites is related to the rapid, extension-controlled sedimentation of the overlying flysch series.  相似文献   

9.
Ductile extensional movements along the steeply inclined Hoher-Bogen shear zone caused the juxtaposition of Teplá-Barrandian amphibolites, granulites, and metaperidotites against Moldanubian mica schists and paragneisses. Garnet pyriclasites are well preserved within low-strain domains of this shear zone. Their degree of metamorphism is significantly higher than that of the surrounding rocks. Microstructural and mineral chemical data suggest in situ formation of the garnet pyriclasite by dehydration of pyroxene amphibolite at T>750–840°C and P<10–13 kbar including recrystallization-accommodated grain-size reduction of plagioclase and clinopyroxene, nucleation of garnet, and breakdown of amphibole into garnet+clinopyroxene+rutile. Subsequent decompression and retrograde extensional shearing led to the formation of mylonitic epidote amphibolite. The presence of lower crustal and mantle-derived slices within the Hoher-Bogen shear zone supports the view that (a) in Upper Devonian times the Teplá-Barrandian unit was thrust over Moldanubian rocks as a complete crustal unit, and (b) that during the subsequent Lower Carboniferous orogenic collapse, the garnet pyriclasite and metaperidotite were scraped off from the basal parts of the Teplá-Barrandian unit being dragged into the Hoher-Bogen shear zone due to dramatic and large-scale elevator-style movements. Received: 23 March 1999 / Accepted: 25 August 1999  相似文献   

10.
Laser fusion 40Ar/39Ar ages of titanian pargasite from a microgranodiorite dyke swarm in the southern Bohemian Massif effectively date the early Permian (late Autunian) emplacement of dykes into a cool Moldanubian crust. This intrusion represents the youngest magmatic phase recorded in this part of the Moldanubian Zone. Strontium and neodymium isotopic ratios of microgranodiorites point to magma derivation from re-melting the lower crustal rocks with a possible component of upper mantle composition. Spatial and temporal association of the dykes with movements on a major N-S (NNE-SSW) tectonic discontinuity (Blanice-Kaplice-Rödl fault zone) suggests that their emplacement corresponds to the maximum age of fault movements associated with the E/W-oriented extension in this part of the Bohemian Massif.  相似文献   

11.
Structural and kinematic investigations of the West Bohemian Shear Zone (WBS) clearly indicate late Variscan orogen-parallel (WSW-ENE) extension within the Variscan internides. Along the WBS the western part of the Tepla-Barrandian (TB) was downthrown to the east against the adjacent Moldanubian. According to seismic data, the steeply east-dipping WBS flattens with depth, forming a prominent detachment zone. The western part of the TB was tilted along this zone, producing the patterns of metamorphic isograds, the age of which is probably Cadomian. Cross-cutting relationships of WBS mylonites and Carboniferous granites, as well as the overall cooling ages of hornblende and mica, suggest that ductile normal faulting along the WBS was active from about 330 to 310 Ma.Geothermobarometric data, derived from WBS mylonites, prove that during the extensional movements relatively cold crust of the TB (medium pressure greenschist facies) was juxtaposed to relatively hot Moldanubian crust (low pressure amphibolite facies). Thus mylonites which originate from TB rocks show a first-stage prograde development reaching the lower amphibolite facies under medium pressure conditions. This stage was followed by further (uplift-related) retrograde shearing under low pressure greenschist facies conditions.Extensional movements and the emplacement of granitoids along the WBS, as well as the strong low pressure/high temperature metamorphism of the Moldanubian rocks are remarkably similar in age (Middle Carboniferous). Therefore, a close relationship and mutual dependence of all these features is suggested. Rapid advective thinning of the deeper part of the previously thickened lithosphere and associated rapid crustal uplift are the most probable processes to explain the high Middle Carboniferous heat flow as well as magmatism and extension.  相似文献   

12.
This paper presents monomineral and multiphase inclusions in garnet from eclogites and clinopyroxenites, which form layers and boudins in garnet peridotites from two areas in the Moldanubian zone of the Bohemian Massif. The garnet peridotites occur in felsic granulites and reached UHP conditions prior to their granulite facies overprint. In addition to complex compositional zoning, garnets from hosting eclogites and clinopyroxenites preserve inclusions of hydrous phases and alkali silicate minerals including: amphiboles, chlorites, micas and feldspars. Amphibole, biotite and apatite inclusions in garnet have a high concentration of halogens; CO2 and sulfur are involved in carbonates and sulfide inclusions, respectively. The inclusion patterns and compositional zoning in garnet in combination with textural relations among minerals, suggest that the ultramafic and mafic bodies are derived from lithospheric mantle above the subduction zone and were transformed into garnet pyroxenites and eclogites in the subduction zone. Based on compositional, mineral and textural relations, all of these rocks along with the surrounding crustal material were overprinted by granulite facies metamorphism during their exhumation.  相似文献   

13.
The Variscan Hauzenberg pluton consists of granite and granodiorite that intruded late- to postkinematically into HT-metamorphic rocks of the Moldanubian unit at the southwestern margin of the Bohemian Massif (Passauer Wald). U–Pb dating of zircon single-grains and monazite fractions, separated from medium- to coarse-grained biotite-muscovite granite (Hauzenberg granite II), yielded concordant ages of 320 ± 3 and 329 ± 7 Ma, interpreted as emplacement age. Zircons extracted from the younger Hauzenberg granodiorite yielded a 207Pb–206Pb mean age of 318.6 ± 4.1 Ma. The Hauzenberg granite I has not been dated. The pressure during solidification of the Hauzenberg granite II was estimated at 4.6 ± 0.6 kbar using phengite barometry on magmatic muscovite, corresponding to an emplacement depth of 16-18 km. The new data are compatible with pre-existing cooling ages of biotite and muscovite which indicate the Hauzenberg pluton to have cooled below T = 250–400 °C in Upper Carboniferous times. A compilation of age data from magmatic and metamorphic rocks of the western margin of the Bohemian Massif suggests a west- to northwestward shift of magmatism and HT/LP metamorphism with time. Both processes started at > 325 Ma within the South Bohemian Pluton and magmatism ceased at ca. 310 Ma in the Bavarian Oberpfalz. The slight different timing of HT metamorphism in northern Austria and the Bavarian Forest is interpreted as being the result of partial delamination of mantle lithosphere or removal of the thermal boundary layer.  相似文献   

14.
The igneous complex of Neukirchen–Kdyn is located in the southwestern part of the Teplá–Barrandian unit (TBU) in the Bohemian Massif. The TBU forms the most extensive surface exposure of Cadomian basement in central Europe. Cambrian plutons show significant changes in composition, emplacement depth, isotopic cooling ages, and tectonometamorphic overprint from NE to SW. In the NE, the V epadly granodiorite and the Smr ovice diorite intruded at shallow crustal levels (<ca. 7 km depth) as was indicated by geobarometric data. K–Ar age data yield 547±7 and 549±7 for hornblende and 495±6 Ma for biotite of the Smr ovice diorite, suggesting that this pluton has remained at shallow crustal levels (T<ca. 350 °C) since its Cambrian emplacement. A similar history is indicated for the V epadly granodiorite and the Stod granite. In the SW, intermediate to mafic plutons of the Neukirchen–Kdyn massif (V eruby and Neukirchen gabbro, Hoher–Bogen metagabbro), which yield Cambrian ages, either intruded or were metamorphosed at considerably deeper structural levels (>20 km). The Teufelsberg ( ert v kámen) diorite, on the other hand, forms an unusual intrusion dated at 359±2 Ma (concordant U–Pb zircon age). K–Ar dating of biotite of the Teufelsberg diorite yields 342±4 Ma. These ages, together with published cooling ages of hornblende and mica in adjacent plutons, are compatible with widespread medium to high-grade metamorphism and strong deformation fabrics, suggesting a strong Variscan impact under elevated temperatures at deeper structural levels. The plutons of the Neukirchen area are cut by the steeply NE dipping Hoher–Bogen shear zone (HBSZ), which forms the boundary with the adjacent Moldanubian unit. The HBSZ is characterized by top-to-the-NE normal movements, which were particularly active during the Lower Carboniferous. A geodynamic model is presented that explains the lateral gradients in Cambrian pluton composition and emplacement depth by differential uplift and exhumation, the latter being probably related to long-lasting movements along the HBSZ as a consequence of Lower Carboniferous orogenic collapse.  相似文献   

15.
Apatite fission-track (AFT) dating applied to uplifted Variscan basement blocks of the Bavarian Forest is employed to unravel the low-temperature history of this segment of the Bohemian Massif. Twenty samples were dated and confined track lengths of four samples were measured. Most samples define Cretaceous APT ages between 110 and 82 Ma (Albian to Campanian) and three samples give older ~148–140 Ma (Jurassic–Cretaceous boundary) ages. No discernible regional age variations exist between the areas north-east and south-west of the Pfahl shear zone, but >500 m post-Jurassic and post-Cretaceous vertical offsets along this and other faults can be inferred from elevation profile analyses. The AFT ages clearly postdate the Variscan exhumation history of the Bavarian Forest. Thermal modeling reveals that the ages are best explained by a slight reheating of the basement rocks to temperatures within the apatite partial annealing zone during the middle and late Jurassic and/or by late Cretaceous marine transgression causing burial heating, which affected marginal low-lying areas of the Bohemian Massif and the Bavarian Forest. Late Jurassic period was followed by enhanced cooling through the 120–60 °C temperature interval during the subsequent exhumation phase for which denudation rates of ~100 m myr?1 were calculated. On a regional scale, Jurassic–Cretaceous AFT ages are ubiquitous in marginal structural blocks of the Bohemian Massif and seem to reflect the exhumation of these zones more distinctly compared to central parts.  相似文献   

16.
ABSTRACT Volume diffusion and dislocation creep at T  ∼ 800 °C led to high finite strain in granulite and orthogneiss of the Ohře crystalline complex (North Bohemian shear zone). Intragranular creep by volume diffusion is indicated by (i) lobate phase boundaries between feldspar and quartz, and (ii) removal of perthite lamellae and precipitation of tiny, aluminium-rich needles at the margins of K-feldspar. The striking diffusional-creep structures imply high interfacial free energy that has been preserved from equilibration as a result of rapid cooling. U–Pb dating of monazite (342 ± 1 Ma) and 40Ar–39Ar dating of muscovite (341 ± 4 Ma) of Kadaň orthogneiss result in a cooling rate of 50 + 25/−17 °C Myr−1. This high value is attributed to collapse-related 'elevator-style' movements along the North Bohemian shear zone, resulting in the juxtaposition of upper crustal rocks of the Tepla–Barrandian unit against lower crustal rocks of the Erzgebirge crystalline complex.  相似文献   

17.
The southern and eastern Karkonosze-Izera massif (northern Bohemian Massif) exposes blueschist facies rocks and MORB-type magmatic complexes. During Late Devonian to Early Carboniferous times, these were overthrust within a nappe pile toward the NW onto the pre-Variscan Saxothuringian basement composed of the Izera-Kowary metagranitoids and their envelope. The lowermost nappe (or parautochthonous?) unit of the pile is the low-grade metamorphosed Jewt3d complex, comprising a Devonian to Early Carboniferous sedimentary succession of the Saxothuringian passive margin. This is tectonically overlain by the South Karkonosze complex, which represents Ordovician-Silurian volcano-sedimentary infill of the Saxothuringian basin, affected by Late Devonian HP metamorphism. The uppermost nappe is the Early Palaeozoic epidote-amphibolite grade Leszczyniec MORB-like complex, cropping out on the eastern margin of the Karkonosze-Izera massif. It probably represents a fragment of obducted Saxothuringian basin floor. The nappe pile was stacked beneath the overriding upper plate margin, now concealed below the Intra-Sudetic basin and hypothesized to represent a fragment of the Tepla-Barrandian terrane. The nappe stacking, triggered by buoyancy-controlled upward extrusion of the subducted continental slab, was the main mechanism for the exhumation of HP rocks. The final stages of the NW-ward nappe stacking were accompanied and followed by SE-directed Early Carboniferous extensional collapse. The lower plate of the suture zone was uplifted at that time and intruded by the ~330-Ma-old, nearly undeformed Karkonosze granite pluton. As a result of the collapse, the Tepla-Barrandian(?) upper plate was downthrown on shear zones and brittle faults and buried under several km-thick synorogenic Late Tournaisian(?) through Namurian and post-orogenic Late Carboniferous-Early Permian succession of the Intra-Sudetic basin. The south and east Karkonosze suture most probably is a fragment of the Tepla/Saxothuringian (Münchberg-Tepla) suture belt known from the western Bohemian Massif.  相似文献   

18.
The geological inventory of the Variscan Bohemian Massif can be summarized as a result of Early Devonian subduction of the Saxothuringian ocean of unknown size underneath the eastern continental plate represented by the present-day Teplá-Barrandian and Moldanubian domains. During mid-Devonian, the Saxothuringian passive margin sequences and relics of Ordovician oceanic crust have been obducted over the Saxothuringian basement in conjunction with extrusion of the Teplá-Barrandian middle crust along the so-called Teplá suture zone. This event was connected with the development of the magmatic arc further east, together with a fore-arc basin on the Teplá-Barrandian crust. The back-arc region – the future Moldanubian zone – was affected by lithospheric thinning which marginally affected also the eastern Brunia continental crust. The subduction stage was followed by a collisional event caused by the arrival of the Saxothuringian continental crust that was associated with crustal thickening and the development of the orogenic root system in the magmatic arc and back-arc region of the orogen. The thickening was associated with depression of the Moho and the flux of the Saxothuringian felsic crust into the root area. Originally subhorizontal anisotropy in the root zone was subsequently folded by crustal-scale cusp folds in front of the Brunia backstop. During the Visean, the Brunia continent indented the thickened crustal root, resulting in the root's massive shortening causing vertical extrusion of the orogenic lower crust, which changed to a horizontal viscous channel flow of extruded lower crustal material in the mid- to supra-crustal levels. Hot orogenic lower crustal rocks were extruded: (1) in a narrow channel parallel to the former Teplá suture surface; (2) in the central part of the root zone in the form of large scale antiformal structure; and (3) in form of hot fold nappe over the Brunia promontory, where it produced Barrovian metamorphism and subsequent imbrications of its upper part. The extruded deeper parts of the orogenic root reached the surface, which soon thereafter resulted in the sedimentation of lower-crustal rocks pebbles in the thick foreland Culm basin on the stable part of the Brunia continent. Finally, during the Westfalian, the foreland Culm wedge was involved into imbricated nappe stack together with basement and orogenic channel flow nappes.  相似文献   

19.
A medium-scale shear zone exposed in the gneiss rocks of the South-western Bohemian Massif (Moldanubian Zone) contains cordierite, whose Na p.f.u. is subject to a significant increase from the centre to the edge of the deformation area, whilst other elements only show negligible variations. Coexisting mineral phases of cordierite include garnet, biotite, and sillimanite. According to the results obtained from the garnet-cordierite Fe2+/Mg2+-exchange thermometer a decrease of peak temperature from 639 °C in the central mylonite to 593 °C in the marginal mylonite can be observed, which indicates significant shear heating. Lithological pressures were estimated by considering the position of cordierite-forming reactions in the P-T field and the stability of coexisting sillimanite. They are subject to a reduction from 0.35 GPa in the highest deformed mylonite to 0.31 GPa at the margin of the shear zone. According to the results of comprehensive petrographic and mineralogical studies the investigated shear zone underwent a Variscan HT-LP metamorphic event implying the formation of cordierite and an Alpine MT-LP event entailing the rotation and decomposition of the cordierite phase.  相似文献   

20.
At the eastern margin of the Bohemian Massif (Variscan belt of Central Europe), large bodies of felsic granulite preserve mineral assemblages and structures developed during the early stages of exhumation of the orogenic lower continental crust within the Moldanubian orogenic root. The development of an early steep fabric is associated with east–west-oriented compression and vertical extrusion of the high-grade rocks into higher crustal levels. The high-pressure mineral assemblage Grt-Ky-Kfs-Pl-Qtz-Liq corresponds to metamorphic pressures of ∼18 kbar at ∼850 °C, which are minimum estimates, whereas crystallization of biotite occurred at 13 kbar and ∼790 °C during decompression with slight cooling. The late stages of the granulite exhumation were associated with lateral spreading of associated high-grade rocks over a middle crustal unit at ∼4 kbar and ∼700 °C, as estimated from accompanying cordierite-bearing gneisses. The internal structure of a contemporaneously intruded syenite is coherent with late structures developed in felsic granulites and surrounding gneisses, and the magma only locally explored the early subvertical fabric of the felsic granulite during emplacement. Consequently, the emplacement age of the syenite provides an independent constraint on the timing of the final stages of exhumation and allows calculation of exhumation and cooling rates, which for this part of the Variscan orogenic root are 2.9–3.5 mm yr−1 and 7–9.4 °C Myr−1, respectively. The final part of the temperature evolution shows very rapid cooling, which is interpreted as the result of juxtaposition of hot high-grade rocks with a cold upper-crustal lid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号