首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 655 毫秒
1.
Pollen records from two sites in western Oregon provide information on late-glacial variations in vegetation and climate and on the extent and character of Younger Dryas cooling in the Pacific Northwest. A subalpine forest was present at Little Lake, central Coast Range, between 15,700 and 14,850 cal yr B.P. A warm period between 14,850 and 14,500 cal yr B.P. is suggested by an increase inPseudotsugapollen and charcoal. The recurrence of subalpine forest at 14,500 cal yr B.P. implies a return to cool conditions. Another warming trend is evidenced by the reestablishment ofPseudotsugaforest at 14,250 cal yr B.P. Increased haploxylonPinuspollen between 12,400 and 11,000 cal yr B.P. indicates cooler winters than before. After 11,000 cal yr B.P. warm dry conditions are implied by the expansion ofPseudotsuga.A subalpine parkland occupied Gordon Lake, western Cascade Range, until 14,500 cal yr B.P., when it was replaced during a warming trend by a montane forest. A rise inPinuspollen from 12,800 to 11,000 cal yr B.P. suggests increased summer aridity.Pseudotsugadominated the vegetation after 11,000 cal yr B.P. Other records from the Pacific Northwest show an expansion ofPinusfrom ca. 13,000 to 11,000 cal yr B.P. This expansion may be a response either to submillennial climate changes of Younger Dryas age or to millennial-scale climatic variations.  相似文献   

2.
The organic deposits derived from the mangrove swamps form reliable stratigraphic markers within the Late Quaternary sequence of Kerala–Konkan Basin. Three generations of such deposits have been identified. The older one is dated to around 43,000–40,000 14C yr B.P., with a few dates beyond the range of radiocarbon. The younger ones date from the Middle Holocene to latest Pleistocene (10,760–4540 14C yr B.P.) and the Late Holocene (<4000 14C yr B.P.). Pollen analyses confirm that the deposits are mostly derived from the mangrove vegetation. Peat accumulation during the period 40,000–28,000 14C yr B.P. can be correlated with the excess rainfall, 40–100% greater than modern values, of the Asian summer monsoon. The low occurrence of mangrove between 22,000 and 18,000 14C yr B.P. can be attributed to the prevailing aridity and/or reduced precipitation associated worldwide with Last Glacial Maximum, because exposure surfaces and ferruginous layers are commonly found in intervals representing this period. The high rainfall of 11,000–4000 14C yr B.P. is found to be the most significant as the mangrove reached an optimum growth around 11,000 14C yr B.P. but with periods of punctuated weaker monsoons. From the present and previous studies, it has been observed that after about 5000 or 4000 14C yr B.P., the monsoons became gradually reduced leading to drying up of many of the marginal marine mangrove ecosystems. A case study of Hadi profile provided an insight to the relevance of magnetic susceptibility (χ) to record the ecological shift in Late Holocene.  相似文献   

3.
Zhu, C., Ma, C., Yu, S.-Y., Tang, L., Zhang, W. & Lu, X. 2009: A detailed pollen record of vegetation and climate changes in Central China during the past 16 000 years. Boreas , 10.1111/j.1502-3885.2009.00098.x. ISSN 0300-9483.
Detailed pollen analyses, along with magnetic and loss-on-ignition (LOI) measurements, were conducted on a 3 m long peat sequence recovered from the Dajiuhu Basin, the Shennongjia Mountains in Central China. Ten AMS 14C dates provide a firm age control on this pollen record in terms of vegetation changes governed essentially by the rise and fall of the Asian summer monsoon during the past 16 000 years. Between 16 000 and 12 700 cal. yr BP, pollen assemblages were dominated by coniferous and broad-leaved trees, indicating a mixed forest landscape corresponding to the initial establishment of the monsoonal climate after the Last Glaciation. The progressive increases in percentages of evergreen tree pollen after 12 700 cal. yr BP point to a steady enhancement of the summer monsoon, which was episodically weakened during the Younger Dryas stadial. From 11 000 to 6000 cal. yr BP, values of coniferous and deciduous tree pollen decreased, while evergreen broad-leaved tree pollen increased substantially, implying a stronger than normal monsoonal climate condition corresponding to the Holocene Hypsithermal Interval. A great reduction in the values of evergreen tree pollen at about 4000 cal. yr BP indicates a sudden retreat of the summer monsoon from this area.  相似文献   

4.
Pollen evidence from Lake Shayema, Mianning County, was obtained to examine postglacial vegetation and climatic change in southwestern Sichuan, China. The sclerophyllous character of the region's warm temperate vegetation today is a reflection of extreme drought in spring before the onset of the Asian monsoons. The pollen record displays several changes in the vegetation over the last 11,000 yr. From 11,000 to 9100 yr B.P., cold-tolerant species, such as Abies , Betula, and deciduous oaks, dominated the vegetation. Between 9100 and 7800 yr B.P., the abundance of deciduous oaks decreased and evergreen oaks increased, as did Tsuga and mesic deciduous species. This change suggests a warming climate with increased precipitation. From 7800 to 4000 yr B.P., sclerophyllous species increased at the expense of mesic deciduous species, an indication that precipitation was becoming more seasonal. Except for increased disturbance starting ca. 1000 yr B.P., the predominance of sclerophyllous vegetation continued until today. The pollen results are compatible with proposed global circulation hypotheses of a strengthened monsoon system during the early to mid Holocene.  相似文献   

5.
贵州荔波地区2000年来石笋高分辨率的气候记录   总被引:9,自引:1,他引:9  
通过对荔波董哥洞石笋进行高精度的ICP MS或TIMS U系测年和碳、氧同位素分析,建立了荔波地区2 300a B.P.来高分辨率的古气候变化的时间序列。研究结果表明,贵州荔波地区2 300a B.P.以来石笋记录的季风气候变化,大致可分为8个气候(亚)期:① 2 300~1 800a B.P.为降温期,显示东亚夏季风减弱,东亚冬季风增强,气候干旱寒冷;② 1 800~1 080a B.P.气温有所回升,显示东亚冬季风缓慢减弱,东亚夏季风有所回升,表现为半湿润的温凉气候期;③ 1 080~680a B.P. 为降温期,气温再次下降,显示东亚冬季风再次增强,但降水相对增大,表现为寒冷湿润的气候期,是气候变化的关键转折时期;④ 680~550a B.P.温暖期,显示东亚夏季风再次增强,气温升高,降水增大,表现为温暖湿润的气候期。⑤ 550~400a B.P.寒冷期,显示东亚冬季风快速增强,气温下降,表现为寒冷湿润的气候环境,是近1 000年以来最冷的时期;⑥ 400~364a B.P.温凉期,显示东亚夏季风有所增强,气温有所回升,表现为温凉湿润气候环境;⑦ 364~324a B.P.冷凉期,显示东亚夏季风有所减弱,气温有所下降,表现为冷凉湿润气候环境;⑧ 324a B.P.至今,气候相对波动期,同位素记录曲线呈锯齿状波动,在其内包括若干个冷凉半湿润、冷湿的气候变化亚阶段。根据荔波董哥洞石笋的高分辨率的古气候变化的连续记录,揭示了荔波地区2 300a B.P.以来的一些百年尺度的重大气候事件——干旱寒冷期、隋唐温暖期(或小温暖期)、小寒冷期以及一些十年尺度的降水、温度变化。石笋记录的这种百年、十年尺度的突发性气候变化事件,与冰芯记录极为相似,反映低纬度地区石笋记录的季风气候与高纬度及北极地区的气候具有极好的相关性,这对于认识现代气候系统变化以及对未来十年—百年尺度的气候预测和演化的驱动机制,具有重要的科学意义。  相似文献   

6.
大量研究表明,随着气候变暖,全球生态环境发生了巨大变化。然而,在相对温暖的气候条件下,假若发生重大降温事件,生态环境尤其是植被生态会如何响应,值得深入探讨。利用近年来发表的全新世高分辨率古气候记录以及孢粉记录的植被变化,对全新世中期7 ka(1 ka=1000 cal.a B.P.)前后的降温事件及其对植被生态的影响进行了综合分析。结果表明,7 ka前后降温事件在北半球很大范围都有记录,在季风边缘区伴随着气候的干旱,而在西风主导的区域总体表现为气候湿润。中国北方季风区山地以及高纬度地区表现为建群种的变化,如阔叶树种的减少以及针叶树种的增加;在季风边缘区总体表现为干旱气候下植被盖度的降低;而在西北内陆山地高山区域表现为林线的降低或树种的变化,低山地区森林下限表现为森林成分的增加以及耐旱树种的减少;在山前草原和盆地荒漠草原区域,植被的响应表现为植被盖度的增加和喜湿成分的增加。降温直接影响湿度较大的高山地区的森林成分和林线高度,而在低山干旱半干旱地区,降温则通过抑制蒸发、增加有效湿度影响植被盖度和组成。由于不同钻孔年代的不确定性、不同植被类型对气候变化的敏感性不同等,不同区域发生植被转型的时间不尽一致。全新世中期7 ka降温事件的触发机制有待深入研究,可能与大型火山喷发以及太阳活动变化有关,夏季太阳辐射的持续降低以及地球系统内部反馈也是共同的原因。  相似文献   

7.
新疆罗布泊地区罗北洼地CK­2钻孔的孢粉记录揭示出: 32.0~9.1kaB.P. 植被演替明显,气候干湿波动显著; 晚冰期向全新世过渡期间,气候波动频繁且具突变性。31.98~19.26kaB.P.罗布泊地区处于末次冰期的盛冰期阶段,气候寒冷湿润,冷暖波动频繁,但幅度不大,研究区植被以草原-荒漠草原为主; 19.26~13.67kaB.P. 气候明显变为温暖干燥,植被以荒漠为主; 13.67~12.73kaB.P.气候冷湿偏干,植被以草原-荒漠草原为主; 12.73~9.14kaB.P.气候冷湿与暖干交替频繁,波动幅度较大,植被逐渐由荒漠向草原-荒漠草原过渡。其中, 16.45~15.39kaB.P.,14.27~13.67kaB.P.和 11.74~11.23kaB.P.之间的冷颤动分别相应于老仙女木、中仙女木和新仙女木事件; 15.39~14.27kaB.P.和 12.73~11.74kaB.P.之间的暖期则分别对应于欧洲博令和阿勒罗得暖期; 新仙女木事件后的气候具有突变性的特点,10.49kaB.P.前后的暖事件和9.14kaB.P.前后的冷事件,成为全新世早期气候变化的显著特征。孢粉浓度和花粉组合所反映的罗布泊地区晚冰期以来的气候演化同全球性的气候事件具有显著的可比性。  相似文献   

8.
Geoarchaeological and chronological evidence from the remote Gilf Kebir Plateau in southwest Egypt suggests a new model for the influence of early and mid‐Holocene precipitation regimes on land‐use strategies of prehistoric settlers in what is now the center of the largest hyperarid area on earth. We hypothesize that the quantitatively higher, daytime, monsoon summer rainfall characteristic of the early Holocene (9300–5400 14C yr B.P./8400–4300 yr B.C.) resulted in less grass growth on the plateau compared to the winter rains that presumably fell in the cool nights during the terminal phase of the Holocene pluvial (5400–4500 yr B.P./4300–3300 yr B.C.). The unparalleled climatic transition at 5400 yr B.P. (4300 yr B.C.) caused a fundamental environmental change that resulted in different patterns of human behavior, economy, and land use in the canyon‐like valleys and on the plains surrounding the plateau. The model emphasizes the crucial impact of seasonal rainfall distribution on cultural landscapes in arid regions and the lower significance of annual precipitation rates, with implications for future numeric climate models. It also serves as an example of how past climate changes have affected human societies. © 2004 Wiley Periodicals, Inc.  相似文献   

9.
Major Holocene monsoon changes in continental Southeast Asia are reconstructed from analysis of 14C-dated changes in pollen and organic/inorganic carbon in sediment cores taken from permanent, closed-basin, volcanic lakes in Ratanakiri Province, northeastern Cambodia. Analysis focuses on the nature and timing of monsoon changes, inferred from changes in vegetation and lake conditions. These data provide the first well-dated palynological record, covering most of the Holocene and continuous up to the present, from a terrestrial site in mainland Southeast Asia. The record from a 15-m core retrieved from Kara Lake, representing the last 9300 years, shows that the late Glacial conditions ended about 8500 14C yr B.P., more than 1000 years later than sites in southwest China. Summer monsoon intensity increased over the period ca. 8400–5300 14C yr B.P., similar to most other sites in the Asian monsoon region. A subsequent expansion of secondary forests at the expense of dense semievergreen forests suggest a drier climate leading to more frequent fire disturbance. After ca. 3500 14C yr B.P. disturbance frequency may have increased further with increasing seasonality. From ca. 2500 14C yr B.P. to the present, dense forest has recovered in a mosaic with annually burned dry forest, but climate may not be the main control on local vegetation dynamics in the late Holocene.  相似文献   

10.
Variations in fossil diatom assemblages and their relationship with global and Indian monsoon climate changes for the last 600,000 yr were investigated using a core of ancient lake (Paleo-Kathmandu Lake) sediments drilled at the Kathmandu Basin, Nepal Himalaya. Chronological scales of the core were constructed by tuning pollen wet and dry index records to the SPECMAP δ18O stack record. Examinations of biogenic silica contents and fossil diatom assemblages revealed that variations in productivity and compositions of diatom assemblages were closely linked with global and Indian monsoon climate changes on glacial and interglacial time scales. When summer monsoonal rainfall increased during interglacials (interstadials), diatom productivity increased because of increased inputs of terrestrial nutrients into the lake. When summer monsoonal rainfall reduced and/or winter monsoonal aridification enhanced during glacials (stadials), productivity of the diatoms decreased and lake-level falling brought about changes in compositions of diatom assemblages. Monospecific assemblages by unique Cyclotella kathmanduensis and Puncticulata versiformis appeared during about 590 to 390 ka. This might be attributed to evolutionary fine-tuning of diatom assemblages to specific lake environmental conditions. Additionally, low-amplitude precessional variations in monsoon climate and less lake-level changes may have also allowed both species to dominate over the long periods.  相似文献   

11.
Palynological and sedimentological data from Lake Telmen, in north-central Mongolia, permit qualitative reconstruction of relative changes in moisture balance throughout the mid to late Holocene. The climate of the Atlantic period (7500–4500 yr ago) was relatively arid, indicating that Lake Telmen lay beyond the region of enhanced precipitation delivered by the expanded Asian monsoon. Maximum humidity is recorded between 4500 and 1600 cal yr B.P., during the Subboreal (4500–2500 yr ago) and early Subatlantic (2500 yr–present) periods. Additional humid intervals during the Medieval Warm Epoch (1000–1300 A.D. or 950–650 ago) and the Little Ice Age (1500– 1900 A.D. or 450–50 yr B.P.) demonstrate the lack of long-term correlation between temperature and moisture availability in this region. A brief aridification centered around 1410 cal yr B.P. encompasses a decade of cold temperatures and summer frost between A.D. 536 and 545 (1414–1405 yr B.P.) inferred from records of Mongolian tree-ring widths. These data suggest that steppe vegetation of the Lake Telmen region is sensitive to centennial- and decadal-scale climatic perturbations.  相似文献   

12.
Spatial variability of aridity over northern India (north of 20°N) is studied by examining variations in the arid area. Area with an objectively determined summer monsoon rainfall (June to September total) of less than 500 mm is identified as arid area. The summer monsoon rainfall of 212 rain-gauges from 212 districts of the region for the period 1871–1984 are used in the analysis. An interesting feature of the arid area series is that it shows decreasing trend from beginning of the present century. The summer monsoon rainfall fluctuations over five subjectively divided zones over northern India are examined to understand the association between rainfall and the arid area variations. The rainfall series for northwest India shows a significant increasing trend and that for northeast India a significant decreasing trend from the beginning of this century. Rainfall fluctuations over the remaining zones can be considered intermediate stages of a systematic spatial change in the rainfall pattern. This suggested that the recent decreasing trend in the arid area is due to a westward shift in the monsoon rainfall activities. From correlation analyses it is inferred that perhaps the recent decreasing trend in the arid area and increasing trend in the monsoon rainfall over northwest India are associated with a warming trend of the northern hemisphere.  相似文献   

13.
The palynomorph assemblage of lake sediments younger than 51.9 kaBP from Wulagai Gobi in Inner Mongolia was analyzed to reconstruct the vegetation and climate.From 51.9 to 30.6kaBP,the vegetation was arid to semi-arid grassland with only slight changes.According to the palynomorphs,trees and shrubs were very rare.The large number and diversity of algae indicate the presence of a lake.Quantitative climatic conditions were reconstructed using the Best Analogues Method.The results indicate that the annual mean temperature was higher than that at present.The combination of temperature and annual precipitation suggests a change in the climate from cool dry to warm dry and then cool humid.Our results show that the annual precipitation values were mostly higher than that at present but were lower than 400 mm.It infers that the study area was already within the arid to semi-arid regions but with a stronger influence of the summer monsoon during 51.9to 30.6 kaBP than at present.With slight differences mainly in time scale,the changing trend of the annual temperature curve is consistent with the other climatic records from Antarctica,Greenland,Hulu Cave(East China),and the Tibetan Plateau during the last glacial period.From 30.6 kaBP to present,very few palynomorphs were detected in the samples.Hence,no information about the vegetation and climate could be extracted.Combined with other studies during Late Pleistocene,we presume that the reason for the lack of pollen during this period was caused by an abrupt temperature fall after 30.6 kaBP or that the lacustrine conditions were unsuitable for pollen deposition.It was probably incurred by the oxidation on land prior to deposition.But for those samples only with algae,it might be caused by the fact that algae could finish their life history in a very short time in a seasonal lake.  相似文献   

14.
This article presents a combined pollen and phytolith record of a 1.70-m sediment core from the wetlands of India Muerta (33° 42′ S, 53° 57′ W) in the lowland Pampa (grasslands) of southeastern Uruguay. Six 14C dates and the pollen and phytolith content of the samples permitted the recognition of four distinct climatic periods between 14,850 14C yr B.P. and the present. The Late Pleistocene period (between ca. 14,810 and ca. 10,000 14C yr B.P.) was characterized by drier and cooler conditions indicated by the presence of a C3-dominated grassland. These conditions prevailed until the onset of the warmer and more humid climate of the Holocene around 9450 14C yr B.P. The early Holocene (between around 10,000 and 6620 14C yr B.P.) was characterized by the establishment of wetlands in the region as evidenced by the formation of black peat, the increase in wetland taxa, and the replacement of C3 Pooideae by C4 Panicoideae grasses. During the mid-Holocene, around 6620 14C yr B.P., began a period of environmental change characterized by drier climatic conditions, which resulted in the expansion of halophytic communities in the flat, low-lying areas of the wetlands of India Muerta. About 4020 14C yr B.P. a massive spike of Amaranthaceae/Chenopodiaceae coupled with a radical drop in wetland species indicates another major and more severe period of dryness. After ca. 4000 14C yr B.P., a decrease of halophytic species indicates the onset of more humid and stable climatic conditions, which characterized the late Holocene.The findings reported in this article substantially improve our knowledge of the late Glacial and Holocene climate and vegetation in the region. The data provide a detailed record of the timing and severity of mid-Holocene environmental changes in southeastern South America. Significantly, the mid-Holocene drying trend coincided with major organizational changes in settlement, subsistence, and technology of the pre-Hispanic populations in the region, which gave rise to early Formative societies. This study also represents the first combined pollen and phytolith record for southeastern South America reinforcing the utility of phytoliths as significant indicators of long-term grassland dynamics.  相似文献   

15.
玛旁雍错位于青藏高原西南部,是研究印度季风演化的理想地区之一。利用活塞采样器在玛旁雍错75 m水深处获取了一根4.69 m长岩芯,利用^210Pb和AMS^14C测年确定了岩芯的年代,根据元素含量(XRF扫描)、总有机碳(TOC)、总无机碳(TIC)和总氮(TN)等代用指标,重建了该地区14 cal.ka B.P.以来气候环境变化。结果显示,冰消期(14~12 cal.ka B.P.),TOC和TIC含量变化显示了湖区环境整体上较为暖湿;12.0~11.4 cal.ka B.P.,径流明显减弱,可能是新仙女木事件的反映;早中全新世(11.4~3.4 cal.ka B.P.),湖区环境整体上以暖湿为主,气候有所波动,出现了两次冷事件(10.2~9.8 cal.ka B.P.和8.2 cal.ka B.P.左右),7.4~6.6 cal.ka B.P.,出现了一个暖时期;晚全新世(3.4~0 cal.ka B.P.),湖区环境整体上趋向于干旱化,并伴有两次相对湿润时期(2.6~2.0 cal.ka B.P.和1.4~1.0 cal.ka B.P.)。玛旁雍错环境变化表明,晚冰期以来(14.0~3.4 cal.ka B.P.),受到太阳辐射的影响,印度季风带来的降水以及冰川融水较多,湖区环境较为湿润,整体上有利于内源生物的生存;晚全新世(3.4~0 cal.ka B.P.),北半球夏季太阳辐射量减少,印度季风减弱,径流减弱,湖区环境朝干旱化方向发展。  相似文献   

16.
Pollen and phytogeographic evidence provides a vegetational history of the Sahel for the period 0–18,000 yr B.P. The zonal vegetation fluctuated latitudinally and its most extreme positions occurred at 18,000 and 8500 yr B.P. The first involved a southward shift of the Sahelian wooded grassland to 10°N under the arid conditions of the last glacial maximum. The second change shows a rapid northward migration of humid vegetation: Guinean elements reach 16°N and Sahelo-Sudanian elements extend to the southern margin of the modern Sahara (21°N) when the Atlantic monsoon flux increased. In the middle Holocene the extensive spread of Sudanian elements into the modern Sahelian zone suggests the appearance of a markedly dry season. The modern Sahelian semiarid conditions appeared abruptly at 2000 yr B.P.  相似文献   

17.
Clay mineral assemblages of a soil chrono-association comprising five fluvial surface members (QGH1 to QGH5) of the Indo-Gangetic Plains between the Ramganga and Rapti rivers, north-central India, demonstrate that pedogenic interstratified smectite–kaolin (Sm/K) can be considered as a potential indicator for paleoclimatic changes during the Holocene from arid to humid climates. On the basis of available radiocarbon dates, thermoluminescence dates, and historical evidence, tentative ages assigned to QGH1 to QGH5 are <500 yr B.P., >500 yr B.P., >2500 yr B.P., 8000 TL yr B.P., and 13,500 TL yr B.P., respectively. During pedogenesis two major regional climatic cycles are recorded: relatively arid climates between 10,000–6500 yr B.P. and 3800–? yr B.P. were punctuated by a warm and humid climate. Biotite weathered to trioctahedral vermiculite and smectite in the soils during arid conditions, and smectite was unstable and transformed to Sm/K during the warm and humid climatic phase (7400–4150 cal yr B.P.). When the humid climate terminated, vermiculite, smectite, and Sm/K were preserved to the present day. The study suggests that during the development of soils in the Holocene in alluvium of the Indo-Gangetic Plains, climatic fluctuations appear to be more important than realized hitherto. The soils older than 2500 yr B.P. are relict paleosols, but they are polygenetic because of their subsequent alterations.  相似文献   

18.
Pollen evidence from a 350-cm section of a fen in a moraine belt at Rucañancu (39°33′S, 72°18′W) bears on the controversy regarding interpretation of late-glacial and Holocene climate in midlatitude Chile. Earlier pollen studies, indicating a cooling trend between approximately 11,000 and 10,000 yr B.P., disagreed with observations of glacier fluctuations which show continuous glacier wastage and, by inference, warming after 12,500 yr B.P. and possibly earlier, up until Neoglaciation, beginning after 6850 yr B.P. Fossil beetle assemblage data in this time range support the interpretation of climate made from the observed glacier behavior. At Rucañancu, a pollen assemblage containing upper montane podocarp (Podocarpus andinus) in quantities reaching 34% and dating between 10,440 and 10,000 yr B.P. implies a cold climate with summer temperatures possibly 5–8°C lower than today's. Holocene warming began afterward, later than the glacier and beetle records indicate, and continued until at least 8350 yr B.P., as suggested by the sequence of assemblages dominated by Myrtaceae, by Aextoxicon punctatum, and by Gramineae. A subsequent assemblage of Nothofagus obliqua type implies an increase of moisture until 6960 yr B.P., following which N. dombeyi type, under a cool and humid Neoglacial climate, became dominant.  相似文献   

19.
中晚全新世科尔沁沙地沉积物化学特征及其气候变化   总被引:1,自引:0,他引:1  
刘冰  靳鹤龄  孙忠 《沉积学报》2012,30(3):536-546
科尔沁沙地位于我国沙漠-黄土边界带和北方农牧交错带,深受东亚季风的影响,对全球气候变化反应非常敏感,是研究全球气候变化的理想区域。TL剖面磁化率、粒度和地球化学元素氧化物及其比值变化分析表明:中晚全新世研究区气候极不稳定,可以大致划分为:① 6.0~4.2 ka BP,气候暖湿,夏季风逐渐增强,并占据主导,冬季风较弱,与全新世大暖期对应,但存在百年尺度的气候波动,其中:6.0~5.6 ka BP,5.5~5.4 ka BP,4.9~4.7 ka BP,4.5~4.2 ka BP气候暖湿;5.6~5.5 ka BP,5.4~4.9 ka BP,4.7~4.5 ka BP气候相对冷干。② 4.2~1.3 ka BP,气候相对暖湿,与上一阶段相比夏季风有所减弱,其间也存在次一级波动,4.2~3.63 ka BP,3.57~3.4 ka BP气候相对干冷;3.63~3.57 ka BP,3.4~1.3 ka BP,气候相对暖湿。③ 1.3~0.65 ka BP以来,气候波动频繁,后期有向暖湿发展的趋势。这些气候变化与区域和全球变化具有良好的对应关系,反映该区气候变化与全球气候变化具有高度一致性。  相似文献   

20.
The paper reviews pollen analytical and palaeoenvironmental work carried out on saline lakes in western Rajasthan, northwest India. The saline lakes are salient geomorphological features within the arid and semi-arid landscapes to the west of the Aravalli mountain ranges. Preliminary palynological work was carried out on two profiles from a gypsum-rich lake depression around Thob (District of Barmer). The varied pollen data are indicative of a fluctuating vegetational assemblage, possibly in response to local hydrological conditions and not necessarily indicative of climatic change. Pollen of Ephedra sp. (a typical desert species) in the lower levels suggests episodes of relatively dry conditions during the early phase of lake sedimentation at the end of the Pleistocene. Other work at four lake sites, on the basis of pollen analysis has indicated shifts in climatic and vegetational belts during the early Holocene, especially during the period of Indus Valley Culture. Later in the Holocene, between 5000 and 3500 yr BP, rainfall variations have been related to the dynamics of the monsoon. Pioneering geoarchaeological studies carried out at the palaeolithic site of 16 R and the adjacent Didwana lake have illustrated palaeoclimatic fluctuations and accompanying changes in cultural stages from the lower palaeolithic to mesolithic. These studies have been extended geochemically and sedimentologically through a detailed study documenting a history of salinity from 20000 to 13000 yr BP and freshwater conditions from 9000 to 6000 yr BP. Later studies have illustrated a sequence of changes reflecting summer and winter precipitation. These have indicated steppe vegetation during the last Glacial Maximum along with hypersaline lake conditions at Didwana, inferring a weakened summer monsoon and relatively high winter precipitation. The taxa indicative of both summer and winter precipitation in the mid-Holocene declined during the late Holocene, at the same time as falling lake levels around 4000 yr BP, a time when other lakes, at Sambhar, Lunkaransar and Pachpadra, also became ephemeral. © 1997 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号