首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 125 毫秒
1.
干湿循环对非饱和膨胀土抗剪强度影响的试验研究   总被引:1,自引:0,他引:1  
徐丹  唐朝生  冷挺  李运生  张岩  王侃  施斌 《地学前缘》2018,25(1):286-296
膨胀土是一种气候敏感性土体,研究在干湿循环过程中膨胀土剪切强度的变化,对了解在自然界周期性蒸发和降雨作用下原位膨胀土体工程性质的变化以及由此导致的地质灾害发生过程具有重要意义。文中以重塑非饱和膨胀土为研究对象,模拟了3次干湿循环过程,对每次干燥路径中的试样进行了直剪试验,重点分析含水率、正压力及干湿循环次数对膨胀土剪切强度的影响,得到如下主要结果:(1)在干燥过程中,随着含水率的减小,试样的刚度、脆性、抗剪强度值(峰值剪切应力)、抗剪强度指标(黏聚力、内摩擦角)及抗剪强度损失(峰值强度与残余强度之差)均呈增加趋势;(2)正压力越高,试样的剪切强度和残余强度越大,而破坏后的峰值强度损失越小,破坏韧性增加;(3)在3次干燥过程中,试样的剪切强度及黏聚力呈先增加后减小的趋势,在第二次干燥过程中达到峰值,但内摩擦角受干湿循环的影响无明显规律;(4)试样经历多次干湿循环后,其剪切特性越来越类似于超固结土,脆性显著增加;(5)干燥过程和干湿循环对试样残余剪切强度的影响都不明显,残余剪切强度基本都在100 kPa附近变化;(6)非饱和膨胀土在干湿循环及干燥过程中剪切强度的变化除了与吸力有关外,还与其微观结构调整和裂隙发育状态密切相关,需要综合非饱和土力学和土质学理论对试验现象进行分析。  相似文献   

2.
《岩土力学》2017,(3):678-684
采用常规直剪仪对干湿循环作用下的非饱和膨胀土进行了不排水剪切试验,获得了不同含水率试样的总应力抗剪强度指标,可采用总黏聚力和总内摩擦角来反映土体的不排水抗剪性能;采用滤纸法测定了剪切完成后试样固定剪切面的基质吸力,结合直剪试验结果建立了全吸力范围内非饱和膨胀土的抗剪强度模型,通过试验对比验证了模型的合理性。干湿循环会显著降低膨胀土的不排水抗剪强度,其中对土体总黏聚力的削弱程度远大于对总内摩擦角的削弱程度。总应力抗剪强度指标与基质吸力的对数值近似为线性关系,土体抗剪强度随着基质吸力的增加而非线性增大,增大速率逐渐减小。试验结果表明,采用常规直剪仪和滤纸法开展干湿循环条件下非饱和膨胀土的抗剪强度研究是可行的。  相似文献   

3.
改良膨胀土胀缩裂隙及与抗剪强度的关系研究   总被引:1,自引:1,他引:0       下载免费PDF全文
为研究改良膨胀土的裂隙发育特征及其对抗剪强度的影响,对掺不同比例的石灰、风化砂的膨胀土进行饱和干湿循环,利用图像处理技术对土样表面裂隙图像进行裂隙参数提取,并进行饱和抗剪强度试验。研究表明:石灰和风化砂能够有效地限制裂隙的发育。裂隙率随着循环次数的增加呈线性增长,而改良膨胀土的黏聚力和内摩擦角随着循环次数的增加分别呈对数和幂函数衰减;裂隙率和黏聚力之间具有较好的指数函数关系,而改良土的内摩擦角和裂隙率之间存在对数函数关系;膨胀土的改良效果可考虑结合裂隙指标进行评价。  相似文献   

4.
利用电动应变控制式直剪仪及直剪/残余剪切试验仪对南水北调磁县段不同黏粒含量的原状膨胀土进行快剪、饱和快剪、饱和固结快剪和反复直剪试验,研究黏粒含量对其抗剪强度的影响。研究表明:饱和后试样的抗剪强度明显降低,固结后强度提高,且饱和作用对黏粒含量较大的中膨胀土强度的削弱作用更为显著,固结作用对黏粒含量较小的弱膨胀土强度的治愈作用更显著; 随黏粒含量的增大,黏聚力逐渐减小,内摩擦角则先减后增,其临界值在32%左右; 峰值强度后的抗剪强度降低幅度随黏粒含量的增加而增大; 土体的峰值强度f随黏粒含量则先减后增,变化趋势比较平缓; 残余强度r随黏粒含量增加逐渐减小,成指数关系; 残余强度内摩擦角r与黏粒含量成对数关系,黏聚力cr则比较离散。  相似文献   

5.
膨胀土的干湿循环性状在膨胀土边坡的稳定性分析中占有重要地位。结合膨胀土边坡的现场含水率观测数据和南宁地区大气影响深度的计算结果,确定了室内试验的干湿循环幅度并进行了膨胀土强度干湿循环室内试验,对干湿循环引起膨胀土强度指标衰减的变化规律进行了初步探讨; 在此基础上,结合干湿循环效应对膨胀土边坡进行了稳定性分析。研究结果表明:(1)膨胀土的黏聚力随干湿循环次数递增而减小,第1~2次循环时黏聚力衰减程度最强,但经历2~3次循环后,黏聚力衰减程度减弱,最终趋向稳定; 干湿循环次数引起内摩擦角的波动变化极小,基本保持一恒定值。(2)干湿循环的强度稳定值与稳定时所需循环次数均随含水率变化幅度的增加而减小。(3)由于干湿循环效应,膨胀土的粒间联结产生了不可逆的损伤,致使土体微结构劣化、抗剪强度降低。(4)随着干湿循环次数的增加,边坡稳定性降低,安全系数递减; 结合当地大气影响深度对膨胀土边坡进行干湿循环分层的稳定性分析方法更符合工程实际,可为相关边坡设计和防护的计算参数选取提供参考。  相似文献   

6.
裂缝对膨胀土抗剪强度指标影响的试验研究   总被引:11,自引:1,他引:10  
刘华强  殷宗泽 《岩土力学》2010,31(3):727-731
基于室内直剪试验,测定了膨胀土经历干湿循环后的抗剪强度指标。试验基本反映了膨胀土在干湿循环过程中裂缝的开展现象,揭示了正是由于裂缝的开展使膨胀土强度降低。结果表明,无论是黏聚力还是内摩擦角随裂缝的开展,都会产生一定程度的衰减,相比之下,裂缝对黏聚力的影响更加突出,对其取值也应更为谨慎。膨胀土的抗剪强度随裂缝的开展而衰减的规律符合双曲线模式,提出反映膨胀土抗剪强度随干湿循环次数增加,实际上是随裂缝的开展,而降低规律的经验公式。工程实际中膨胀土的抗剪强度反映的是包含各种裂隙的土体复合强度,因此在设计中,强度参数的取用应以考虑裂隙作用的土体强度为基本依据。所建议的方法可以使今后研究膨胀土裂隙的发生、发展对抗剪强度的影响变得相对简单,具有可操作性。  相似文献   

7.
《岩土力学》2017,(Z2):191-196
以桂林雁山红黏土为研究对象,对经历不同干湿循环次数后的试样进行快剪试验,得到其剪切强度,研究自然状态下反复的降雨和干旱气候对土体强度的影响。试验结果表明,经历多次干湿循环后饱和状态下红黏土样无明显峰值,为应变硬化;干燥状态下土样出现明显峰值,为应变软化,且其曲线前部还出现"平台"状,随着干湿循环次数的增多,饱和状态下和干燥状态下的黏聚力均逐渐降低,而两者的内摩擦角则均呈现整体逐渐增大的趋势,干燥状态下土样的抗剪强度参数均较饱和状态下的土样大,黏聚力和内摩擦角的变化幅度都十分显著。为进一步研究干湿循环对土样抗剪强度及剪切强度参数的影响,量测了干湿循环过程中试样的体积变化情况后发现,随着循环次数的增多,试样体积先不断地减小,然后基本保持不变。  相似文献   

8.
干湿和冻融循环作用下黄土强度劣化特性试验研究   总被引:9,自引:4,他引:5  
李丽  张坤  张青龙  毛云程  李国玉 《冰川冻土》2016,38(4):1142-1149
通过室内试验模拟土体季节性的干湿和冻融交替变化,采用直剪试验测试了原状黄土经干湿和冻融循环作用后的抗剪强度及抗剪强度参数的变化,并进行了直剪后试样的易溶盐总量测定.结果表明:干湿和冻融循环作用对原状黄土物理力学性质影响极大,是造成黄土边坡破坏的主要因素.随着干湿循环次数的增加,试样的抗剪强度逐渐减小,黏聚力逐渐减小,内摩擦角先增加,后逐渐趋于稳定,盐分迁移现象明显,土样下部易溶盐含量逐渐减少,上部易溶盐含量逐渐增加,并且试样的质量损失逐渐增加;随着冻融循环次数的增加,试样的抗剪强度逐渐减小,黏聚力逐渐增大最后趋于稳定,而内摩擦角和盐分迁移现象不明显.  相似文献   

9.
针对传统膨胀土边坡稳定性分析中无法考虑膨胀土在降雨入渗过程中抗剪强度动态衰减的问题,本文开展了室内直剪试验,系统研究了干密度和含水量变化对膨胀土抗剪强度指标的影响;同时,以试验抗剪强度结果为参数,开展了基于强度折减法的膨胀土边坡稳定性分析,获得了抗剪强度动态衰减过程中边坡稳定性的变化规律。结果表明,含水量的增加和干密度降低会造成膨胀土黏聚力和内摩擦角的衰减,黏聚力衰减显著,内摩擦角衰减较少;膨胀土边坡稳定性主要受风化层土体含水量控制,随着膨胀土含水量的增加,膨胀土边坡逐渐由稳定状态演变为欠稳定状态;干密度对膨胀土边坡稳定性的影响则相对较小。  相似文献   

10.
应用计算机图像处理技术和三轴试验分析了干湿循环下红黏土裂隙演化规律和抗剪强度指标的变化规律,建立了红黏土的抗剪强度指标与裂隙密度的关系,采用强度指标折减法对边坡稳定性计算参数进行了探讨。结果表明,裂隙密度随干湿循环次数的增加而增大,最终趋于稳定,第一次和第二次干湿循环作用对红黏土的裂隙发育影响最大。干湿循环下红黏土应力-应变为弱硬化型,破坏形式为鼓胀破坏。干湿循环显著降低红黏土抗剪强度指标,第一次衰减幅度很大,最终强度指标趋于稳定状态。黏聚力的衰减幅度比内摩擦角明显大。干湿循环下边坡稳定性计算参数取值建议采用长期强度指标值,即黏聚力稳定值为未经循环值的54%~57%,内摩擦角稳定值为未经循环值的45%~63%。干湿循环下红黏土抗剪强度指标与裂隙密度的关系可用二次多项式来拟合。  相似文献   

11.
基于工程包边法的膨胀土抗剪强度干湿循环效应试验研究   总被引:4,自引:0,他引:4  
根据包边法施工中填芯重塑膨胀土和包边石灰改性膨胀土的实际工程状态,设计了反映其运营状态的干湿循环过程,对6次干湿循环前、后膨胀土的强度特性进行了较为系统地试验研究。结果表明,在压实度为90%~96%时,干湿循环前重塑膨胀土和石灰改性膨胀土慢剪强度及强度参数均随干密度单调增加,而干湿循环后其黏聚力c随干密度单调增加,干密度对内摩擦角φ的影响则明显变小;重塑膨胀土和石灰改性膨胀土干湿循环后的残余强度受干密度制约性不大,但干湿循环前、后重塑膨胀土和石灰改性膨胀土的残余强度参数存在差异,且干湿循环幅度对膨胀土强度参数也有一定的影响;在分析干湿循环前、后反复剪切试验结果及膨胀土边坡长期破坏机制的基础上,认为对于膨胀土路堤,在进行强度参数选取时宜适当考虑干湿循环及其幅度对于残余强度参数的影响;利用石灰改性膨胀土包边处理填筑膨胀土路基较为适宜。  相似文献   

12.
干湿循环下滑带土强度特性与微观结构试验研究   总被引:1,自引:0,他引:1  
江强强  刘路路  焦玉勇  王浩 《岩土力学》2019,40(3):1005-1012
库区水位周期性波动,巨大的水位变幅使库岸滑坡滑带土处于干湿循环变化之中,而干湿循环作用影响土体的强度特性。基于此,以三峡库区某典型库岸滑坡滑带土体作为研究对象,对经历不同干湿循环次数的土样进行环剪试验、扫描电子显微镜(SEM)试验和核磁共振(NMR)试验,分析干湿循环作用下滑带土强度特性和微观结构变化规律,并初步探讨干湿循环对滑带土强度影响的微观机制。试验结果表明:干湿循环作用下,滑带土残余强度的劣化特性十分明显,且前3次干湿循环导致土体强度衰减幅度较大,之后衰减趋势减弱,土体强度逐渐趋于稳定,同时,黏聚力的劣化效应大于内摩擦角;随干湿循环次数的增加,以叠聚状、凝块状为主的团粒逐渐分散、解体,颗粒间连接由面?面接触逐渐向面?边、面?角接触演化,表现为土体内孔隙数量增多,土颗粒形态变化,粒间距离增加,微小孔隙逐渐向大孔隙演变;干湿循环作用下,滑带土内亲水性黏土矿物吸水膨胀、失水收缩而引发土颗粒、孔隙及胶结物等微结构变化是导致滑带土残余强度劣化的内在原因。  相似文献   

13.
用改造的直剪仪研究了滑带土再生强度与滑动面剩余剪应力比PRSS和强度再生时间的关系。结果表明,滑带土强度再生与上覆滑体压应力关系不大,但较高的剩余剪应力比PRSS妨碍滑带土强度再生,滑带土强度有效再生的界限PRSS在55%到70%之间。剩余剪应力比PRSS小于等于55%时,90 d时滑带土再生强度可达到慢剪强度的70%以上,PRSS大于等于70%时,90 d时滑带土再生强度不足慢剪强度的25%。滑带土强度再生过程中,黏聚力和内摩擦角增速不一致,PRSS小于等于55%时,黏聚力C在前30 d增速较快,30 d时增至慢剪强度[C]的44.6%,此后增速均明显放缓,90 d时其值为慢剪强度[C]的49%。内摩擦角φ在前90 d增速基本一致,90 d时其值占慢剪强度[φ]的90.4%。黏聚力和内摩擦角90 d以后均趋于稳定。  相似文献   

14.
本文以风化砂改良膨胀土的抗剪强度指标为研究对象,通过室内直接剪切试验,研究了在不同垂直荷重作用下,不同掺砂比例及不同含水率对改良膨胀土抗剪强度指标c、值的影响规律及各种不同垂直荷重下的-关系。影响直接剪切试验结果的两个关键因素是试验时的垂直荷重和剪切速率,而现行规范对剪切速率是有明确规定的,但对垂直荷重只有一个推荐性的取值。本文对膨胀土掺入了10%、20%、30%、40%、50%的风化砂,分别配以6%、8%、10%、12%、14%的水,然后在I级垂直荷重(12.5~50kPa)、Ⅱ级垂直荷重(62.5~100kPa)、Ⅲ级垂直荷重(100~400kPa)作用下,进行剪切试验。通过试验研究得知:垂直荷重对改良后膨胀土抗剪强度指标影响较大,随着垂直荷重的减小,掺砂后的膨胀土内摩擦角逐渐增大,黏聚力逐渐减小; 在各级垂直荷重下,在同一含水率状态下,黏聚力均随着掺砂比例的增大而逐渐减小,而内摩擦角均是先增大后减小; 在同一掺砂比例下,黏聚力及内摩擦角均随着含水率的增大而先增大后减小。本试验的研究成果为风化砂改良膨胀土用作公路路基填料提供了试验依据。  相似文献   

15.
吸力对弱膨胀土强度贡献的试验研究与预测分析   总被引:1,自引:1,他引:0  
陈伟  孔令伟  郭爱国  陈建斌 《岩土力学》2008,29(7):1783-1787
对部分应用土-水特征曲线来预测非饱和土抗剪强度的公式进行了归纳分析。应用压力板仪与非饱和三轴仪,测试了荆门原状弱膨胀土的土-水特征曲线和控制吸力的非饱和三轴抗剪强度参数,并将试验结果与各抗剪强度公式的预测值进行对比,分析了各强度公式的局限性。试验结果表明,非饱和原状膨胀土的净法向应力摩擦角随着吸力的不同而变化,根据双应力变量理论确定的吸力对强度的贡献与围压有关,不同围压下吸力对强度的贡献不同,表观凝聚力 与吸力间符合乘幂函数关系。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号