首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
水洗作用对油藏中烃类组成的影响   总被引:17,自引:4,他引:13  
张敏  张俊 《地球化学》2000,29(3):287-292
通过塔木盆地塔中10井油层和水层石炭系储集岩烃类宏观组成和分子地球化学特征研究,认识到油层和水层中储集岩含油率和烃类族组成存在着明显的差异。水洗作用对饱和烃生物标志化合物尤其是二环倍半萜影响较大,水层中倍半萜烷化合物已被消耗殆尽,三环萜烷含量降低, 伽玛蜡烷含量则相对增加;孕甾烷、升孕甾烷和重排甾烷的含量亦相对降低。水洗作用导致储集岩烃类芳烃组成中二苯并噻吩系列化合物的含量显著下降,二环和三环多环  相似文献   

2.
原油生物降解模拟实验及其定量化评价   总被引:1,自引:0,他引:1  
向廷生  黑花丽 《现代地质》2010,24(2):259-267
利用筛选到的优势烃降解复合菌(I菌)对大庆油田3口不同油井的油(西5-P10、三元后和G1131-262)进行不同时间的降解实验和全油GC-MS定量分析,探讨饱和烃、芳烃化合物分布情况变化。实验研究表明I菌为高效烃降解菌;相同微生物对此3种不同原油的降解能力存在明显的差异,所以烃污染现场生物修复试验需要根据不同原油性质选择不同的高效降解菌;对于饱和烃和芳烃生物降解的顺序既有对过去结论的验证又提出新的看法。藿烷的降解在重排甾烷之后,萘比菲先开始降解,三甲基萘比三甲基菲更早开始遭受生物降解,三甲基和四甲基萘在深度生物降解后会达到一个平衡,之后的降解速度减慢。当生物降解到一定阶段,抗生物降解能力强的多环芳烃富集会加重对环境的毒害,因此,多环芳烃降解菌或萘、菲降解菌等特效菌是未来烃污染环境修复工作的重点。  相似文献   

3.
芳烃化合物是烃源岩和原油中非常重要的有机族组分,与饱和烃一样含有丰富的地球化学信息。应用GC-MS能检测到的芳烃化合物可分为常规多环芳烃、含NSO杂环芳烃、芳香甾萜烷及脱羟基维生素E。它们的一些参数可作为母质来源、热成熟度、沉积环境和油气运移判识的有效指标,是饱和烃地球化学研究的重要补充和佐证,对油气勘探与开发有重要的实际意义,但生物降解、混源油等因素会影响这些参数的正确性。应用全二维气相色谱-飞行时间质谱仪(GC×GC-TOF)对生物降解油芳烃中的鼓包化合物UCM(unresolve dcomple xmixtures)进行探索性研究取得了一定的效果,这也将是今后芳烃研究的重要方向。  相似文献   

4.
东营凹陷生物降解稠油甾烷分子的选择蚀变   总被引:1,自引:0,他引:1  
为分析生物降解原油中甾烷生物标志物分子发生选择性蚀变的先后顺序及生物降解作用对甾烷分子成熟度参数的影响,在渤海湾盆地东营凹陷广饶潜山油藏选择了发生不同程度生物降解作用的原油,利用色谱质谱(GC-MS)仪对其中甾烷进行了定量测试分析和对比。结果发现在生物降解过程中,不同级别的生物降解作用对甾烷具有不同程度的影响:6级以下的生物降解作用对甾烷的降解能力有限,甾烷及其相关化合物比值没有可以识别的改变;6级以上的严重生物降解作用会对甾烷生物标志物的相关参数产生显著的影响。在严重生物降解原油中(级别≥6):甾烷系列被降解和蚀耗的先后顺序为,ααα20R>αββ20R>αββ20S≥ααα20S,C27>C29>C28,规则甾烷优先于重排甾烷发生降解,C27,C28,C29甾烷优先于C20,C21甾烷发生降解;甾烷生物标志物分子参数C2920S/(20S+20R),C29ββ/(ββ+αα)会发生显著升高,不能真实反映成熟度大小。研究结果为正确评价生物降解原油的成熟度及甾烷生物标志物分子的选择性蚀变提供了新的科学依据。  相似文献   

5.
辽东凹陷南洼斜坡带旅大29油田在沙河街组二段获得了高产轻质原油和天然气,展现了良好的勘探潜力。为了进一 步明确其原油母质来源、沉积环境和烃源岩层位,对原油、油砂样品和围区烃源岩样品进行了系统的地球化学分析和油源 对比。研究结果表明,原油为低硫(0.0733%)、高蜡(20.77%) 的轻质成熟原油。原油样品饱和烃色谱完整,主峰碳为 C19,显示未遭受明显生物降解作用。油砂样品埋藏较浅,部分遭受生物降解等的影响,饱和烃色谱基线呈现明显的 “UCM”鼓包现象。原油和油砂样品具有低C19 三环萜烷/C23 三环萜烷(0.10~0.18)、低C24 四环萜烷/C26 三环萜烷(0.49~ 0.53)、低C27重排甾烷/C27甾烷(0.30~0.43)、中等伽马蜡烷指数(0.14~0.17) 和中等-高4-甲基甾烷参数(0.30~0.36),且 具有相对较重的全油碳同位素值(-27.1‰)。原油母质形成于淡水—微咸水的湖泊沉积环境,母源有机质以藻类等低等水 生生物为主,陆源有机质输入较少。旅大29油田原油主要来源于辽中凹陷和辽东凹陷沙三段烃源岩,同时有少量辽中凹陷 沙四段烃源岩的贡献。研究区高蜡轻质原油的形成主要受控于烃源岩母质来源,藻类等低等水生生物是高蜡轻质原油形成 的重要母质。  相似文献   

6.
辽东凹陷南洼斜坡带旅大29油田在沙河街组二段获得了高产轻质原油和天然气,展现了良好的勘探潜力。为了进一 步明确其原油母质来源、沉积环境和烃源岩层位,对原油、油砂样品和围区烃源岩样品进行了系统的地球化学分析和油源 对比。研究结果表明,原油为低硫(0.0733%)、高蜡(20.77%) 的轻质成熟原油。原油样品饱和烃色谱完整,主峰碳为 C19,显示未遭受明显生物降解作用。油砂样品埋藏较浅,部分遭受生物降解等的影响,饱和烃色谱基线呈现明显的 “UCM”鼓包现象。原油和油砂样品具有低C19 三环萜烷/C23 三环萜烷(0.10~0.18)、低C24 四环萜烷/C26 三环萜烷(0.49~ 0.53)、低C27重排甾烷/C27甾烷(0.30~0.43)、中等伽马蜡烷指数(0.14~0.17) 和中等-高4-甲基甾烷参数(0.30~0.36),且 具有相对较重的全油碳同位素值(-27.1‰)。原油母质形成于淡水-微咸水的湖泊沉积环境,母源有机质以藻类等低等水 生生物为主,陆源有机质输入较少。旅大29油田原油主要来源于辽中凹陷和辽东凹陷沙三段烃源岩,同时有少量辽中凹陷 沙四段烃源岩的贡献。研究区高蜡轻质原油的形成主要受控于烃源岩母质来源,藻类等低等水生生物是高蜡轻质原油形成 的重要母质。  相似文献   

7.
生物降解原油地球化学研究新进展   总被引:18,自引:0,他引:18  
生物降解作用是原油的一种重要的蚀变作用,对原油的物性和经济价值有着负面的影响。全球石油大多遭受过生物降解。生物降解作用对常见生物标志物的影响得以较好的描述,综述了近年来高分子量正构烷烃、三环萜烷、25 降藿烷生物降解的新进展。目前对生物降解作用的细节、发生机理尚不十分清楚,讨论了原油喜氧和厌氧降解机制,认为厌氧作用可能起主导作用,降解速率很慢。温度是控制生物降解作用的重要因素,储层温度大于80℃不会发生生物降解作用。生物降解原油多为混源油,介绍了研究生物降解原油的多期成藏方法。沥青质不易生物降解,其热解产物及钌离子催化氧化产物在生物降解原油对比、油源对比中具有重要的作用;最后指出了今后的发展方向。  相似文献   

8.
塔里木盆地原油噻吩类化合物的组成特征及地球化学意义   总被引:9,自引:1,他引:8  
张敏  张俊 《沉积学报》1999,17(1):120-126
对塔里木盆地典型原油噻吩类化合物含量和组成特征研究,发现不同类型原油苯并萘噻吩和二苯并噻吩系列化合物占芳烃化合物的百分含量相差明显,海相油含量最高,湖相油次之,而煤成油最低。本文提出了4-甲基二苯并噻吩/二苯并噻吩、(2+3)-甲基二苯并噻吩/二苯并噻吩比值是区分海相油和湖相油新的有机地球化学参数。二苯并噻吩系列化合物最大烷化度表明海相油呈现出高烷化度,而陆相油则表现为低烷化度,即从海相泥灰岩原油、海相碳酸盐岩原油到湖相油和煤成油依次减少。这是因为富硫与贫硫干酪根在生烃过程中的环化作用或支链化作用程度差异所造成的。  相似文献   

9.
东营凹陷北部陡坡带稠油地球化学特征与成因   总被引:6,自引:1,他引:6  
对东营凹陷北部陡坡带郑家—王庄地区稠油与相对稀油烃类组成进行了定性与定量分析。发现多数原油遭受不同程度的破坏 ,饱和烃、芳烃馏分呈有序缺失 ,于多数原油中检测到生物降解标志物 2 5 -降藿烷系列。地质与地球化学综合研究认为 ,以生物降解—氧化及相关的生化 /化学作用、以水洗—重力分异—轻质组分逸散为主的物理作用是郑家—王庄原油稠化的重要机理 ;东营凹陷北部“有限后退型”盆地边界发育的风化壳潜山、砂砾岩扇体储层孔渗条件好、油藏埋深浅、盖层条件差和不整合面等通道与外界的连通是郑家—王庄及邻区重质油形成的根本原因。提出生物标志物绝对定量可作为识别原油遭受次生改造作用程度、判断不同类型生物标志物抵抗降解能力大小的有效指标。利用生物标志物 ,发现郑家—王庄局部地区原油具有不同降解级别原油相混的混合现象 ,可能反映两次或多次充注。郑家—王庄及其邻区有望获得相对稀油新增储量。  相似文献   

10.
借助于定量GC—MS分析技术,系统分析了一组取自辽河油田生物降解程度不同的原油芳烃馏分中三芴系列的组成特征。结果表明在生物降解过程中三芴系列化合物很容易遭受生物降解。母体三芴化合物在原油轻微降解阶段抗降解能力相似,其相对组成保持基本稳定,仍可指示沉积环境的性质;但进入中等及以上程度降解作用后,抗生物降解能力出现差异,相对组成发生变异,失去其环境意义。在甲基三芴系列中,甲基硫芴的抗降解能力强于甲基芴和甲基氧芴,降解速率不一致,组成特征不断变化,使甲基三芴系列相对组成不能指示沉积环境的性质。“三芴系列”被细菌消耗的速率不同,整个生物降解过程中其相对组成都在发生变化,因此对生物降解原油而言,无论其降解程度如何,“三芴系列”相对组成特征均不能有效的指示沉积环境的性质。  相似文献   

11.
Gross compositions and distribution of saturated and aromatic hydrocarbons in Carboniferous sandstone reservoire rocks in oil and water zones for Tzhong-10 well of the Zhongyang Uplift in the Tarim Basin were studied in dteail by means of Rock-Eval Pyrolysis,thin-chromatograph-flame ionization detection(TLC-FID),gas chromatography,gas chromatography-mass spectrometry.The results suggest that the gross composition of reservoir hydrocarbons between the oil zone and the water zone show significant differences,Water wahing has a dramatic effect on saturated hydrocarbon blomarkers,especially drimane series compounds,Drimane series compounds in the water zone have been depleted completely.However,the contents of tricyclic iterpanes and pentacyclic triterpanes tend to decrease slightly,but the water-zone reservoir hydrocarbons contian a large amount of gammacerane.This suggests that gammacerane be more resistant to water washing than diterpanes and homohopanes.The contents of pregnane,homopregrane,diasteranes relastively decrease as a result of water washing.Water washing has a noticeable effect on polycyclic aromatic hydrocarbon compounds,especially aromatic sulfur compounds,and the contents of dibenzothiophene series compounds and benzonaplyiothipophene decrease significantly as a result of water washing.However,the conterts of bicyclic and tricyclic aromatic hydrocarbons decrase slightly and those of tetracyclic and pentacyclic aromatic hydrocarbons,especially benzofluoranthene and benzopyrenes,increase markedly owing to adecrease in light aromatie hydrocarbons as a result of water washing.  相似文献   

12.
For our ancestors, oil seeps were both a fascination and a resource but as the planet's reserves of high quality low density oil becomes increasingly depleted, so there is now a renewed interest in heavier,biodegraded oils such as those encountered in terrestrial seeps. One such seep is Pitch Lake in the Caribbean island of Trinidad, which is the largest natural deposit of asphalt in the world. At the northern end of the Caribbean, oil emerges along a tectonic contact on the island on Cuba. The sources of the oils from these seeps are relatively recent and both are subject to intense weathering due to the tropical conditions. When analysed by gas chromatography(GC) both oils appear as unresolved complex mixtures(UCM) and show a very high degree of biodegradation thus presenting an analytical challenge. In this case study, these two Caribbean seep oils were analysed by comprehensive two dimensional GC with time of flight mass spectrometry(GC×GC-TOFMS) to expose many thousands of the individual compounds that comprise the UCM. The high chromatographic resolution of the GC×GC-TOFMS produced good quality mass spectra allowing many compounds including molecular fossil ‘biomarkers' to be identified. Compound classes included diamondoid hydrocarbons, demethylated hopanes and secohopanes, mono-and tri-aromatic steroids. D-ring aromatised structures of the 8,14-seco-hopanes,including demethylated forms were present in both oils but further demethylation, probably at position C-25 during biodegradation, was only observed in the Pitch Lake oil. Many polycyclic aromatic hydrocarbons(PAHs) were absent although the fungal-derived pentacyclic PAH perylene was present in both oils. The presence of the angiosperm biomarker lupane in the Pitch Lake oil constrained the age to the Late Cretaceous. The higher degree of biodegradation observed in the Cuban oil was likely due to relatively slow anaerobic processes whereas oil within Pitch Lake was probably subject to additional more rapid aerobic metabolism within the lake.  相似文献   

13.
A suite of 18 oils from the Barrow Island oilfield, Australia, and a non-biodegraded reference oil have been analysed compositionally in order to detail the effect of minor to moderate biodegradation on C5 to C9 hydrocarbons. Carbon isotopic data for individual low molecular weight hydrocarbons were also obtained for six of the oils. The Barrow Island oils came from different production wells, reservoir horizons, and compartments, but have a common source (the Upper Jurassic Dingo Claystone Formation), with some organo-facies differences. Hydrocarbon ratios based on hopanes, steranes, alkylnaphthalenes and alkylphenanthrenes indicate thermal maturities of about 0.8% Rc for most of the oils. The co-occurrence in all the oils of relatively high amounts of 25-norhopanes with C5 to C9 hydrocarbons, aromatic hydrocarbons and cyclic alkanes implies that the oils are the result of multiple charging, with a heavily biodegraded charge being overprinted by fresher and more pristine oil. The later oil charge was itself variably biodegraded, leading to significant compositional variations across the oilfield, which help delineate compartmentalisation. Biodegradation resulted in strong depletion of n-alkanes (>95%) from most of the oils. Benzene and toluene were partially or completely removed from the Barrow Island oils by water washing. However, hydrocarbons with lower water solubility were either not affected by water washing, or water washing had only a minor effect. There are three main controls on the susceptibility to biodegradation of cyclic, branched and aromatic low molecular weight hydrocarbons: carbon skeleton, degree of alkylation, and position of alkylation. Firstly, ring preference ratios at C6 and C7 show that isoalkanes are retained preferentially relative to alkylcyclohexanes, and to some extent alkylcyclopentanes. Dimethylpentanes are substantially more resistant to biodegradation than most dimethylcyclopentanes, but methylhexanes are depleted faster than methylpentanes and dimethylcyclopentanes. For C8 and C9 hydrocarbons, alkylcyclohexanes are more resistant to biodegradation than linear alkanes. Secondly, there is a trend of lower susceptibility to biodegradation with greater alkyl substitution for isoalkanes, alkylcyclohexanes, alkylcyclopentanes and alkylbenzenes. Thirdly, the position of alkylation has a strong control, with adjacent methyl groups reducing the susceptibility of an isomer to biodegradation. 1,2,3-Trimethylbenzene is the most resistant of the C3 alkylbenzene isomers during moderate biodegradation. 2-Methylalkanes are the most susceptible branched alkanes to biodegradation, 3-methylalkanes are the most resistant and 4-methylalkanes have intermediate resistance. Therefore, terminal methyl groups are more prone to bacterial attack compared to mid-chain isomers, and C3 carbon chains are more readily utilised than C2 carbon chains. 1,1-Dimethylcyclopentane and 1,1-dimethylcyclohexane are the most resistant of the alkylcyclohexanes and alkylcyclopentanes to biodegradation. The straight-chained and branched C5–C9 alkanes are isotopically light (depleted in 13C) relative to cycloalkanes and aromatic hydrocarbons. The effects of biodegradation consistently lead to enrichment in 13C for each remaining hydrocarbon, due to preferential removal of 12C. Differences in the rates of biodegradation of low molecular weight hydrocarbons shown by compositional data are also reflected in the level of enrichment in 13C. The carbon isotopic effects of biodegradation show a decreasing level of isotopic enrichments in 13C with increasing molecular weight. This suggests that the kinetic isotope effect associated with biodegradation is site-specific and often related to a terminal carbon, where its impact on the isotopic composition becomes progressively ‘diluted’ with increasing carbon number.  相似文献   

14.
山东东营凹陷八面河油田稠油成因分析   总被引:8,自引:2,他引:6  
东营凹陷八面河地区原油物性呈规律性的变化,偏离生油中心的构造高部位主要分布稠油,靠近生油中心的构造低部位主要分布正常油。对原油族组成与化学成分的分析表明,八面河油田稠油具有低饱芳比、饱和烃含量低、链烷烃与低分子量萘、菲等轻质馏分严重缺失等轻度-中等降解油特征,邻区草桥油田稠油含较为完整的生物降解标志物--25-降藿烷系列,系严重降解油,反映该区稠油的形成与次生变化有关。同区具有相同或相似油气成因的沙子岭原油的成熟度(C29甾烷ααα20S/(S+R)值为0.24~0.25)低于八面河的(C29甾烷ααα20S/(S+R)值为0.31~0.44),为典型未熟-低熟油。沙子岭的轻度或未降解油同样表现为正常油,反映八面河地区低温成烃与稠油无必然的联系,进一步验证八面河稠油主系次生成因。处于构造高部位的油藏由于埋深浅、保存条件差,导致水洗、生物降解等次生变化相对较强,最终形成稠油。  相似文献   

15.
The hydrocarbon occurrences of asphalts, heavy oils and oil shales in the Dead Sea area and the possible genetic relation between them have been studied. The similarity in organochemical characteristics, i.e., the elemental composition of asphaltenes, the distribution pattern of the saturated hydrocarbons and the predominance of V (over Ni)-porphyrins in both the oils and the asphalts indicate a close relation between them. On the other hand, dissimilarities in the same organochemical characteristics in both the asphalts and the oil shale exclude the hypotheses that asphalt was generated and expelled from the oil shales or that the shales were contaminated by oils. Water washing and biodegradation are considered to be the processes through which preferential depletion of hydrocarbons occurred, altering the oils to asphalts. The burial of the degraded asphalt to a relatively great depth resulted in a secondary generation of small amounts of light saturated hydrocarbons in these asphalts. The oils, which are thought to be the precursors of the asphalts, have either been flushed into the Dead Sea depression from the surrounding elevated areas or have seeped upwards from deep local accumulations in the graben.  相似文献   

16.
<正>The Silurian stratum in the Tazhong uplift is an important horizon for exploration because it preserves some features of the hydrocarbons produced from multi-stage tectonic evolution.For this reason,the study of the origin of the Silurian oils and their formation characteristics constitutes a major part in revealing the mechanisms for the composite hydrocarbon accumulation zone in the Tazhong area.Geochemical investigations indicate that the physical properties of the Silurian oils in Tazhong vary with belts and blocks,i.e.,heavy oils are distributed in the TZ47-15 well-block in the North Slope while normal and light oils in the No.Ⅰfault belt and the TZ16 well-block,which means that the oil properties are controlled by structural patterns.Most biomarkers in the Silurian oils are similar to that of the Mid-Upper Ordovician source rocks,suggesting a good genetic relationship. However,the compound specific isotope of n-alkanes in the oils and the chemical components of the hydrocarbons in fluid inclusions indicate that these oils are mixed oils derived from both the Mid-Upper Ordovician and the Cambrian-Lower Ordovician source rocks.Most Silurian oils have a record of secondary alterations like earlier biodegradation,including the occurrence of "UCM" humps in the total ion current(TIC) chromatogram of saturated and aromatic hydrocarbons and 25-norhopane in saturated hydrocarbons of the crude oils,and regular changes in the abundances of light and heavy components from the structural low to the structural high.The fact that the Silurian oils are enriched in chain alkanes,e.g.,n-alkanes and 25-norhopane,suggests that they were mixed oils of the earlier degraded oils with the later normal oils.It is suggested that the Silurian oils experienced at least three episodes of petroleum charging according to the composition and distribution as well as the maturity of reservoir crude oils and the oils in fluid inclusions.The migration and accumulation models of these oils in the TZ47-15 well-blocks,the No.Ⅰfault belt and the TZ16 well-block are different from but related to each other.The investigation of the origin of the mixed oils and the hydrocarbon migration and accumulation mechanisms in different charging periods is of great significance to petroleum exploration in this area.  相似文献   

17.
流体包裹体成分分析技术(MCI)是应用分子有机地球化学参数研究烃类包裹体成分的一种方法。它与常规技术相比具有三个显著优点:可以分析包裹体内烃类组成,达到分子级水平;使用化学试剂氧化处理包裹体表面污染物,避免高温操作影响流体包裹体烃类组成;空白实验贯穿全过程以确保包裹体的清洁性。该技术能够成功解决源岩、成熟度、油气充注期次及油气二次蚀变等问题。选取塔中47井石炭系和志留系的两块样品进行了MCI分析,取得正构烷烃、萜烷、甾烷等分布参数。结果显示,塔中47油藏中石炭系与志留系原油属同源;与油砂抽提物相比,包裹体烃类的成熟度较低;志留系油砂与包裹体烃类有不同的母源;志留系中至少存在两期油气充注,其晚期充注的油气有轻微水洗或生物降解作用。  相似文献   

18.
The occurrence and distribution of polycyclic aromatic hydrocarbons (PAHs) has been studied in oil columns from the Liaohe basin, NE China, characterized by varied degrees of biodegradation. The Es3 oil column has undergone light to moderate biodegradation – ranging from levels 2 to 5 on the [Peters, K.E., Moldowan, J.M., 1993. The Biomarker Guide: Interpreting Molecular Fossils in Petroleum and Ancient Sediments. Prentice Hall, Englewood Cliffs, NJ, p. 363] scale (abbreviated as ‘PM level’) – while the shallower Es1 column has undergone more severe biodegradation, ranging from PM level 5 to 8. Both columns show excellent vertical biodegradation gradients, with degree of biodegradation increasing with increasing depth toward the oil–water contact (OWC). The compositional gradients in the oil columns imply mass transport control on degradation rates, with degradation occurring primarily at the OWC. The diffusion of hydrocarbons to the OWC zone will be the ultimate control on the maximum degradation rate. The chemical composition and physical properties of the reservoired oils, and the ‘degradation sequence’ of chemical components are determined by mixing of fresh oil with biodegraded oil.The PAH concentrations and molecular distributions in the reservoired oils from these biodegraded columns show systematic changes with increasing degree of biodegradation. The C3+-alkylbenzenes are the first compounds to be depleted in the aromatic fraction. Concentrations of the C0–5-alkylnaphthalenes and the C0–3-alkylphenanthrenes decrease markedly during PM levels 3–5, while significant isomer variations occur at more advanced stages of biodegradation (>PM level 4).The degree of alkylation is a critical factor controlling the rate of biodegradation; in most cases the rate decreases with increasing number of alkyl substituents. However, we have observed that C3-naphthalenes concentrations decrease faster than those of C2-naphthalenes, and methylphenanthrenes concentrations decrease faster than that of phenanthrene. Demethylation of a substituted compound is inferred as a possible reaction in the biodegradation process.Differential degradation of specific alkylated isomers was observed in our sample set. The relative susceptibility of the individual dimethylnaphthalene, trimethylnaphthalene, tetramethylnaphthalene, pentamethylnaphthalene, methylphenanthrene, dimethylphenanthrene and trimethylphenanthrene isomers to biodegradation was determined. The C20 and C21 short side-chained triaromatic steroid hydrocarbons are degraded more readily than their C26–28 long side-chained counterparts. The C21–22-monoaromatic steroid hydrocarbons (MAS) appear to be more resistant to biodegradation than the C27–29-MAS.Interestingly, the most thermally stable PAH isomers are more susceptible to biodegradation than less thermally stable isomers, suggesting that selectivity during biodegradation is not solely controlled by thermodynamic stability and that susceptibility to biodegradation may be related to stereochemical structure. Many commonly used aromatic hydrocarbon maturity parameters are no longer valid after biodegradation to PM level 4 although some ratios change later than others. The distribution of PAHs coupled with knowledge of their biodegradation characteristics constitutes a useful probe for the study of biodegradation processes and can provide insight into the mechanisms of biodegradation of reservoired oil.  相似文献   

19.
A suite of reservoir cores (oil sands) from a single well in Bohai Bay Basin, East China, displayed a progressive increase in petroleum biodegradation extent on the basis of bulk composition and 25-norhopane content. This fits with the proposal that subsurface petroleum biodegradation is dominantly an anaerobic process and usually occurs at the oil–water contact. It is likely that sequential microbial degradation of hydrocarbons under anoxic conditions does not occur in a true stepwise fashion, but is controlled by various factors such as concentration and solubility of hydrocarbons and their diffusion rate to the oil/water contact. In fact, 25-norhopanes were formed prior to the complete elimination of the acyclic, and mono- and bicyclic alkanes. An inverse response of the 22S/(22S + 22R) ratio between each extended 17α(H)-hopane and its corresponding 25-norhopane was observed as severe biodegradation occurred, supporting the proposal that the 25-norhopanes originate from demethylation of hopanes. Field observation revealed that biomarkers without extended alkyl side chains, such as oleanane, gammacerane and β-carotane, have significant resistance to biodegradation and can be used as naturally occurring “internal standards” to evaluate variations in other biomarkers. The results suggest that the quantity of 25-norhopanes showed a minor increase as the hopanes decreased significantly, i.e. only partial hopane conversion to the corresponding 25-norhopanes. Alternative degradation pathways for hopanes might occur in reservoirs, in addition to C-25 demethylation.  相似文献   

20.
根据储层中沥青的产状、元素组成、固体碳同位素、饱和烃色谱、生物标志化合物以及芳烃色谱-质谱等,对磨溪地区龙王庙组储层固体沥青的地球化学特征、成因及来源进行了剖析。研究结果表明,其总体上具有低H/C原子比值、高反射率的特征,是古油藏原油经裂解形成的残留物。储层沥青的正构烷烃分布较为完整,碳数在C16-C31范围,没有受到明显的生物降解作用。其可能的烃源岩发育于还原环境,有机质来源于低等水生生物,为海相泥页岩。固体沥青碳同位素值介于-33.1‰~-35.4‰之间,与下寒武统烃源岩干酪根碳同位素具有很好的可比性,同时,其生物标志化合物组成也与下寒武统烃源岩相似,表明其烃源来自于下寒武统筇竹寺组。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号