首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 69 毫秒
1.
The growth of central Tibet remains elusory, albeit important in evaluating different topographic growth models accounting for the Tibetan Plateau development. Thermochronological records in the northern Qiangtang terrane (QT) provide valuable information for investigating the cooling and exhumation history in central Tibet. New apatite fission track data, assisted by inverse thermal modelling, reveal two stages of accelerated cooling. The Early Cretaceous cooling is related with refrigeration of the QT and exhumation probably induced by crustal shortening. The Eocene‐Oligocene renewed cooling reflects the far‐field contraction after the onset of the India‐Asia collision and Cenozoic crustal shortening deformation in the QT, coupled with thermal relaxation and transient lithospheric removal. Our data support models indicating that Cretaceous crustal shortening produced a thickened crust in the QT, whereas the present‐day elevation was established during Eocene‐Oligocene due to crustal shortening, continental subduction and lithospheric delamination.  相似文献   

2.
The timing of the closure of the Bangong Ocean between the Lhasa and South Qiangtang Terranes in central Tibet and the resulting crustal thickening are still under debate. We integrate published apatite fission track and (U–Th)/He thermochronometer data with new zircon (U–Th)/He ages from eight samples and with structural profiles to document that the South Qiangtang Terrane experienced slow exhumation between 200 and 150 Ma, associated with the opening of the Bangong Ocean. Accelerated exhumation (around 0.2–0.3 mm/a) of the South Qiangtang Terrane was initiated at around 150 Ma. This exhumation event is interpreted to reflect collision between the Lhasa and South Qiangtang Terranes after closure of the Bangong Ocean, associated with crustal thickening via thick‐skinned folding and thrusting within the South Qiangtang Terrane. The amalgamation of the Lhasa and South Qiangtang Terranes recorded here may represent the first stage of crustal thickening in the central Tibetan Plateau.  相似文献   

3.
《China Geology》2021,4(1):32-43
When and how the Tibetan Plateau formed and maintained its thick crust and high elevation on Earth is continuing debated. Specifically, the coupling relationship between crustal thickening and corresponding paleoelevation changing has not been well studied. The dominant factors in crustal thickness changing are crustal shortening, magmatic input and surface erosion rates. Crustal thickness change and corresponding paleoelevation variation with time were further linked by an isostatic equation in this study. Since 120 Ma crustal shortening, magmatic input and surface erosion rates data from the central Tibetan Plateau are took as input parameters. By using a one-dimensional isostasy model, the authors captured the first-order relationship between crustal thickening and historical elevation responses over the central Tibetan Plateau, including the Qiangtang and Lhasa terranes. Based on the modeling results, the authors primarily concluded that the Qiangtang terrane crust gradually thickened to ca. 63 km at ca. 40 Ma, mainly due to tectonic shortening and minor magmatic input combined with a slow erosion rate. However, the Lhasa terrane crust thickened by a combination of tectonic shortening, extensive magmatic input and probably Indian plate underthrusting, which thickened the Lhasa crust over 75 km since 25 Ma. Moreover, a long-standing elevation >4000 m was strongly coupled with a thickened crust since about 35 Ma in the central Tibetan Plateau.©2021 China Geology Editorial Office.  相似文献   

4.
The Qaidam Basin,located in the northern margin of the Qinghai-Tibet Plateau,is a large Mesozoic-Cenozoic basin,and bears huge thick Cenozoic strata.The geologic events of the Indian-Eurasian plate-plate collision since~55 Ma have been well recorded.Based on the latest progress in high-resolution stratigraphy,a technique of balanced section was applied to six pieces of northeast-southwest geologic seismic profiles in the central and eastern of the Qaidam Basin to reconstruct the crustal shortening deform...  相似文献   

5.
The Qaidam Basin, located in the northern margin of the Qinghai–Tibet Plateau, is a large Mesozoic–Cenozoic basin, and bears huge thick Cenozoic strata. The geologic events of the Indian-Eurasian plate–plate collision since ~55 Ma have been well recorded. Based on the latest progress in high-resolution stratigraphy, a technique of balanced section was applied to six pieces of northeast–southwest geologic seismic profiles in the central and eastern of the Qaidam Basin to reconstruct the crustal shortening deformation history during the Cenozoic collision. The results show that the Qaidam Basin began to shorten deformation nearly synchronous to the early collision, manifesting as a weak compression, the deformation increased significantly during the Middle and Late Eocene, and then weakened slightly and began to accelerate rapidly since the Late Miocene, especially since the Quaternary, reflecting this powerful compressional deformation and rapid uplift of the northern Tibetan Plateau around the Qaidam Basin.  相似文献   

6.
The Xining Basin is located in the northeastern Qinghai–Tibetan Plateau, and its continuous Cenozoic strata record the entire uplift and outgrowth history of the Tibetan Plateau during the Cenozoic. The newly obtained apatite fission track data presented here shows that the Xining Basin and two marginal mountain ranges have experienced multiphase rapid cooling since the Jurassic, as follows. In the Middle–Late Jurassic, the rapid exhumation of the former Xining Basin resulted from collision between the Qiangtang Block and the Tarim Block. During the Early–Late Cretaceous, the former Xining Basin underwent a tectonic event due to marginal compression, causing the angular unconformity between the Upper and Lower Cretaceous. In the Late Cretaceous to the Early Cenozoic, collision between the Qiangtang Block and the Lhasa Block may have resulted in the rapid exhumation of the Xining Basin and the Lajishan to the south. In the Early Cenozoic(ca. 50–30 Ma), collision between the Indian and Eurasia plates affected the region that corresponds to the present northeastern Qinghai–Tibetan Plateau. During this period, the central Qilian Block rotated clockwise by approximately 24° to form a wedge-shaped basin(i.e., the Xining Basin) opening to the west. During ca. 17–8 Ma, the entire northeastern Qinghai–Tibetan Plateau underwent dramatic deformation, and the Lajishan uplifted rapidly owing to the northward compression of the Guide Basin from the south. A marked change in subsidence occurred in the Xining Basin during this period, when the basin was tectonically inverted.  相似文献   

7.
石鼓杂岩位于青藏高原东南缘经历了多期变质变形作用叠加。为了揭示杂岩体的低温热演化与浅部剥露历史,采集了石鼓杂岩南段石鼓镇-拉巴支村剖面变质岩中的锆石和磷灰石,开展裂变径迹分析。结果表明,石鼓杂岩从早白垩世(133~145Ma)到渐新世(31Ma)经历了一次缓慢的剥露(1.08℃/Ma),而从渐新世开始,其南部经历了较快速的剥露过程(3.23℃/Ma)。磷灰石热史模拟也反映出第二阶段较为快速的冷却过程。结合区域构造分析认为,拉萨与羌塘板块碰撞的远程效应影响早白垩世以来藏东地区地壳结构的调整,导致石鼓杂岩南部出现了第一阶段的剥露作用;而印度与欧亚板块碰撞与后碰撞过程对于石鼓杂岩的新生代剥露具有重要影响。  相似文献   

8.
The apatite fission track (AFT) ages and thermal modeling of the Longshoushan and deformation along the northern Hexi Corridor on the northern side of the Qinghai-Tibetan Plateau show that the Longshoushan along the northern corridor had experienced important multi-stage exhumations during the Late Mesozoic and Cenozoic. The AFT ages of 7 samples range from 31.9 Ma to 111.8 Ma. Thermal modeling of the AFT ages of the samples shows that the Longshoushan experienced significant exhumation during the Late Cretaceous to the Early Cenozoic (~130–25 Ma). The Late Cretaceous exhumation of the Longshoushan may have resulted from the continuous compression between the Lhasa and Qiangtang blocks and the flat slab subduction of the Neo-Tethys oceanic plate, which affected wide regions across the Qinghai-Tibetan Plateau. During the Early Cenozoic, the Longshoushan still experienced exhumation, but this process was caused by the Indian-Eurasian collision. Since this time, the Longshoushan was in a stable stage for approximately 20 Ma and experienced erosion. Since ~5 Ma, obvious tectonic deformation occurred along the entire northern Hexi Corridor, which has also been reported from the peripheral regions of the Qinghai-Tibetan Plateau, especially in the Qilianshan and northeastern margin of the plateau. The AFT ages and the Late Cenozoic deformation of the northern Hexi Corridor all indicate that the present northern boundary of the Qinghai-Tibetan Plateau is situated along the northern Hexi Corridor.  相似文献   

9.
青藏高原主要地体地壳短缩作用研究现状及存在的问题   总被引:1,自引:0,他引:1  
在对喜马拉雅、拉萨和羌塘3个地体已有的有关地壳短缩研究成果系统分析的基础上,对3个地体进行了平衡剖面恢复:北羌塘侏罗系短缩率为25.18%.南羌塘短缩率为33.57%;对拉萨地体南段(措勤盆地南部坳褶带)上白垩统恢复得出其短缩率为20.68%北段中部坳褶带到班公湖一怒江缝合带南缘短缩率为25.3%;地处特提斯喜马拉雅地体东段的郎杰学地体三叠系短缩率达75%.大于前人研究的特提斯喜马拉雅56%~6O%的短缩率.通过对比,对3个地体短缩变形的规律进行了分析,认为各地体内部短缩作用并不是一个连续均匀的过程,陆内变形主要是通过稳定地体边界和大型逆冲构造带来吸收的;拉萨地体和羌塘地体新生代内部变形较小.  相似文献   

10.
青藏高原主要地体地壳短缩作用研究现状及存在的问题   总被引:1,自引:0,他引:1  
施美凤  李亚林  黄继钧 《地质通报》2010,29(203):286-296
在对喜马拉雅、拉萨和羌塘3个地体已有的有关地壳短缩研究成果系统分析的基础上,对3个地体进行了平衡剖面恢复:北羌塘侏罗系短缩率为25.18%,南羌塘短缩率为33.57%;对拉萨地体南段(措勤盆地南部坳褶带)上白垩统恢复得出其短缩率为20.68%,北段中部坳褶带到班公湖-怒江缝合带南缘短缩率为25.3%;地处特提斯喜马拉雅地体东段的郎杰学地体三叠系短缩率达75%,大于前人研究的特提斯喜马拉雅56%~60%的短缩率。通过对比,对3个地体短缩变形的规律进行了分析,认为各地体内部短缩作用并不是一个连续均匀的过程,陆内变形主要是通过稳定地体边界和大型逆冲构造带来吸收的;拉萨地体和羌塘地体新生代内部变形较小。  相似文献   

11.
青藏高原古大湖与夷平面的关系及高原面形成演化过程   总被引:4,自引:2,他引:2  
青藏高原经过古近纪挤压缩短和增厚地壳均衡隆升,晚新生代形成了以走滑和伸展为主的相对稳定构造环境。中新世早期与晚更新世分别发育巨型古大湖,上新世-早更新世发育很多规模较大的古湖泊,古大湖对夷平面形成演化具有重要的控制作用。中新世早期((24.1±0.6) ~(14.5±0.5)Ma)以古大湖的湖面为侵蚀基准面,经过隆起区剥蚀夷平和长期湖相沉积,在高海拔环境下形成早期夷平面。中新世晚期-第四纪以湖面与五道梁群湖相沉积顶面为基准,在高海拔环境下继续发生剥蚀夷平和准平原化,逐步形成主夷平面或高原面。第四纪河流溯源侵蚀导致内外流水系分界线自东向西迁移,在青藏高原东部形成高山峡谷地貌。  相似文献   

12.
《Gondwana Research》2013,24(4):1429-1454
Different hypotheses have been proposed for the origin and pre-Cenozoic evolution of the Tibetan Plateau as a result of several collision events between a series of Gondwana-derived terranes (e.g., Qiangtang, Lhasa and India) and Asian continent since the early Paleozoic. This paper reviews and reevaluates these hypotheses in light of new data from Tibet including (1) the distribution of major tectonic boundaries and suture zones, (2) basement rocks and their sedimentary covers, (3) magmatic suites, and (4) detrital zircon constraints from Paleozoic metasedimentary rocks. The Western Qiangtang, Amdo, and Tethyan Himalaya terranes have the Indian Gondwana origin, whereas the Lhasa Terrane shows an Australian Gondwana affinity. The Cambrian magmatic record in the Lhasa Terrane resulted from the subduction of the proto-Tethyan Ocean lithosphere beneath the Australian Gondwana. The newly identified late Devonian granitoids in the southern margin of the Lhasa Terrane may represent an extensional magmatic event associated with its rifting, which ultimately resulted in the opening of the Songdo Tethyan Ocean. The Lhasa−northern Australia collision at ~ 263 Ma was likely responsible for the initiation of a southward-dipping subduction of the Bangong-Nujiang Tethyan Oceanic lithosphere. The Yarlung-Zangbo Tethyan Ocean opened as a back-arc basin in the late Triassic, leading to the separation of the Lhasa Terrane from northern Australia. The subsequent northward subduction of the Yarlung-Zangbo Tethyan Ocean lithosphere beneath the Lhasa Terrane may have been triggered by the Qiangtang–Lhasa collision in the earliest Cretaceous. The mafic dike swarms (ca. 284 Ma) in the Western Qiangtang originated from the Panjal plume activity that resulted in continental rifting and its separation from the northern Indian continent. The subsequent collision of the Western Qiangtang with the Eastern Qiangtang in the middle Triassic was followed by slab breakoff that led to the exhumation of the Qiangtang metamorphic rocks. This collision may have caused the northward subduction initiation of the Bangong-Nujiang Ocean lithosphere beneath the Western Qiangtang. Collision-related coeval igneous rocks occurring on both sides of the suture zone and the within-plate basalt affinity of associated mafic lithologies suggest slab breakoff-induced magmatism in a continent−continent collision zone. This zone may be the site of net continental crust growth, as exemplified by the Tibetan Plateau.  相似文献   

13.
柴达木盆地为一中-新生代盆地,位于青藏高原北缘,盆内中-新生代地层发育,很好地记录了印度板块与欧亚板块自距今55Ma以来碰撞传播到高原北缘的地质事件。本文以最新的高精度磁性地层和年代地层为约束,通过盆地内部一条北东——南西向地震大剖面,用平衡剖面方法恢复新生代以来盆地因两大板块碰撞而引起的北东——南西向地壳缩短量,揭示盆地的性质和变形历史。结果表明:柴达木盆地在印度板块与欧亚板块碰撞的早期就开始变形,呈现弱的挤压状态,至始新世中——晚期变形明显增强,然后略为减弱,从中新世中-晚期尤其更新世以来地壳缩短速率快速增加,反映此时挤压变形最强烈,高原北部快速隆升。  相似文献   

14.
蔡火灿  王伟涛  段磊  张博譞  刘康  黄荣  张培震 《地质学报》2022,96(10):3345-3359
青藏高原东北缘是高原由西南向东北方向扩展的前缘位置,其新生代构造变形对揭示青藏高原隆升、扩展的过程与动力学机制具有重要的意义。柴达木盆地是青藏高原东北缘最大的新生代沉积盆地,发育巨厚的新生代地层,这些地层所记录的古地磁极旋转信息是定量约束柴达木盆地新生代以来构造变形发生的时间、方式与幅度的载体。本文以柴达木盆地北缘新生代地层出露良好、具有精确地层年代控制的路乐河剖面为研究对象,开展了古地磁极旋转研究,统计分析路乐河剖面24. 6~5. 2 Ma之间1477个可靠古地磁样品的特征剩磁方向(ChRM),发现柴达木盆地北缘路乐河地区在24. 6~16. 4 Ma发生小幅度(不显著)的逆时针旋转,旋转角度约为8. 4°±6. 1°;16. 4~13. 9 Ma路乐河地区发生显著的顺时针旋转,旋转角度可达36. 1°±6. 0°;13. 9~5. 2 Ma 该地区未发生明显的构造旋转;5. 2 Ma以后路乐河地区逆时针旋转了~6°。结合柴达木盆地北缘区域构造变形的分析,我们提出柴达木盆地北缘路乐河地区在16. 4~13. 9 Ma 之间发生强烈的顺时针旋转构造变形(~36°)可能代表了盆地北缘中中新世遭受强烈的地壳差异缩短变形,从而成为高原最新形成的部分。  相似文献   

15.
塔西南盆山结合带位于青藏高原与塔里木盆地的结合部位,以发育逆冲推覆构造为主要变形特征,是研究青藏高原与塔里木关系的理想对象,也是塔里木油气成藏的重要潜力区。本研究主要通过野外考察、卫星图片解译以及重点地震剖面解释,对塔西南盆山结合带东段和田地区逆冲体系的结构及变形特征进行了分析。并且在前人研究基础上,阐述了塔西南盆山结合带东段逆冲体系的形成时限。我们认为塔西南盆山结合带东段逆冲体系由几个逆冲岩席组成,这些逆冲岩席皆形成在中新世之后,并且形成时间由南到北逐渐变新。我们采用了平衡剖面恢复手段对塔西南盆山结合带东段的变形程度及演化过程进行推理。指出塔西南盆山结合带东段新生代上地壳缩短率为36%~38%,且主要发生在中新世以来。塔西南盆山结合带东段逆冲体系的形成是新生代印度亚洲两大板块碰撞事件远程效应产生的结果。  相似文献   

16.
青藏高原南部拉萨地体的变质作用与动力学   总被引:3,自引:0,他引:3  
董昕  张泽明  向华  贺振宇 《地球学报》2013,34(3):257-262
拉萨地体位于欧亚板块的最南缘,它在新生代与印度大陆的碰撞形成了青藏高原和喜马拉雅造山带。因此,拉萨地体是揭示青藏高原形成与演化历史的关键之一。拉萨地体中的中、高级变质岩以前被认为是拉萨地体的前寒武纪变质基底。但新近的研究表明,拉萨地体经历了多期和不同类型的变质作用,包括在洋壳俯冲构造体制下发生的新元古代和晚古生代高压变质作用,在陆-陆碰撞环境下发生的早古生代和早中生代中压型变质作用,在洋中脊俯冲过程中发生的晚白垩纪高温/中压变质作用,以及在大陆俯冲带上盘加厚大陆地壳深部发生的两期新生代中压型变质作用。这些变质作用和伴生的岩浆作用表明,拉萨地体经历了从新元古代至新生代的复杂演化过程。(1)北拉萨地体的结晶基底包括新元古代的洋壳岩石,它们很可能是在Rodinia超大陆裂解过程中形成的莫桑比克洋的残余。(2)随着莫桑比克洋的俯冲和东、西冈瓦纳大陆的汇聚,拉萨地体洋壳基底经历了晚新元古代的(~650Ma)的高压变质作用和早古代的(~485Ma)中压型变质作用。这很可能表明北拉萨地体起源于东非造山带的北端。(3)在古特提斯洋向冈瓦纳大陆北缘的俯冲过程中,拉萨地体和羌塘地体经历了中古生代的(~360Ma)岩浆作用。(4)古特提斯洋盆的闭合和南、北拉萨地体的碰撞,导致了晚二叠纪(~260Ma)高压变质带和三叠纪(~220Ma)中压变质带的形成。(5)在新特提斯洋中脊向北的俯冲过程中,拉萨地体经历了晚白垩纪(~90Ma)安第斯型造山作用,形成了高温/中压型变质带和高温的紫苏花岗岩。(6)在早新生代(55~45Ma),印度与欧亚板块的碰撞,导致拉萨地体地壳加厚,形成了中压角闪岩相变质作用和同碰撞岩浆作用。(7)在晚始新世(40~30Ma),随着大陆的继续汇聚,南拉萨地体经历了另一期角闪岩相至麻粒岩相变质作用和深熔作用。拉萨地体的构造演化过程是研究汇聚板块边缘变质作用与动力学的最佳实例。  相似文献   

17.
藏北多格错仁红层及孢粉组合特征   总被引:6,自引:0,他引:6  
吴珍汉  江万  Doug Nelson  Bill Kidd 《现代地质》2002,16(3):225-230,T001,T002
青藏高原北部羌塘地块广泛出露第三纪陆相红层 ,确定这些红层及其变形的时代对认识青藏高原的形成演化过程具有非常重要的意义。 1998~ 1999年 ,INDEPTH III项目地质课题组人员 2次深入西藏可可西里地区进行科学考察 ,新发现藏北多格错仁红层 ,并在其中发现较多种属的孢粉化石。该孢粉组合反映以温带旱生草原为主体的古植被面貌。通过对青藏高原北部及邻区主要新生代盆地孢粉组合与古环境演化的对比分析 ,结合多格错仁红层上覆弱变形玄武岩 2 5~ 3 2Ma的40 Ar- 3 9Ar高精度测年资料 ,推断多格错仁红层的形成时代为晚中新世 ,多格错仁红层挤压变形所致的约 5 0 %的地壳缩短量发生在中新世末—上新世初。这些资料为建立青藏高原动力学模式提供了新的年代依据  相似文献   

18.
Determining the spatio-temporal distribution of the deformation tied to the India-Eurasian convergence and the impact of pre-existing weaknesses on the Cenozoic crustal deformation is significant for understanding how the convergence between India and Eurasia contributed to the development of the Tibetan Plateau. The exhumation history of the northeastern Tibetan Plateau was addressed in this research using a new apatite fission track (AFT) study in the North Qaidam thrust belt (NQTB). Three granite samples collected from the Qaidam Shan pluton in the north tied to the Qaidam Shan thrust, with AFT ages clustering in the Eocene to Miocene. The other thirteen samples obtained from the Luliang Shan and Yuka plutons in the south related to the Luliang Shan thrust and they have showed predominantly the Cretaceous AFT ages. Related thermal history modeling based on grain ages and track lengths indicates rapid cooling events during the Eocene-early Oligocene and since late Miocene within the Qaidam Shan, in contrast to those in the Cretaceous and since the Oligocene-Miocene in the Luliang Shan and Yuka region. The results, combined with published the Cretaceous thermochronological ages in the Qaidam Shan region, suggest that the NQTB had undergo rapid exhumation during the accretions along the southern Asian Andean-type margin prior to the India-Eurasian collision. The Cenozoic deformation initially took place in the North Qaidam thrust belt by the Eocene, which is consistent with the recent claim that the deformation of the northeastern Tibetan Plateau initiated in the Eocene as a response to continental collision between India and Eurasia. The immediate deformation responding to the collision is tentatively attributed to the pre-existing weaknesses of the lithosphere, and therefore the deformation of the northeastern Tibetan Plateau should be regarded as a boundary-condition-dependent process.  相似文献   

19.
青藏高原东北缘构造变形研究是认识整个青藏高原隆升过程、机制以及印欧板块碰撞远程效应的重要途径。受控于昆仑山断裂、阿尔金断裂、祁连山断裂的柴达木盆地,新生代地层发育,较完整地记录了高原东北缘的构造变形信息。尤其柴达木盆地西部地区,构造变形强烈,晚新生代地层出露完整,是研究其晚新生代构造变形历史及驱动机制的理想地区。文中应用平衡剖面和古地磁构造旋转方法,结合最新的磁性地层年代,定量恢复该地区的构造变形历史。结果表明,在挤压应力的控制下该地区自22 Ma以来,构造变形主要表现为地层缩短与构造旋转,且其强度呈阶段性增长,具体又可划分为3个阶段:22~9.1 Ma构造活动平静期、9.1~2.65 Ma构造变形相对加强期、2.65 Ma以来构造变形顶峰期。研究表明,造成柴西地区地层持续缩短和顺时针旋转的关键推动力是印欧板块晚新生代的持续向北推挤、昆仑山-祁曼塔格山向柴达木盆地强烈挤压推覆以及阿尔金左旋走滑断裂大规模的复活。  相似文献   

20.
青藏高原的新生代火山作用是印度-亚洲大陆碰撞的火山响应,它显示了系统的时、空变化。随着印度-亚洲大陆碰撞从~65 Ma的接触-碰撞(即"软碰撞")转变到~45 Ma的全面碰撞(即"硬碰撞"),火山作用也逐渐从钠质+钾质变为钾质-超钾质+埃达克质。65~40 Ma的钾质和钠质熔岩主要分布于藏南的拉萨地块,少量分布于藏中的羌塘地块。从45~26 Ma,在藏中的羌塘地块中广泛发育钾质-超钾质熔岩和少量埃达克岩。随后的碰撞后火山作用向南迁移,在拉萨地块中产生~26~10 Ma间的同时代超钾质和埃达克质熔岩。尔后,从~18 Ma始,钾质和少量埃达克质火山作用重新向北,在西羌塘和松潘-甘孜地块中呈广泛和半连续状分布。此种时-空变异对形成青藏高原的深部地球动力学过程提供了重要约束。该过程包括:已消减的新特提斯大洋板片的回转、断离及随后增厚拉萨岩石圈根的去根作用,及因此而造成的印度岩石圈向北下插。青藏高原的隆升是自南向北穿时发生的。高原南部被创建于渐新世晚期,并保持至今;直到中新世中期,由于下插印度岩石圈的持续向北推挤,西羌塘和松潘-甘孜岩石圈的下部开始塌陷和拆离,高原北部才达到其现今的高度和规模。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号