首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
藏南洛扎地区洛扎断裂属于区域上定日—洛扎断裂的东段部分,是喜马拉雅造山带中一条重要的断裂,但其总体研究程度较低。运用地质填图和构造解析的方法研究了洛扎断裂的几何形态、运动表现和活动历史等,讨论其在喜马拉雅造山带构造格局形成中的意义。主要认识如下:(1)洛扎断裂现今主要表现为一条规模大的脆性-脆韧性断层, SWW—NEE走向,高角度倾向NNW。断层带内发育劈理带、断层泥、构造角砾岩等。运动性质主体表现为正断层。(2)洛扎断裂的南北两侧地块具有显著不同的变形特征,南侧为平缓的大型背斜-向斜构造,北侧为近NWW—SEE走向的倒转褶皱-断层构造。(3)洛扎断裂经历了多期活动,中生代正断活动,古近纪逆冲活动,中新世韧性伸展,中新世晚期逆冲活动以及上新世—第四纪正断活动。现今断层展示的更多是最后一期活动的形迹。(4)依据其规模大、多期活动性、两盘构造变形与沉积的系统差异性等肯定了其作为构造分区断层而存在。(5)洛扎断裂和藏南拆离断层(STD)在研究区均有出露,局部二者出露线近于重合,但洛扎断裂以高角度断面切割了平缓的STD。洛扎断裂是比STD具有更悠久地质历史的区域性断层,只是后者中新世以来的活动性更多受到关注。  相似文献   

2.
华南地块雪峰山中生代板内造山带构造样式及其形成机制   总被引:4,自引:0,他引:4  
华南大地构造核心问题之一是江南—雪峰山造山带的属性。在前人工作基础上,对横切雪峰山造山带的地质剖面进行了详细的区域地质、构造变形和部分重点区段地震反射剖面深部构造解释,划分出5个大地构造单元:(1)湘中复合逆冲构造带。该带位处雪峰山造山带东部,以龙山复合构造穹隆等为代表,是近EW向加里东造山带与NE向燕山造山带复合叠加的结果;其中燕山期构造样式总体为倾向SE逆冲断层控制的尖棱背斜构造。(2)雪峰山厚皮逆冲构造带。该带西以大庸逆冲断裂为界,带内板溪群浅变质褶皱基底大面积出露,总体发育指向NW的断层-褶皱组合。断坪-断坡式逆冲断层从板溪群内部薄弱层发育,向浅部产状明显变陡,并导致新元古界板溪群逆冲于古生界之上,控制了沅麻等中生代盆地的形成,沿断坡形成紧闭背斜和沿断坪形成宽缓向斜;表明其为典型的断层相关褶皱。断层褶皱组合与地表剥蚀共同作用,形成飞来峰和构造窗。(3)以梵净山构造穹隆为代表的梵净山—走马构造穹隆带。该带呈NE向长垣状,核部出露新元古界下部梵净山群。断坪-断坡式逆冲断层深切梵净山群,在断层上盘形成不对称箱状背斜。因此总体为典型的厚皮逆冲作用下的断层相关褶皱。(4)隔槽式逆冲构造带。此带主要发育一系列轴向NE的箱状背斜和尖棱向斜。箱状背斜核部为寒武系,向深部卷入震旦系—板溪群,形成基底卷入的断层-褶皱组合,其浅部形成叠瓦状逆冲断层-褶皱组合,从而构成主动双重逆冲构造。(5)华蓥山断裂与齐岳山断裂间的隔档式薄皮构造带。带内以发育尖棱背斜和箱状向斜为特征,是倾向SE断坪-断坡控制下的断展褶皱组合。上述5个构造单元变形区域卷入了上三叠统—下侏罗统,但为上白垩统角度不整合覆盖,表明变形时间为中生代中晚期,并且有从SE向NW渐次变新的趋势。将各构造单元及不同构造层次构造组合联系起来,建立起以断层相关褶皱为基本构造样式,从SE向NW,从深部向浅部发展的雪峰山中生代板内造山带的递进演化运动学新模式。  相似文献   

3.
喜马拉雅造山带造山模式探讨   总被引:1,自引:0,他引:1  
喜马拉雅是典型的碰撞型造山带,造山带结构构造复杂,可大致划分为以逆冲推覆构造为主的南喜马拉雅造山带和以各种伸展性构造为主的北喜马拉雅造山带,造山带内各类构造均发生过多期变形,且发生过多次缩短与伸展的构造反转,大喜马拉雅结晶杂岩系(GHC)内变形、岩浆及变质作用证明造山过程中存在渠道流作用。据此,本文提出一种由印度-欧亚大陆汇聚速率控制的多阶段造山模式:两大陆汇聚速度快时,青藏高原内形成南北向裂谷系(NSTR),喜马拉雅内经历造山过程,并在造山带中、下地壳形成作为底部拆离层的塑性层,汇聚速率慢时,青藏高原内形成共轭走滑断裂,喜马拉雅造山带内的塑性层发生松弛和重力扩散,形成渠道流,导致藏南拆离系(STDS)的启动、GHC的挤出和北喜马拉雅片麻岩穹窿(NHGD)的形成。上述的增厚与松弛均是在挤压体制下形成的,构造的反转是因挤压速率变化而产生的结构调节作用。  相似文献   

4.
低喜马拉雅结晶杂岩构成了北北东向阿伦背斜的核部,该背斜东、西两翼由高喜马拉雅结晶杂岩组成,这两者之间的界线为主中央冲断层(MCT1)。MCT1原为向南逆冲的韧性断层,后遭受北北东向褶皱作用而转变为正断层。高喜马拉雅结晶杂岩顶部被藏南拆离系下部的韧性正断层所截,与其上覆的北坳组分开,北坳组顶部又被一脆性正断层将其与上覆的藏南特提斯沉积岩分开。这条韧性正断层称为STD1.其上部的脆性正断层称为STD2。独居石U-Th-Pb测年结果和构造分析表明,藏南定日地区的高喜马拉雅结晶杂岩就是借助这2条韧性断层MCT1与STD1在大约13 Ma时从藏南中下地壳折返至地壳浅部的,然后再遭受近南北向的褶皱作用。  相似文献   

5.
高喜马拉雅的三维挤出模式   总被引:4,自引:1,他引:3       下载免费PDF全文
作为喜马拉雅造山带变质核的高喜马拉雅杂岩带,是以高级变质岩石、普遍的深熔反应以及高温韧性变形为主要特征的热碰撞造山带.在高喜马拉雅平行造山的韧性伸展构造发现的基础上,建立高喜马拉雅挤出的3-D构造模式,并提出了挤出的动力学过程:(1)造成高喜马拉雅中弱和热物质产生的局部熔融阶段(46~35 Ma),(2)平行造山的韧性伸展和重力裂陷阶段(28~26 Ma开始),(3)韧性逆冲型剪切带形成阶段(>626~23 Ma),(4) MCT和STD的形成造成的高喜马拉雅挤出阶段(23~17 Ma).  相似文献   

6.
喜马拉雅造山带中段定结地区拆离断层   总被引:1,自引:1,他引:1  
定结地区位于喜马拉雅造山带中段,发育大量的低角度伸展拆离断层,这些拆离断层中部分构成了藏南拆离系的主体。它们基本上垂直于造山带走向伸展,各拆离断层特征显著,普遍发育糜棱岩,糜棱岩类型复杂,主要有硅质糜棱岩、长英质糜棱岩、花岗质糜棱岩。在研究区的北部,拆离断层呈环状产出,构成变质核杂岩三层结构中的中间层,规模一般较大;同时拆离断层使变质核杂岩体盖层中的部分地层拆离减薄;在研究区南部拆离断层呈线状延伸很远,总体上平行造山带延伸,构成了藏南拆离系重要组成部分。部分拆离断层同韧性剪切带平行产出,形成拆离剪切的脆韧性体系。  相似文献   

7.
喜马拉雅碰撞造山过程:变质地质学视角   总被引:1,自引:0,他引:1  
本文从变质地质学视角出发,介绍了喜马拉雅造山带的研究意义、地质概况和近年来作者在喜马拉雅碰撞造山过程研究中的进展。喜马拉雅造山带是威尔逊旋回中陆陆碰撞造山带的典型代表,从中揭示的大陆碰撞造山过程、规律及效应,可为探索地球从古至今的碰撞造山带演化研究所借鉴。其中,大陆碰撞造山机制的研究是其核心内容。大陆碰撞造山机制存在临界楔和隧道流两种端元模型之争,其分别对造山带核部高级变质岩折返的P T t轨迹和时空演化序列进行了不同的预测。上述争议可通过研究喜马拉雅核部高级变质岩(高喜马拉雅)的P T t轨迹和折返过程来限定,据此可将喜马拉雅碰撞造山过程划分为三个演化阶段。阶段一:60~40 Ma,软碰撞期,造山带地壳加厚至约40 km并发生小规模部分熔融,这些早期地壳加厚记录大多已被剥蚀,零星保存于前陆飞来峰和北喜马拉雅片麻岩穹隆中;喜马拉雅山从海平面以下抬升至>1000 m。阶段二:40~16 Ma,硬碰撞期,造山带地壳加厚至60~70 km,发生大规模高级变质和深熔作用,高喜马拉雅内部的三个次级岩片沿着“原喜马拉雅逆冲断层”、“高喜马拉雅逆冲断层”、“主中央逆冲断层”顺序式向南挤出,形成了现今喜马拉雅造山带的核部主体,地壳堆叠使喜马拉雅山快速隆升至≥5000 m。阶段三:16~0 Ma,晚碰撞期,造山带山根榴辉岩化发生局部拆沉,但大陆汇聚仍在持续、造山带尚未发生垮塌,小喜马拉雅折返、前陆盆地形成,喜马拉雅山达到和维持现今平均高度~6000 m。因此,喜马拉雅生长过程的一级次序是顺序式向南扩展的,受控于临界楔模型,而隧道流只起次级作用。山根深部热流过程对造山带的地壳结构和地表高程有巨大的改造作用。未来对喜马拉雅造山带的变质地质学研究可能存在以下几个关键科学问题:① 喜马拉雅极端变质作用与重大碰撞造山事件的关联;② 喜马拉雅稀有金属成矿与接触变质作用的关联;③ 喜马拉雅变质脱碳作用与大陆碰撞带深部碳循环和通量。  相似文献   

8.
仁布-泽当逆冲断层是喜马拉雅大反向逆冲断层(GCT)在藏南地区的重要延伸部分,也是喜马拉雅造山带北部边界新生代最为活动的构造单元之一。新生代以来特提斯喜马拉雅的构造变形组构特征的研究对于深入理解碰撞造山带演化与高原隆升具有重要构造意义。本文综合GCT泽当-琼结段断层的宏观与微观变形特征,对断裂带石英脉、围岩中石英和云母矿物的电子背散射(EBSD)组构及断层两侧岩石磁组构(AMS)特征进行对比分析。结果表明对AMS主要贡献来自顺磁性云母、绿泥石等,磁化率各向异性椭球体以压扁状为主,磁面理与构造面理(劈理、断层面)基本重合,显示较强的构造变形磁组构特征;磁线理优选方向近南北向,且与观测北向逆冲断层方向一致,揭示剪切作用在变形过程中的持续作用。研究发现泽当地区GCT附近石英微观结构从围岩至断层区,石英至少呈现3种不同类型的微观变形机制:围岩区溶解蠕变、断裂带石英以膨凸重结晶和亚颗粒旋转重结晶作用为主。断裂带石英的c轴EBSD组构指示变形为低温(300~400℃)环境,其中黑云母的结晶学优选(CPO)与磁组构主轴优选方向存在高度的一致性,进一步证实了顺磁性矿物黑云母对AMS的主要贡献。综合研究表明泽当地区GCT的韧性变形是断层处在中上地壳韧性带的活动阶段变形的结果,也代表了特提斯喜马拉雅在碰撞、高原隆升期的变形主要特征。  相似文献   

9.
喜马拉雅造山带的变质作用与部分熔融   总被引:4,自引:3,他引:1  
张泽明  董昕  丁慧霞  田作林  向华 《岩石学报》2017,33(8):2313-2341
喜马拉雅造山带的核心由高级变质岩系和淡色花岗岩构成,是研究碰撞造山作用和板块构造的天然实验室。本文评述了喜马拉雅造山带变质作用和部分熔融研究取得的新进展和存在的争议,主要内容包括:(1)造山带核部具有"三明治"结构,高级变质和部分熔融的高喜马拉雅系列(GHS)夹持在较低级变质的特提斯喜马拉雅系列(THS)和低喜马拉雅系列(LHS)之中,GHS的变质作用程度具有向上和向下部构造层位降低的特征。高喜马拉雅系列主要由高压麻粒岩相到榴辉岩相的变质岩组成,具有1.2~1.6GPa和700~800℃峰期变质条件,顺时针型变质作用P-T轨迹,其进变质以增温增压为特征,退变质早期为近等温或增温降压过程,晚期为降温降压和近等压降温过程;(2)在造山带西段,紧邻缝合带产出的超高压变质岩具有4.4~4.8GPa和560~760℃的峰期变质条件和顺时针型P-T轨迹,并在退变质中期出现加热过程;(3)尽管造山带的高压和超高压变质岩形成在中、高温条件下,但岩石中的石榴石都保存有明显的主量和微量元素生长成分环带特征;(4)造山带变质核下部发育反转的中、高压型变质序列;(5)在造山带核部,变泥质和长英质麻粒岩的强烈部分熔融主要是增压、增温进变质过程中的白云母和黑云母脱水熔融,和近等温或增温降压过程中的黑云母脱水熔融,可以形成花岗质和英云闪长质熔体。加厚下地壳的高变质温度足以使各种成分岩石(包括基性岩)发生深熔,而不需要外来热源;(6)造山带变质核经历了长期的变质演化过程,其进变质始于~47Ma,峰期变质发生在~25Ma,退变质持续到~15Ma。这些岩石也记录了持续的(超过20Myr)高温变质和部分熔融过程。在造山带西段的超高压变质岩具有~46Ma的峰期变质年龄和~40Ma的退变质年龄,所以经历了一个快速俯冲与折返过程;(7)印度大陆西缘与岛弧的碰撞(造山带西段)和印度大陆东缘与大陆弧的碰撞时间一致,为~50Ma;(8)在造山带西段,印度大陆的深和陡俯冲形成了超高压变质岩;而在造山带中段,印度大陆的平缓俯冲形成了中高压变质岩;(9)构造变质不连续在变质核中广泛存在。多重有序逆冲和无序逆冲导致的岩片叠置控制着造山带的地壳结构;(10)现有的构造模型,包括楔形挤出、隧道流、临界楔和构造楔模型,都不能全面合理地解释造山带变质核部的折返机制。  相似文献   

10.
位于中喜马拉雅和巴基斯坦境内西喜马拉雅的两个相互结合的剖面在一级单元、断层中展现出不同的构造形式;并在不同时期,以不同速率发育了二级构造。沿两剖面岩性单元的显著差异显示通常指的圆柱状喜马拉雅带并没有越过喀喇昆仑山断层。与此同时,在近来许多区域研究中显示出来的构造轮廓强调主中央逆冲断层是一个貌似与中喜马拉雅断层带和越过西部山脉的西喜马拉雅断层带有联系的独立部分。上述两个地区展现出不同的碰撞历史。这些不同之处揭示喀喇昆仑山断层是西部岛弧保留造山带与东部岛弧俯冲造山带之间转移/转换断层的再活动或衍变。  相似文献   

11.
The most popular models regarding the exhumation of the Greater Himalayan Sequence (GHS), such as extrusion, channel flow, critical taper and wedge extrusion, require prolonged activity of the two bounding shear zones and faults, the Main Central Thrust (MCT) and the South Tibetan Detachment (STD). We present the crystallization age of an undeformed leucogranite that intrudes both the GHS and the Tethyan Himalaya Sequence (THS). Zircon and monazite U‐Pb ages in the leucogranite give ages between 23 and 25 Ma constraining, at that time, the end of shearing along the STD. Our results limit the contemporaneous activity of the MCT and STD to a short period of time (~1–2 Ma) and thus argue against exhumation models requiring prolonged contemporaneous activity of the MCT and STD.  相似文献   

12.
Present-day along-strike heterogeneities within the Himalayan orogen are seen at many scales, from variations within the deep architecture of the lithospheric mantle, to differences in geomorphologic surface processes. Here, we present an internally consistent petrochronologic dataset from the Himalayan metamorphic core(HMC), in order to document and investigate the causes of along-strike variations in its Oligocene-Miocene tectonic history. Laser ablation split-stream analysis was used to date and characterise the geochemistry of titanite from 47 calc-silicate rocks across 2000 km along the Himalaya.This combined U-Pb-REE-Zr single mineral dataset circumvents uncertainties associated with interpretations based on data compilations from different studies, mineral systems and laboratories, and allows for direct along-strike comparisons in the timing of metamorphic processes. Titanite dates range from ~30 Ma to 12 Ma, recording(re-)crystallization between 625 ℃ and 815 ℃. Titanite T-t data overlap with previously published P-T-t paths from interleaved peltic rocks, demonstrating the usefulness of titanite petrochronology for recording the metamorphic history in lithologies not traditionally used for thermobarometry. Overall, the data indicate a broad eastward-younging trend along the orogen.Disparities in the duration and timing of metamorphism within the HMC are best explained by alongstrike variations in the position of ramps on the basal detachment controlling a two-stage process of preferential ductile accretion at depth followed by the formation of later upper-crust brittle duplexes.These processes, coupled with variable erosion, resulted in the asymmetric exhumation of a younger,thicker crystalline core in the eastern Himalaya.  相似文献   

13.
Geothermometry and mineral assemblages show an increase of temperature structurally upwards across the Main Central Thrust (MCT); however, peak metamorphic pressures are similar across the boundary, and correspond to depths of 35–45 km. Garnet‐bearing samples from the uppermost Lesser Himalayan sequence (LHS) yield metamorphic conditions of 650–675 °C and 9–13 kbar. Staurolite‐kyanite schists, about 30 m above the MCT, yield P‐T conditions near 650 °C, 8–10 kbar. Kyanite‐bearing migmatites from the Greater Himalayan sequence (GHS) yield pressures of 10–14 kbar at 750–800 °C. Top‐to‐the‐south shearing is synchronous with, and postdates peak metamorphic mineral growth. Metamorphic monazite from a deformed and metamorphosed Proterozoic gneiss within the upper LHS yield U/Pb ages of 20–18 Ma. Staurolite‐kyanite schists within the GHS, a few metres above the MCT, yield monazite ages of c. 22 ± 1 Ma. We interpret these ages to reflect that prograde metamorphism and deformation within the Main Central Thrust Zone (MCTZ) was underway by c. 23 Ma. U/Pb crystallization ages of monazite and xenotime in a deformed kyanite‐bearing leucogranite and kyanite‐garnet migmatites about 2 km above the MCT suggest crystallization of partial melts at 18–16 Ma. Higher in the hanging wall, south‐verging shear bands filled with leucogranite and pegmatite yield U/Pb crystallization ages for monazite and xenotime of 14–15 Ma, and a 1–2 km thick leucogranite sill is 13.4 ± 0.2 Ma. Thus, metamorphism, plutonism and deformation within the GHS continued until at least 13 Ma. P‐T conditions at this time are estimated to be 500–600 °C and near 5 kbar. From these data we infer that the exhumation of the MCT zone from 35 to 45 km to around 18 km, occurred from 18 to 16 to c. 13 Ma, yielding an average exhumation rate of 3–9 mm year?1. This process of exhumation may reflect the ductile extrusion (by channel flow) of the MCTZ from between the overlying Tibetan Plateau and the underthrusting Indian plate, coupled with rapid erosion.  相似文献   

14.
The metamorphic core of the Himalaya in the Kali Gandaki valley of central Nepal corresponds to a 5-km-thick sequence of upper amphibolite facies metasedimentary rocks. This Greater Himalayan Sequence (GHS) thrusts over the greenschist to lower amphibolite facies Lesser Himalayan Sequence (LHS) along the Lower Miocene Main Central Thrust (MCT), and it is separated from the overlying low-grade Tethyan Zone (TZ) by the Annapurna Detachment. Structural, petrographic, geothermobarometric and thermochronological data demonstrate that two major tectonometamorphic events characterize the evolution of the GHS. The first (Eohimalayan) episode included prograde, kyanite-grade metamorphism, during which the GHS was buried at depths greater than c. 35 km. A nappe structure in the lowermost TZ suggests that the Eohimalayan phase was associated with underthrusting of the GHS below the TZ. A c. 37 Ma 40Ar/39Ar hornblende date indicates a Late Eocene age for this phase. The second (Neohimalayan) event corresponded to a retrograde phase of kyanite-grade recrystallization, related to thrust emplacement of the GHS on the LHS. Prograde mineral assemblages in the MCT zone equilibrated at average T =880 K (610 °C) and P =940 MPa (=35 km), probably close to peak of metamorphic conditions. Slightly higher in the GHS, final equilibration of retrograde assemblages occurred at average T =810 K (540 °C) and P=650 MPa (=24 km), indicating re-equilibration during exhumation controlled by thrusting along the MCT and extension along the Annapurna Detachment. These results suggest an earlier equilibration in the MCT zone compared with higher levels, as a consequence of a higher cooling rate in the basal part of the GHS during its thrusting on the colder LHS. The Annapurna Detachment is considered to be a Neohimalayan, synmetamorphic structure, representing extensional reactivation of the Eohimalayan thrust along which the GHS initially underthrust the TZ. Within the upper GHS, a metamorphic discontinuity across a mylonitic shear zone testifies to significant, late- to post-metamorphic, out-of-sequence thrusting. The entire GHS cooled homogeneously below 600–700 K (330–430 °C) between 15 and 13 Ma (Middle Miocene), suggesting a rapid tectonic exhumation by movement on late extensional structures at higher structural levels.  相似文献   

15.
Detrital zircons (DZ) and Nd isotopic characteristics constraint maximum depositional ages of two distinct Paleoproterozoic and Neoproterozoic terranes across the Main Central Thrust zone (Munsiari Group) in the Himalaya. New DZ ages and Nd isotopic characters are reported from the Inner Lesser Himalaya (iLH) sedimentary belt (Berinag Group quartzite) and the Munsiari Group through the Great Himalayan Sequence (GHS–Vaikrita Group) across the MCT to the lower parts of the Tethyan Himalayan Sequence (THS) along the Alaknanda–Dhauli Ganga valleys, Uttarakhand Himalaya. The iLH Berinag Group quartzite yielded nearly unimodal DZ U-Pb ages between 2.05 and 1.80 Ga with εNd(0) values of −17 and −23, while the overthrust Munsiari Group, bounded by the Munsiari Thrust at the base and the Vaikrita Thrust (MCT) at the top, represents the Proterozoic magmatic arc with ∼1.95 and 1.89 Ga U-Pb zircon age population with an average of −25 εNd(0) value; the arc developed during the Columbia Supercontinent assembly. In contrast, overthrust Great Himalayan Sequence (GHS–Vaikrita Group) above the MCT is characterized by entirely new Neoproterozoic 1.05–0.85 Ga zircon population, which appears for the first time in this sequence, and has higher εNd(0) values (average −16). Tectonically overlying the GHS, the Tethyan Himalayan Sequence (THS) has first appearance of the Early Paleozoic detrital zircons, with its εNd(0) values like the GHS. Broadly, these characters persist throughout the Himalayan belt from Himachal to NE Himalaya. The iLH sediments were possibly derived from northernly ∼1.9 Ga magmatic arc, and southern the Archean–Proterozoic Aravalli–Bundelkhand nuclei of the Indian craton. Potential sources for the GHS sediments may be a northerly ‘destroyed’ Neoproterozoic magmatic arc whose remnants exists within the Himalaya as the Neoproterozoic granitoids, and possibly be the iLH sedimentary belt, an ‘In-board’ Aravalli–Delhi Fold Belt (ADFB)–Central Indian Tectonic Zone (CITZ) in the south.  相似文献   

16.
段亮 《地质通报》2010,29(1):70-78
对喜马拉雅前陆盆地和孟加拉海扇中各地层的碎屑白云母40Ar/39Ar资料的系统分析揭示了喜马拉雅造山带自印度-欧亚板块碰撞开始造山以来的整个剥落历史: 剥落速率开始较为稳定,然后开始上升,在22Ma左右达到峰值,为4~5mm/a,随后急剧下降,最终以2mm/a的速率保持平稳。喜马拉雅造山带与青藏高原周缘剥落历史的对比约束了印度-欧亚板块碰撞造成青藏高原东缘和北缘的不同反应方式。即开始时的挤压主要被青藏高原北缘的大规模左旋走滑吸收, 到30Ma左右,喜马拉雅造山带冷却、剥落速率显著增强,北缘左旋走滑造成的柴达木地块的向东运动被华北板块阻挡而停滞,因此在北缘发生了一些重要的冷却和抬升剥落事件。至18Ma左右,喜马拉雅造山带的冷却、剥落速率继续增高并维持在较高水平,而该时间段内无论是北缘还是东缘,均未发生显著的抬升剥落事件,因此青藏高原的整体隆升和地壳增厚可能发生在此期间。中新世末—上新世初开始至今,青藏高原东缘龙门山地区发生了一些显著的抬升剥落事件,导致了大量的山崩和河流侵蚀,即此时来自喜马拉雅的挤压主要被青藏高原向东方向的地壳逃逸所吸收。  相似文献   

17.
The metamorphic core of the Himalaya is composed of Indian cratonic rocks with two distinct crustal affinities that are defined by radiogenic isotopic geochemistry and detrital zircon age spectra. One is derived predominantly from the Paleoproterozoic and Archean rocks of the Indian cratonic interior and is either represented as metamorphosed sedimentary rocks of the Lesser Himalayan Sequence(LHS) or as slices of the distal cratonic margin. The other is the Greater Himalayan Sequence(GHS) whose provenance is less clear and has an enigmatic affinity. Here we present new detrital zircon Hf analyses from LHS and GHS samples spanning over 1000 km along the orogen that respectively show a striking similarity in age spectra and Hf isotope ratios. Within the GHS, the zircon age populations at 2800-2500 Ma,1800 Ma, 1000 Ma and 500 Ma can be ascribed to various Gondwanan source regions; however, a pervasive and dominant Tonianage population(~860-800 Ma) with a variably enriched radiogenic Hf isotope signature(eHf = 10 to-20) has not been identified from Gondwana or peripheral accreted terranes. We suggest this detrital zircon age population was derived from a crustal province that was subsequently removed by tectonic erosion. Substantial geologic evidence exists from previous studies across the Himalaya supporting the Cambro-Ordovician Kurgiakh Orogeny. We propose the tectonic removal of Tonian lithosphere occurred prior to or during this Cambro-Ordovician episode of orogenesis in a similar scenario as is seen in the modern Andean and Indonesian orogenies, wherein tectonic processes have removed significant portions of the continental lithosphere in a relatively short amount of time. This model described herein of the pre-Himalayan northern margin of Greater India highlights the paucity of the geologic record associated with the growth of continental crust. Although the continental crust is the archive of Earth history, it is vital to recognize the ways in which preservation bias and destruction of continental crust informs geologic models.  相似文献   

18.
Despite similar geological and tectonic setting along the Himalayan orogen, distinct thermochronological/exhumational and seismicity variability exists between the Kumaun and the Garhwal regions of the NW‐ Himalaya. The processes responsible for such variability are still debated. To understand this, published thermochronological ages from several traverses across the Higher Himalayan Crystalline (HHC) and Lesser Himalayan Crystalline (LHC) have been correlated with the seismicity pattern in both Garhwal and Kumaun segments. The seismicity pattern coincides with the zone of rapid uplift and exhumation. The profiles of seismicity across the Kumaun and the Garhwal regions agree with the existence of the Main Himalayan Thrust (MHT) underlying the regions and reflect its geometry and architecture. Slip along the MHT is responsible for occurrence of seismicity on decade time‐scale and exhumation pattern on Myr time‐scale of the Himalaya.  相似文献   

19.
对喜马拉雅前陆盆地和孟加拉海扇中各地层的碎屑白云母40Ar/39Ar资料的系统分析揭示了喜马拉雅造山带自印度-欧亚板块碰撞开始造山以来的整个剥落历史:剥落速率开始较为稳定,然后开始上升,在22Ma左右达到峰值,为4~5mm/a,随后急剧下降,最终以2mm/a的速率保持平稳。喜马拉雅造山带与青藏高原周缘剥落历史的对比约束了印度-欧亚板块碰撞造成青藏高原东缘和北缘的不同反应方式。即开始时的挤压主要被青藏高原北缘的大规模左旋走滑吸收,到30Ma左右,喜马拉雅造山带冷却、剥落速率显著增强,北缘左旋走滑造成的柴达木地块的向东运动被华北板块阻挡而停滞,因此在北缘发生了一些重要的冷却和抬升剥落事件。至18Ma左右,喜马拉雅造山带的冷却、剥落速率继续增高并维持在较高水平,而该时间段内无论是北缘还是东缘,均未发生显著的抬升剥落事件,因此青藏高原的整体隆升和地壳增厚可能发生在此期间。中新世末—上新世初开始至今,青藏高原东缘龙门山地区发生了一些显著的抬升剥落事件,导致了大量的山崩和河流侵蚀,即此时来自喜马拉雅的挤压主要被青藏高原向东方向的地壳逃逸所吸收。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号