首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
介绍了江西南昌某郊区采集的成熟期(2008年9月)和收割期(2008年10月)的水稻籽粒中多环芳烃(PAHs)的富集情况,并与同时期的环境介质(土壤、空气气相以及颗粒物)中多环芳烃的含量及分布情况作了相关性分析。结果表明,研究区水稻籽粒中16种多环芳烃(∑PAHs)总量平均为(74.8±13.6)ng/g,水稻土壤中∑PAHs含量平均为(203.7±14.3)ng/g,空气气相样品中∑PAHs含量平均为68.25 ng/m3,以3环和4环多环芳烃为优势化合物;颗粒物样品中∑PAHs含量平均为42.28 ng/m3,以4环、5环和6环多环芳烃为优势化合物。各介质多环芳烃含量在国内同类地区中均位于中等偏下水平。将多环芳烃在水稻籽粒和各个介质之间的生物富集系数与化合物的辛醇分配系数KOC、KOA作对数变换后比较,发现水稻籽粒中多环芳烃的分布与水稻土和空气颗粒物中的多环芳烃没有太大关系;而与空气气相中的多环芳烃关系较明显,证实了前人得到的气相化合物对植物体内化合物的分配起着主要贡献的研究结论。  相似文献   

2.
污染土壤中多环芳烃的微生物降解及其机理研究进展   总被引:24,自引:1,他引:24  
多环芳烃(PAHs)是一类普遍存在于环境中的难降解危险性“三致”有机污染物。微生物对多环芳烃的降解是去除土壤中多环芳烃的主要途径。研究表明,对于土壤中低分子量多环芳烃类化合物,微生物一般以唯一碳源方式代谢;而大多数细菌和真菌对四环或四环以上的多环芳烃的降解作用一般以共代谢方式开始。本文重点论述了高分子量多环芳烃:芘和苯并(a)芘的微生物降解及其机理。并介绍了多环芳烃污染的微生物—植物联合修复机制,最后展望了污染土壤中多环芳烃的研究趋势。  相似文献   

3.
太原市区土壤中多环芳烃污染特征研究   总被引:2,自引:0,他引:2  
采用1个样/km2的密度,1个分析组合样/25km2的方法,对太原市区土壤中多环芳烃进行了调查。结果表明,太原市区土壤中多环芳烃的平均含量为8.65μg/g;空间分布上北高南低,高值点主要位于工业区及交通要道地段;组成上以四环及四环以上的多环芳烃为主。通过与国内外城市土壤的对比可知,太原市土壤PAHs污染已相当严重,其来源主要是煤炭的燃烧。太原市工业布局、能耗类型和地理位置是造成土壤PAHs污染的主要原因。  相似文献   

4.
为研究长江三角洲典型农用地土壤多环芳烃的组成及来源,系统采集华东某地区农用地表层土壤样77个,对16种优先控制的多环芳烃(PAHs)单体含量进行测定。结果表明:研究区农用地土壤中Σ16PAHs浓度范围为18.60~1278.67μg/kg,平均浓度为233.57μg/kg;PAHs组成以2环至4环的中低环组分为主,占85.05%;同分异构体比值法和主成分分析法显示研究区农用地土壤中多环芳烃主要来源于石油泄漏及煤与生物质燃烧。  相似文献   

5.
选择典型岩溶地区广西大石围天坑群为研究对象,采用2007-2008年同期采集的大气干湿沉降、空气、土壤、地下河水和沉积物样品测试数据,运用16种多环芳烃(PAHs)的成分谱、分布特征和特征比值,结合其物理化学性质进行对比分析.初步研究结果表明,全年大气干湿物/土壤/地下河沉积物均以屈(Chr)、苯并[b]荧蒽(BbF)、苯并[k]荧蒽(BkF)、苯并[a]芘(BaP)4种4~6环PAHs为主;同期天坑空气/秋冬季于湿沉降物/地下河水以萘(Nap)、芴(Flu)、菲(Phe)和蒽(Ant)4种2~3环PAHs为主;各组介质中的PAHs存在特征具有较好的一致性,但也有一定的差异.利用这种方法初步解释了岩溶地区土壤、地下河水和沉积物中PAHs污染的来源(或输入);同时证明了大气干湿沉降物是偏远岩溶地区土壤和地下河中PAHs的主要来源.因此建议在污染源调查过程中应把大气干湿沉降物列为PAHs污染源.  相似文献   

6.
本文建立了S-916快速溶剂萃取仪(Buchi瑞士)快速萃取-气相色谱-质谱仪(GC-MS)联用测定土壤中15种多环芳烃(PAHs)含量的方法。土壤样品经正己烷、丙酮快速溶剂萃取,除水浓缩后,利用硅酸镁小柱进行净化,直接进GC-MS测定。结果表明,在5.01000.0μg/L浓度范围内,15种PAHs的相关系数均在0.996以上,RF RSD<12%,加标回收率在80%117%之间,15种PAHs的最低检出限均低于0.40μg·kg^-1.该方法灵敏、快速、准确可靠,完全满足实验室对土壤中PAHs的检测要求,可为土壤中多环芳烃(PAHs)的污染情况提供快速检测依据。  相似文献   

7.
近些年,随着我国城市化进程不断加快,土壤中多环芳烃污染已经成为威胁土壤环境质量和人体健康的主要因素。文章采集了北京市通州某改造区15件表层土壤(0~20 cm)样品,利用GC-MS分析技术,研究了土壤中美国环境保护署(USEPA)优控的16种多环芳烃(PAHs)的含量及组分特征,根据多环芳烃的空间分布特征和特定成分之间的浓度比值结合多元统计法分析了其污染来源,初步评价了其污染水平,并进行健康风险评价。结果表明:表层土壤中16种多环芳烃含量范围为6.57~8 307.2 μg/kg,均值为1 004.08 μg/kg。多环芳烃组分特征及Fla与(Fla+Pyr)、BaA与(BaA+Chr)的相对质量比值特征显示改造区是燃煤和汽车尾气混合型来源;多元统计后发现石油烃类污染源和化石燃料燃烧源是两种主要成分。最后参照《污染场地风险评估技术导则(HJ 25.3—2014)》对土壤中PAHs进行了健康风险评价,除苯并(a)芘(BaP)致癌风险值略偏高不可接受外,其余致癌与非致癌风险值均可接受。  相似文献   

8.
孔祥胜  苗迎 《地球学报》2014,35(2):239-247
为证实大气干湿沉降物是岩溶地下河中多环芳烃(PAHs)的来源,研究选择了某城市典型的岩溶地下河水源地作为研究地点,采用大气干湿采样器、聚氨酯泡沫(PUF)大气被动采样器分别采集大气及其干湿沉降物样品,同时采集地下河水样和分层采集流域土壤,利用气相色谱-质谱联用仪(GC-MS)测定了16种PAHs优先控制污染物。结果表明,地下河流域大气干湿沉降中PAHs的干湿沉降通量为147.26 ng·(m2·d)-1,流域PAHs沉降量为1943.8 g;大气中的PAHs浓度为45.33 ng·m-3;地下河水中PAHs浓度平均值为220.98 ng·L-1;土壤中PAHs浓度为38.72 ng·g-1;大气、降雨和土壤中PAHs组成以2~3环的萘、芴、菲、荧蒽、芘5种为主,地下河水中以芴、菲、荧蒽、芘、苯并[a]蒽、苯并[a]芘6种为主。利用地下河多介质中的16种PAHs成分谱、特征比值结合它们的物理化学性质进行PAHs的源解析,研究显示大气干湿沉降是岩溶地下河水中多环芳烃的主要污染源之一,这归因于岩溶地区防污性能的脆弱性。  相似文献   

9.
孔祥胜  祁士华 《中国岩溶》2013,32(1):182-188
选择典型岩溶地区广西大石围天坑群为研究对象,采用2007—2008年同期采集的大气干湿沉降、空气、土壤、地下河水和沉积物样品测试数据,运用16种多环芳烃(PAHs)的成分谱、分布特征和特征比值,结合其物理化学性质进行对比分析。初步研究结果表明,全年大气干湿物/土壤/地下河沉积物均以屈(Chr)、苯并\[b]荧蒽(BbF)、苯并\[k]荧蒽(BkF)、苯并\[a]芘(BaP)4种4~6环PAHs为主;同期天坑空气/秋冬季干湿沉降物/地下河水以萘(Nap)、芴(Flu)、菲(Phe)和蒽(Ant)4种2~3环PAHs为主;各组介质中的PAHs存在特征具有较好的一致性,但也有一定的差异。利用这种方法初步解释了岩溶地区土壤、地下河水和沉积物中PAHs污染的来源(或输入);同时证明了大气干湿沉降物是偏远岩溶地区土壤和地下河中PAHs的主要来源。因此建议在污染源调查过程中应把大气干湿沉降物列为PAHs污染源。  相似文献   

10.
近年来我国长江河口有关沉积物中多环芳烃(PAHs)污染的研究主要集中在长江口近海及上海主城区滨岸等区域,而长江口航道则鲜有报道。本文在长江口启东—崇明岛航道区域采集表层(0~20 cm)沉积物样品,利用加速溶剂萃取技术提取,用高效液相色谱-荧光检测器对14种PAHs进行测定,研究其分布特征、环境来源和潜在的生态风险。研究结果显示,PAHs在所有沉积物样品中均有不同程度的检出,浓度范围为83.43~5206.97 ng/g,平均值736.95 ng/g。就PAHs单体而言,含量较高的是2~4环污染物,其中菲的含量最高,占各点位PAHs总量的9.04%~24.06%;其次为荧蒽和芘;具有高致癌性的苯并(a)芘在各个点位均能检出,占PAHs总量的0.94%~10.68%。与国内外类似河口和近海海域相比,本研究区PAHs处于中等污染水平。利用比值法解析PAHs的来源,菲/蒽(Phe/Ant)10且荧蒽/芘(Fla/Pyr)≥1的点位占所有采样点位的56.25%,表明区域内PAHs的主要来源是化石燃料的高温燃烧;位于航运码头附近采样点位的PAHs以石油源为主,部分点位呈化石燃料源和石油源混合污染特征。对照风险效应低值(ERL)和风险效应中值(ERM)进行初步风险评价,表明研究区域部分采样点位的PAHs具有潜在的生态风险。  相似文献   

11.
湖州市不同土地利用类型土壤中多环芳烃的分布及来源   总被引:1,自引:1,他引:0  
林琳  郑俊  杨晓红  缪丽娜  许健  杨笑 《岩矿测试》2010,29(6):687-690
建立了原子发射光谱法测定独居石矿物中钇组稀土元素的分析方法。在260.00~360.00 nm波段内,选择不受干扰的分析谱线,用炭粉作缓冲剂,钪作内标元素,样品不需要化学处理,不需分离,可直接采用原子发射光谱法测定钇组稀土元素。方法相对标准偏差(RSD,n=12)为1.6%~6.2%,相对误差RE<±12.0%,方法简单、快速、可行。  相似文献   

12.
A study was conducted to investigate the performance of amaranth, a known hyperaccumulator of cesium, on the promotion of the dissipation of soil phenanthrene and pyrene, which are PAHs (polycyclic aromatic hydrocarbons). Amaranthus tricolor L. een choi was the cultivar used. The presence of Amaranthus tricolor L. evidently enhanced the dissipation of these PAHs in soils with initial phenanthrene concentrations of 7.450–456.5 mg/kg dw (dw, dry weight) and pyrene of 8.010–488.7 mg/kg dw. At the end of the experiment (45 days), the residual concentrations of phenanthrene and pyrene in spiked soils with plants were generally higher than those with no plants. The loss of phenanthrene and pyrene in vegetated soils was 87.85–94.03% and 46.89–76.57% of the soil with these chemicals, which was 2.55–13.66% and 11.12–56.55% larger than the loss in non-vegetated soils, respectively. The accumulation of phenanthrene and pyrene by the plant was evident. Root and shoot concentrations of these chemicals monotonically increased with increasing soil PAH concentrations. Bioconcentration factors (BCFs), defined as the ratio of chemical concentrations in plants and in the soils (on a dry weight basis), of phenanthrene and pyrene by roots were 0.136–0.776 and 0.603–1.425, while by shoots were 0.116–0.951 and 0.082–0.517, respectively. BCFs of phenanthrene and pyrene tended to decrease with the increasing concentrations of soil phenanthrene and pyrene. Plant accumulation only accounted for less than 0.32% (for phenanthrene) and 0.33% (for pyrene) of the total amount enhancement of the dissipated PAHs in vegetated vs. non-vegetated soils. In contrast, plant-promoted microbial biodegradation was the predominant contribution to the plant-enhanced dissipation of soil phenanthrene and pyrene. These results suggested the feasibility of the radionuclide hyperaccumulator in phytoremediating the soil PAH contaminants.  相似文献   

13.
Polycyclic aromatic hydrocarbons in the soils of technogenic landscapes   总被引:1,自引:0,他引:1  
An integrated study of qualitative and quantitative composition of polycyclic aromatic hydrocarbons (PAH) in the atmospheric precipitation-soil-lysimetric water system of aerotechnogenic polluted landscapes was conducted using high-performance liquid chromatography in a gradient mode. Only low-molecular weight polyarenes (phenanthrene, anthracene, fluoranthene, pyrene, benz(a)anthracene, and chrysene) were found in the atmospheric precipitation and lysimetric waters. The growth of PAHs in soils is provided by the input of phenanthrene, fluoranthene, and pyrene with atmospheric precipitation. The absence of heavy PAHs (benzfluoranthenes, benz(a)pyrene, dibenz(a,h)anthracene, benz(ghi) perylene, and indeno[1,2,3-cd]pyrene) in the atmospheric precipitation and their identification in soil give grounds to state that their accumulation was caused mainly by transformation of organic matter during pedogenesis. The technogenic impact was estimated and criterion of the degree of soil pollution by PAH was proposed.  相似文献   

14.
Toxic organic compounds in wastewater are serious threats for both human and environment healthy states. This study investigates the potential sources of surface water, sediment and groundwater pollution by polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyl (PCBs) as discharged by wastewater into the River of Oued El bey in northeastern Tunisia. Analysis indicates that the concentration of PAHs and PCBs are high in wastewater and vary from 0.37 to 0.83 mg/L and from 0.28 and 1.18 mg/L, respectively. The spatial distribution of PAHs and PCB in surface water showed a variation between 0.37 to 9.91 mg/L and between 0.1 to 0.47 mg/L, respectively. However, the quality of surface water is changed after wastewater evacuation at Oued Tahouna. The determination of PAH and PCB pollutants in groundwater shows a great interest in the development of water resources. The Concentration of these pollutants varying from 0.0204 to 1.93 mg/L and from 0.0052 to 0.196 mg/L, respectively. For PAH, analysis reveals also that naphtelene, fluorene, anthracene and chrysene are the most detected PAHs compounds in water and sediment samples while benzo[b]fluoranthene and benzo[a]pyrene are less present and in trace level. Higher concentrations of PAHs and PCBs are found in samples taken close to industrial areas of Bouargoub and Soliman, and wastewater discharge locations in Soliman. Analysis of the spatial distribution of PAHs and PCBs clearly link their higher concentration in water and sediments to wastewater and manufacturing discharges in the study area. In surface sediment, the organic pollutants are present. The cluster analysis for organic pollutants in different state and different matrix highlight a relationship between the wastewater evacuation and the water qualities which confirmed the direct response of the pollution sources on the surface water and groundwater organic pollution quality.  相似文献   

15.
北京密云房山地区土壤中多环芳烃的组成与分布特征   总被引:15,自引:2,他引:15  
选择北京城近郊房山与密云地区的土壤进行了多环芳烃的定量分析,同时探讨了多环芳烃在土壤中的分布特征与来源。研究结果显示:密云、房山两地土壤中多环芳烃的含量值具有明显差异,提示了两地工业活动影响强度的不同;各采样区土壤中多环芳烃总量的平均值在45.98~388.23ng/g变化,根据多环芳烃的特征参数可以推测研究区土壤中的多环芳烃主要来自于化石燃料的不完全燃烧。  相似文献   

16.
A series of hydropyrolysis (HyPy) experiments have been conducted on a small suite of authentic polycyclic aromatic hydrocarbons (PAHs: coronene, pyrene and perylene) to investigate the HyPy behaviour of these PAHs. This information may help in the interpretation of the structural significance of aromatic HyPy products, often detected in high abundance, from high maturity kerogens. The PAHs were separately treated by HyPy and were all susceptible to some extent of hydrogenation. Perylene also decomposed into low molecular weight aromatics (e.g. methylbiphenyls). Structurally, perylene is much less stable than the more condensed PAHs coronene and pyrene. The total product concentrations (wt% of starting PAH) from all HyPy experiments were consistently less than 100 wt%, probably due to either the condensation of semi-volatile products on walls of the transfer line prior to reaching the HyPy trap or the inefficient cold trapping of highly volatile products. Hydrogenation of PAHs was prevalent and was found to be significantly influenced by the addition of a Mo-S based catalyst and potentially the C/Mo ratio, but largely independent of the two final temperatures used (520 °C and 550 °C). The fully aromatised and hydrogenated products for any stable ring system may provide a general indication of the size distribution of aromatic units within the kerogen structure.  相似文献   

17.
This study aims to explore the condensation and fractionation trends of persistent organic pollutants (POPs) in the karst soils. The tiankeng is a karst surface expression that can act as a focal point for introduction of contaminants to a karst aquifer, which may serve both as condenser for vapor phase POPs and as barrier/sink for particulate associated less volatile POPs. The fractionation of POPs in soils from the upper rim and floor of tiankeng is of interest in understanding the role of tiankeng in the long-distance transport of POPs. In the present study, polycyclic aromatic hydrocarbons (PAHs) in the surface soils from the upper rim and floor of Dashiwei tiankeng in Southern China were analyzed. The total PAH concentrations in soils were 23.40–190 ng g−1, with phenanthrene being the most abundant. The distribution patterns of PAH compounds in the soil samples matched well with their properties. It indicated the heavy PAHs were susceptible to retention by the floor soils of tiankeng than light PAHs. A plot of Cfloor/Crim against PAH molecular weight gave a good positive relationship in the molecular weight range of 152–276. It is suggested that the floor soils can be focal points of more concentrated PAH and deserve attention. The concentrations of total PAHs in the floor soils (43.40–190 ng g−1, mean 87.76 ng g−1) were higher than those in the upper rim (23.40–88.94 ng g−1, mean 57.74 ng g−1). In addition, there was a shift in compound pattern with an increase in the proportion of light PAHs (2–3 rings), a decrease in heavy PAHs (5–6 rings) and a relatively stable content of 4-ring PAHs. A combination of particulate scavenging and cold condensation is proposed as the major mechanism for the compositional fractionation of PAHs in the soils from the upper rim and floor of tiankeng.  相似文献   

18.
Fifty soil samples collected from agricultural land in four regions of Poland with different anthropopressure were analysed for their content of 16PAHs by GC/MS. The regions correspond to Polish administrative units (voievodeships): Podlaskie and Lubelskie are situated in the rural East part of the country and more industrialised Slaskie and Dolnoslaskie voievodeships – in the South-West part. Basic physicochemical properties as well as the content of selected potentially harmful metals (Pb and Zn) were included in the soil analysis. Overall accumulation of Σ16PAHs in the upper soil layer was within the range 73–1800 μg kg−1 with a geometric mean (GM) of 252 μg kg−1, while the mean benzo(a)pyrene (BaP) load was 20 μg kg−1. This corresponds with data for other European countries. Carcinogenic compounds contributed nearly in 50% to the total PAHs loads. In uncontaminated rural regions the mean Σ16PAHs and BaP contents were 113–159 μg kg−1 and 11–13 μg kg−1, respectively. Regional conditions strongly influenced the accumulation of PAHs ?4-rings, which were highly dependent (over 95%) on local anthropopressure expressed as dust and 4PAHs emission indexes. Soil acidity was the main soil parameter related to the accumulation of higher molecular weight PAHs in soils. In more contaminated regions a significant link between soil OM and PAH loads was noted. The same regions were characterised by associations between PAHs and potentially harmful metals implying common sources of pollution. Those relationships were not observed in the uncontaminated part of the country. The lower molecular weight PAHs contributed to a smaller extent (about 20%) to the total PAHs content in soils, and were less affected by anthropogenic factors.  相似文献   

19.
Concentrations and sources of polycyclic aromatic hydrocarbons (PAHs) were investigated in surface sediments of the Yellow River Estuary (YRE). The isobath-parallel tidal and residual currents play important roles in the variation of PAH distribution, such that the contamination level of PAHs in fine-grained sediments is significantly higher than in the relatively coarse grain size sediments. Both diagnostic ratios and principal component analysis (PCA) with multivariate linear regression (MLR) were used to apportion sources of PAHs. The results revealed that pyrogenic sources are important sources of PAHs. Further analysis indicated that the contributions of coal combustion, traffic-related pollution and mixed sources (spills of oil products and vegetation combustion) were 35, 29 and 36 %, respectively, using PCA/MLR. Pyrogenic sources (coal combustion and traffic-related pollution) contribute 64 % of anthropogenic PAHs in sediments, which indicates that energy consumption could be a predominant factor in PAH pollution of YRE. Acenaphthylene and acenaphthene are the two main species of PAHs with more ecotoxicological concern in YRE.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号