首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
月球在演化过程中,几乎没有经历过大气或流水等地质作用,在全月范围覆盖有表层土壤,极少有下伏岩石裸露。经过数十亿年的空间风化作用,月海月壤光谱特性与下伏玄武岩有很大差别。因此,通过常规遥感方法不能探知下伏玄武岩的特性。了解月球岩石的关键是透过干扰的月壤看到下伏岩石的信息。通过对"嫦娥三号"着陆区低成熟度撞击坑坑底和坑壁位置的光谱分析,进行月壤下伏玄武岩的组分识别、单元划分并根据地形数据计算其厚度。具体内容包括:(1)基于LISM多光谱遥感数据的撞击坑筛选与光谱信息提取;(2)玄武岩单元类型划分和厚度反演,建立离散撞击坑与连续的地质单元之间的关系。结果表明,研究区至少发生了6期玄武岩溢出充填活动,由新到老可以依次划分出6种玄武岩单元。其中单元1、2和3的厚度从南向北逐渐减小最后消失;单元4、5和6可能分布于整个研究区,在南部区域被前3期玄武岩单元覆盖,没有暴露在月表,在北部区域则位于下伏玄武岩的顶层。从元素含量上看,不同玄武岩单元Ti质量分数变化较大,从最低的1.26%到最高的6.65%,而Fe质量分数相对变化较小,在16.31%到17.57%。最后,玄武岩填充时间与其Fe、Ti元素含量之间有一定的联系,玄武岩年代越年轻,其中的Fe和Ti元素更加富集。  相似文献   

2.
雨海地区晚雨海世-爱拉托逊纪月海玄武岩充填过程研究   总被引:3,自引:0,他引:3  
许延波  颜丹平  俞天石  王翔 《地质学报》2012,86(8):1306-1319
月海玄武岩是月球四大岩类之一,主要充填于月球大型撞击盆地之中。月海玄武岩充填过程的研究,对于了解撞击盆地充填过程和月海玄武岩充填规律及活动规模,揭示月球的热演化历史具有重要意义。本文综合利用嫦娥一号LAM数据、CCD影像数据和Clementine UVVIS数据,对雨海地区的地形地貌、岩石化学组成进行了提取和分析,对雨海地区月海玄武岩进行了单元划分,并运用撞击坑尺寸-频率分布法对各月海玄武岩单元进行了表面年龄的估算。结果表明,雨海地区月海玄武岩随着时代变新钛和铁元素更加富集,总体上从晚雨海世至爱拉托逊纪由低钛低铁玄武岩向高钛高铁方向演化;月海玄武岩充填活动具有多期次性,每期月海玄武岩的充填流动大体上保持由南向北方向,并且活动规模逐步减小,相对年轻月海玄武岩对早期月海玄武岩的覆盖范围不断减小。正是这种玄武岩流动与覆盖关系和充填过程造成了雨海地区从南向北地势的逐渐降低,以及较老月海玄武岩在较北部地区出露。最后,根据雨海地区月海玄武岩单元在地形地貌、岩石化学组成与表面年龄上的相关性,我们提出雨海地区月海玄武岩经历了多期次逐层填充过程,且每期由南向北流动、规模逐步减小。  相似文献   

3.
雨海盆地是月球上研究程度最高的多环结构盆地,月球上古老的和年轻的玄武岩在盆地中均有分布,因此雨海是研究月海玄武岩岩浆活动的理想区域。为了更合理的厘定雨海地区的玄武质岩浆演化历史,本文主要结合岩石学、年代学等工作对本区玄武岩的充填期次进行重新划分。利用嫦娥一号IIM光谱数据进行岩石类型分布图编制,初步划分了5类不同钛含量的月海玄武岩;基于高分辨率100m LRO宽视角影像数据通过撞击坑尺寸-频率定年法(CSFD)对本区玄武岩单元模式年龄进行厘定,共划分35个玄武岩单元,发现本区在3.49~2.23Ga均有玄武质岩浆充填活动,具有多期次性。在建立不同类别玄武岩、形貌特征与模式年龄的对应关系基础上,将玄武岩充填划分为4个期次:极低钛玄武岩(3.49~3.20Ga)、低钛玄武岩(3.29~2.83Ga)、中钛玄武岩(3.13~2.52Ga)、(极)高钛玄武岩(2.92~2.23Ga)。本区地形地貌高程特征与不同表面年龄的玄武岩单元之间总体上呈现出一定的负相关性。因此在本区玄武质岩浆期次划分考虑上,不仅要考虑玄武岩的成分特征,更要考虑结合与玄武岩演化密切相关的年代学及形貌学特征,利用形貌、成分数据和年代学信息来共同约束玄武质岩浆期次划分及演化历史。  相似文献   

4.
月海玄武岩是月幔部分熔融喷出月表而形成的,其厚度可以反映月海玄武岩源区的深度。研究月海玄武岩厚度,对进一步认识月球区域岩浆作用或火山作用的演化历史具有不可替代的作用,也能够为整个月球的热演化和岩浆演化提供基本的约束条件。同时,玄武岩厚度可以用以推测月球内部产生玄武岩岩浆的体积,对月球火山作用的岩浆喷发总量以及月球内部的热状态具有指示作用。本文基于多源遥感数据,综合利用撞击坑的形貌特征与月坑挖掘深度法对南海地区撞击坑内(crater)和撞击坑间(intercrater)两类玄武岩地层的厚度进行了估算,并对玄武岩的面积、体积、年龄及岩浆活动做了简单分析。研究结果表明:南海地区撞击坑内的玄武岩厚度变化范围为0.11~4.75 km,平均值约为1.32 km,玄武岩的出露面积和出露体积分别为57.06~10 791.66 km2和10.25~51 260.38 km3;撞击坑间的玄武岩厚度变化范围为0.01~2.18 km,平均值约为0.34 km,玄武岩的出露面积和出露体积分别为6 487.89~33 170.55 km2和2 711.97~11 609.69 km3。因此,南海地区玄武岩厚度的变化范围分布在0.01~4.75 km,平均厚度约为600 m,出露的玄武岩总面积约为2.12×105 km2,总体积约为2.71×105 km3。通过分析南海地区的玄武岩年龄及分布特征,发现南海地区内的岩浆喷发活动主要集中发生在雨海纪至爱拉托逊纪时期,且其局部区域存在多次岩浆喷发及充填过程,但由于晚期玄武岩岩浆的喷发总量不足以覆盖早期已形成的玄武岩,导致晚期玄武岩与早期玄武岩同时存在于同一个玄武岩单元内。南海地区独特的玄武岩分布特征也与地形有关。  相似文献   

5.
月球表面定年研究对于理解和重建月球地质演化历史具有关键作用,撞击坑尺寸频率分布法(CSFD)是通过统计区域内不同尺寸撞击坑密度得到特定地质单元的绝对地质年龄。雨海北部地区(LQ 4)包括雨海北部、冷海西部地区以及风暴洋东北部等月海,位于雨海西北边缘的虹湾是中国嫦娥三号卫星预选软着落区,文中综合使用3种方法从影像和地形数据中自动提取了该区内的撞击坑。利用Clementine光谱数据对雨海北部和风暴洋东北部内玄武岩进行了分区,利用撞击坑尺寸频度法(CSFD)法得到每个玄武岩分区内的定年结果。对比该地区之前的定年数据后发现,使用自动识别结果得到的各分区定年结果新老整体趋势上与之前研究结果基本一致,但存在一定偏差。根据自动识别定年结果,认为该地区玄武岩新老顺序大致为:雨海东部(3.56 Ga)-虹湾(3.38 Ga)-风暴洋东北部(2.74 Ga)-雨海西部(2.63 Ga)-柏拉图坑(2.37 Ga)。结合撞击坑自动识别技术和CSFD法,形成了一条利用影像和地形遥感数据快速得到月球表面地质年龄的方法,为月球年代学研究提供一种新途径。  相似文献   

6.
月球虹湾幅(LQ-4)地质图的编制   总被引:2,自引:0,他引:2       下载免费PDF全文
应用中国首次月球探测工程所获得的嫦娥一号(Change-I)CCD影像数据、干涉成像光谱数据、数字高程模型(DEM)数据和数据分析处理结果等资料,开展了虹湾—雨海地区区域地质综合研究。通过对月球撞击坑及溅射堆积物分析,以及地层单元划分、构造单元划分、岩石类型划分、年代学和月球演化历史的集成分析,依据月坑的形态特征、充填物的多少和保留的程度等,将月球撞击坑划分出7种类型11个亚类,并将月球撞击坑堆积物系统划分为6种类型9个堆积岩组。根据TiO2的含量、分布及影像特征,将月海、月陆玄武岩划分为高钛玄武岩、中钛玄武岩和低钛玄武岩。应用ArcGIS地理信息系统,试点编制了1∶250万月球典型地区——虹湾幅(LQ-4)地质图,并建立了空间数据库,探索制定了月球数字地质图编制技术规范、流程和方法,为中国下一步应用嫦娥二号数据开展"全月球地质图"编制,以及未来其他天体的区域地质综合研究与地质编图工作奠定了基础。  相似文献   

7.
我国嫦娥三号着陆于雨海北部的年轻玄武岩熔岩平原上,该区域的物质成分和矿物组成对于理解月球年轻的火山活动具有重要研究价值。月球全球勘探者(Lunar Prospector,LP)探测的元素数据揭示着陆区附近岩石类型主要为高铁中钛玄武岩(19.5%FeO;5.2%TiO_2)。本研究利用月球矿物绘图仪(Moon Mineralogy Mapper,M~3)获取的嫦娥三号着陆区附近的新鲜撞击坑高光谱数据,采用Hapke辐射传输模型和修正高斯模型(MGM)联合分析,对其年轻月海玄武岩铁镁质矿物进行了定量反演。研究表明该区域玄武岩中矿物组成以单斜辉石矿物为主,存在较高比例的橄榄石。基于光谱库匹配方法和MGM优化分析,我们反演出单斜辉石,斜方辉石,橄榄石和钛铁矿四种矿物的相对体积比为57.6:18.0:15.3:9.1,这一研究结果有待于与嫦娥三号玉兔号月球车上搭栽的红外成像光谱仪数据进行比对,以期从遥感和就位探测两个角度获得对于该地区矿物和岩石类型的全面认识。  相似文献   

8.
月海玄武岩的矿物组成反映了岩浆源区的化学成分以及岩石形成时的物理和化学环境,对月球热演化研究以及月球资源的开发利用都具有重要意义。本文选择延展范围长的冷海为研究区,基于月球矿物成像光谱仪(Moon Mineralogy Mapper,简称M3)数据研究其矿物的空间变化特征。综合利用光谱、地形、元素等多源遥感数据将冷海划分为25个地质单元。提取169条新鲜坑光谱曲线,获取吸收中心波长、波段面积比等光谱参数。通过光谱吸收特征分析,获得冷海玄武岩铁镁质矿物变化特征。东部冷海地层较老,铁镁质矿物主要为单斜辉石,辉石钙含量较月球样品单斜辉石钙偏低,与澄海以及雨海老的地层矿物组成类似。西部冷海和露湾的地质单元较为年轻,富含橄榄石。风暴洋和雨海年轻玄武岩的矿物也富含橄榄石。这种富含橄榄石、大面积分布的玄武岩反映了月球晚期热演化的独特性。尽管地理上冷海为一个独立的月海,其东西部玄武岩矿物组成的差异以及与其同位置周围月海矿物组成的类似性反映了冷海玄武岩源区与周围月海具有联系。  相似文献   

9.
Apollo 11和嫦娥四号(Chang'E-4)是人类探月历史上的里程碑,它们的着陆区分别位于月球正面和背面.对两个着陆区内不同退化程度撞击坑的统计和对比分析有助于揭示研究区域的地质年龄和演化历史,对月球地质研究有着重要的意义.本文使用LRO NAC影像和DTM产品对两个着陆区附近1 km2范围内撞击坑的退化进行分析,通过目视解译识别撞击坑并根据形貌将其分为不同的类别,然后对各类撞击坑进行统计,最后根据统计结果分析区域的地质年龄和撞击坑退化速度.结果 表明Apollo 11和Chang'E-4着陆区附近直径在5~300 m的撞击坑累计大小频率分布规律基本相同,撞击坑累积数量随直径的减小呈指数关系增加;撞击坑最初退化速度较快,随着退化程度的增加,退化速度急剧降低;两个区域的地质年龄相近,撞击历史相似.  相似文献   

10.
月表典型区撞击坑形态分类及分布特征   总被引:2,自引:0,他引:2       下载免费PDF全文
月球表面环形构造主要有撞击坑、火山口和月海穹窿3种,其中撞击坑分布最广泛,是研究月表环形构造的主要内容。由于月表撞击坑数量大、种类多及其形成伴随着整个月球地质的演化过程,因此这种月表地形地貌比较完整地记录了月球表面地貌随时间的改造过程以及改造类型。文中通过研究撞击坑遥感影像及形貌特征,总结归纳为简单型、碗型、平底型、中央隆起型、同心环型、复杂型及月海残留型7种撞击坑类型,用来描述月表典型区域撞击坑的形态特征。从结构和物质两方面进行了月表典型区域撞击坑的形态地貌参数提取,综合利用嫦娥一号CCD 影像数据、LROC数据,得到了该区域撞击坑形态数据(坑底、坑唇、坑壁、坑缘、溅射物覆盖层、中央峰)和形态测量数据(直径、深度、地理位置)。研究发现,LQ 4地区的撞击坑分布可分为月陆区和月海区,月陆区的撞击坑多以中小型撞击坑为主,其分布密度极高,形成年代较早,月海区撞击坑多为年轻的撞击坑,分化程度较低,分布密度也较低。  相似文献   

11.
The laser 40Ar/39Ar dating technique has been applied to five Luna 16 basalt fragments and one impact glass, and nine Luna 24 basalt fragments and one breccia. The textures of these basalts are fine-grained ophitic and coarse-grained basalts. The samples contain high levels of solar and lunar atmospheric argon acquired during their residence on the lunar surface. These trapped argon components are predominantly released at low temperature steps and can be distinguished from radiogenic and cosmogenic released at intermediate and high temperature steps. The apparent ages obtained for Luna 16 samples span a narrow range of 3.29 to 3.38 Ga. A young age of 0.988 Ga was obtained for a basaltic impact glass indicating the age of an impact event in the vicinity of Luna 16 landing site. The ages obtained for Luna 24 samples suggest the existence of at least three periods of volcanism occurring over a protracted interval of between 3.45 and 2.52 Ga. The long period of volcanism suggested for the Mare Crisium was likely due to a combination of geophysical and geochemical features in the surrounding and underlying areas of the Crisium Basin. Attempts at dating three Luna 20 samples were inconclusive due to their high trapped argon contents.  相似文献   

12.
Oxygen and iron isotope analyses of low-Ti and high-Ti mare basalts are presented to constrain their petrogenesis and to assess stable isotope variations within lunar mantle sources. An internally-consistent dataset of oxygen isotope compositions of mare basalts encompasses five types of low-Ti basalts from the Apollo 12 and 15 missions and eight types of high-Ti basalts from the Apollo 11 and 17 missions. High-precision whole-rock δ18O values (referenced to VSMOW) of low-Ti and high-Ti basalts correlate with major-element compositions (Mg#, TiO2, Al2O3). The observed oxygen isotope variations within low-Ti and high-Ti basalts are consistent with crystal fractionation and match the results of mass-balance models assuming equilibrium crystallization. Whole-rock δ56Fe values (referenced to IRMM-014) of high-Ti and low-Ti basalts range from 0.134‰ to 0.217‰ and 0.038‰ to 0.104‰, respectively. Iron isotope compositions of both low-Ti and high-Ti basalts do not correlate with indices of crystal fractionation, possibly owing to small mineral-melt iron fractionation factors anticipated under lunar reducing conditions.The δ18O and δ56Fe values of low-Ti and the least differentiated high-Ti mare basalts are negatively correlated, which reflects their different mantle source characteristics (e.g., the presence or absence of ilmenite). The average δ56Fe values of low-Ti basalts (0.073 ± 0.018‰, n = 8) and high-Ti basalts (0.191 ± 0.020‰, n = 7) may directly record that of their parent mantle sources. Oxygen isotope compositions of mantle sources of low-Ti and high-Ti basalts are calculated using existing models of lunar magma ocean crystallization and mixing, the estimated equilibrium mantle olivine δ18O value, and equilibrium oxygen-fractionation between olivine and other mineral phases. The differences between the calculated whole-rock δ18O values for source regions, 5.57‰ for low-Ti and 5.30‰ for high-Ti mare basalt mantle source regions, are solely a function of the assumed source mineralogy. The oxygen and iron isotope compositions of lunar upper mantle can be approximated using these mantle source values. The δ18O and δ56Fe values of the lunar upper mantle are estimated to be 5.5 ± 0.2‰ (2σ) and 0.085 ± 0.040‰ (2σ), respectively. The oxygen isotope composition of lunar upper mantle is identical to the current estimate of Earth’s upper mantle (5.5 ± 0.2‰), and the iron isotope composition of the lunar upper mantle overlaps within uncertainty of estimates for the terrestrial upper mantle (0.044 ± 0.030‰).  相似文献   

13.
The plutonic rocks of the magnesian suite (Mg-suite) represent the period of lunar basaltic magmatism and crustal growth (∼4.46 to 4.1 Ga) that immediately followed the initial differentiation of the Moon by magma ocean (LMO) formation and crystallization. The volume and distribution of the Mg-suite and its petrogenetic relationship to latter stages of lunar magmatism (mare basalts) remains obscure. These plutonic rocks exhibit a range of compositions and include ultramafics, troctolites, spinel troctolites, norites, and gabbronorites. A distinguishing characteristic of this suite is that they contain some of the most magnesium-rich phases (Fo95-90) that had crystallized from lunar magmas, yet they also are significantly enriched in an incompatible element component referred to as KREEP (a late-stage product of LMO crystallization containing abundant potassium (K), rare earth elements (REE), phosphorous (P), uranium, and thorium). Ion microprobe analyses of individual mineral phases (olivine, pyroxene, and plagioclase) from the Mg-suite have shown some very unexpected characteristics that have profound implications on the origin of these basaltic magmas. Although the Mg-suite lithologies are typified by silicates with relatively high Mg′, early liquidus phases such as olivine are fairly low in Ni, Co, and Cr relative to more iron-rich olivines in the younger mare basalts. The high Y and Ti/Y in early phases such as olivine and orthopyroxene indicate that the parental basaltic melts were high in incompatible elements and contained an “ilmenite fractionation” signature. However, the Y in olivine from many of the troctolites and ultramafic lithologies are only slightly greater than that of the olivine in the mare basalts whereas olivine in the norites, gabbronorites, and Apollo 14 troctolites are exceedingly high. The KREEP component may have been added to the Mg-suite parent magmas by assimilation or mixing into the mantle source. The volume of KREEP required to be added to the parental magmas of the Mg-suite tends to favor the latter mechanism for KREEP incorporation. The extremely high abundances of KREEP in the norites and gabbronorites are a product of substantial crystallization (40% to 70%) of KREEP-enriched Mg-suite parental magmas. Basaltic magmatism associated with KREEP extended for over 1.5 billion years and appears to have changed over time. The early stages of this style of lunar magmatism (Mg-suite) appear to represent melting of early LMO cumulates with low abundances of Ni, Co, Cr, and V. Later stages of KREEP-rich basaltic magmatism seemed to clearly involve melting of a variety of LMO cumulate assemblages with higher incompatible element enrichment. It appears that the heat derived from the KREEP component was instrumental in at least initiating melting of the lunar mantle over this period of time.  相似文献   

14.
New data is presented for five evolved, low-Ti lunar mare basalt meteorites from the LaPaz Icefield, Antarctica, LAP 02205, LAP 02224, LAP 02226, LAP 02436, and LAP 03632. These basalts have nearly identical mineralogies, textures, and geochemical compositions, and are therefore considered to be paired. The LaPaz basalts contain olivine (Fo64-2) and pyroxene (Fs32Wo8En60 to Fs84-86Wo15En2-0) crystals that record extreme chemical fractionation to Fe-enrichment at the rims, and evidence for silicate liquid immiscibility and incompatible element enrichment in the mesostasis. The basalts also contain FeNi metals with unusually high Co and Ni contents, similar to some Apollo 12 basalts, and a single-phase network of melt veins and fusion crusts. The fusion crust has similar chemical characteristics to the whole rock for the LaPaz basalts, whereas the melt veins represent localized melting of the basalt and have an endogenous origin. The crystallization conditions and evolved nature of the LaPaz basalts are consistent with fractionation of olivine and chromite from a parental liquid similar in composition to some olivine-phyric Apollo 12 and Apollo 15 basalts or lunar low-Ti pyroclastic glasses. However, the young reported ages for the LaPaz mare basalts (∼2.9 Ga) and their relative incompatible element enrichment compared to Apollo mare basalts and pyroclastic glasses indicate they cannot be directly related. Instead, the LaPaz mare basalts may represent fractionated melts from a magmatic system fed by similar degrees of partial melting of a mantle source similar to that of the low-Ti Apollo mare basalts or pyroclastic glasses, but which possessed greater incompatible element enrichment. Despite textural differences, the LaPaz basalts and mare basalt meteorite NWA 032 have similar ages and compositions and may originate from the same magmatic system on the Moon.  相似文献   

15.
Lunar mare basalts are a product of partial melting of the lunar mantle under more reducing conditions when compared to those expected for the Earth’s upper mantle. Alongside Fe, Ti can be a major redox sensitive element in lunar magmas, and it can be enriched by up to a factor of ten in lunar basaltic glasses when compared to their terrestrial counterparts. Therefore, to better constrain the oxidation state of Ti and its coordination chemistry during lunar magmatic processes, we report new X-ray absorption near edge structure (XANES) spectroscopy measurements for a wide range of minerals (pyroxene, olivine, Fe–Ti oxides) and basaltic melt compositions involved in partial melting of the lunar mantle. Experiments were conducted in 1 bar gas-mixing furnaces at temperatures between 1100 and 1300 °C and oxygen fugacities (fO2) that ranged from air to two orders of magnitude below the Fe–FeO redox equilibrium. Run products were analysed via electron microprobe and XANES Ti K-edge. Typical run products had large (>?100 µm) crystals in equilibrium with quenched silicate glass. Ti K-edge XANES spectra show a clear shift in energy of the absorption edge features from oxidizing to reducing conditions and yield an average valence for Fe–Ti oxides (armalcolite and ilmenite) of 3.6, i.e., a 40% of the overall Ti is Ti3+ under fO2 conditions relevant to lunar magmatism (IW ??1.5 to ??1.8). Pyroxenes and olivine have average Ti valence of 3.75 (i.e., 25% of the overall Ti is trivalent), while in silicate glasses Ti is exclusively tetravalent. Pre-edge peak intensities also indicate that the coordination number of Ti varies from an average V-fold in silicate glass to VI-fold in the Fe–Ti oxides and a mixture between IV and VI-fold coordination in the pyroxenes and olivine, with up to 82% [IV]Ti4+ in the pyroxene. In addition, our results can help to better constrain the Ti3+/∑Ti of the lunar mantle phases during magmatic processes and are applied to provide first insights into the mechanisms that may control Ti mass-dependent equilibrium isotope fractionation in lunar mare basalts.  相似文献   

16.
We report oxygen isotopic compositions for 14 zircon grains from a sample of sawdust from lunar breccia 14321. The zircons range in age from ∼4.4 to 3.9 Ga and in U and Th content from a few to several hundred ppm. As such these grains represent a range of possible source rocks, from granophyric to mafic composition, and cover the total age range of the major initial lunar bombardment. Nevertheless, results show that the oxygen isotopic compositions of the zircons fall within a narrow range of δ18O of about 1 per mil and have δ18O values indistinguishable from those observed for terrestrial mid-ocean ridge basalts confirming the coincidence of lunar and Earth oxygen isotopic compositions. In the δ17O vs. δ18O, coordinates data form a tight group with a limited trend on the terrestrial fractionation line. The zircon oxygen isotopes show minimal evidence of the extreme and variable mineral differentiation and element fractionation that have contributed to the formation of their parent rocks.  相似文献   

17.
月海玄武岩与月球演化   总被引:6,自引:0,他引:6  
徐义刚 《地球化学》2010,39(1):50-62
月海玄武岩主要产于月球近边的盆地中,覆盖面积为月球表面的l%,其形成年龄多在39~31亿年之间,是各类月岩中最年轻的。与地球玄武岩相似,月海玄武岩由斜长石、辉石和橄榄石组成,但它们比地球玄武岩具有更低的Mg#、A1:0,、K和Na含量.高的FeO含量(大于16%)和变化范围大的TiO2含量(小于l%到大于13%)。根据TiO2含量的变化,月海玄武岩分成高Ti(〉6%),低Ti(1.5%〈TiO:〈6%)以及极低Ti(〈1.5%)三类。所有月海玄武岩都具有Eu负异常,并亏损挥发性元素和亲铁元素。月海玄武岩的同位素特征指示其至少为三个组分混合的产物:(1)高:238U/204Pb、高87Sr/86Sr和负εNd组分,可能是岩浆海分异的残余岩浆即KREEP;(2)低:238U/204Pb、低87Sr/86sr和正εNd组分,来源于原始月幔,其熔融产物为低Ⅱ玄武岩;(3)中等87Sr/86Sr和εNd组分,位于月幔的顶部,经历了岩浆海(洋)过程中形成的堆晶物质的再熔融,还可能受到了陨击事件的影响,其熔融产物是高Ti玄武岩。月海玄武岩的元素和同位素地球化学性质支持岩浆海的假说,其源区的形成与岩浆海的分异密切相关,并经历了三个阶段:(a)岩浆海阶段,通过岩浆海的结晶分异形成顶部为斜长岩月壳,中间为高Ⅱ、富钛铁矿层,底部为巨厚的硅酸盐低Ti层的三层壳幔结构;(b)富钛铁矿堆晶岩(携带少量残余熔体)因密度大而下沉至下部的硅酸盐月幔(400km以下);(C)月幔中这些不同源区的岩石发生减压熔融。早期由较浅的低熔点组分熔融形成低K高Ti玄武岩,之后形成来源较深的高Ti玄武岩和低Ti玄武岩。  相似文献   

18.
The abundances and isotopic compositions of carbon, nitrogen and sulfur were measured in eleven lunar rocks. Samples were combusted sequentially at three temperatures to resolve terrestrial contamination from indigenous volatiles.Sulfur abundances in Apollo 16 highland rocks range from 73 to 1165 μg/g-whereas sulfur contents in Apollo 15 and 17 basalts range from 719 to 1455 μg/g and correlate with TiO2 content. Lunar rocks as a group have a remarkably uniform sulfur isotopic composition, which may reflect the low oxygen fugacity of the basaltic magmas. Much of the range of reported δ34Scd values (?2 to + 2.5 permil) is caused by systematic analytical discrepancies between laboratories.Lunar rocks very likely contain less than 0.1 μg/g of nitrogen. The measured spallogenic production rate, 4.1 × 10?6 μg 15N/g sample/m.y., agrees remarkably closely with previous estimates. An estimate which includes all available data is 3.7 × 10?6 μg15N/g sample/m.y.Lunar basalts may contain no indigenous lunar carbon in excess of procedural blank levels (~0.7 μg/g). Highlands rocks consistently release about 1 to 5 μg/g of carbon in excess of blank levels, but this carbon might either derive from ancient meteoritic debris or be a mineralogie product of terrestrial weathering. The average measured spallogenic 13C production rate is 4.1 × 10?6 μg13C/g sample/m.y. The 13C spallation exposure ages of rocks 15058 and 15499 are 184 and 135 m.y., respectively.  相似文献   

19.
Apatite preserves a record of the halogen and water fugacities that existed during the waning stages of crystallization of planetary magmas, when they became saturated in phosphates. We develop a thermodynamic formalism based on apatite-merrillite equilibria that makes it possible to compare the relative values of halogen and water fugacities in Martian, lunar and terrestrial basalts, accounting for possible differences in pressure, temperature and oxygen fugacities among the planets. We show that each of these planetary bodies has distinctive ratios among volatile fugacities at apatite saturation and that these fugacities are in some cases related in a consistent way to volatile fugacities in the mantle magma sources. Our analysis shows that the Martian mantle parental to basaltic SNC meteorites was dry and poor in both fluorine and chlorine compared to the terrestrial mantle. The limited data available from Mars show no secular variation in mantle halogen and water fugacities from ∼4 Ga to ∼180 Ma. The water and halogens found in present-day Martian surface rocks have thus resided in the planet’s surficial systems since at least 4 Ga, and may have been degassed from the planet’s interior during a primordial crust-forming event. In comparison to the Earth and Mars, the Moon, and possibly the eucrite parent body too, appear to be strongly depleted not only in H2O but also in Cl2 relative to H2O. Chlorine depletion is strongest in mare basalts, perhaps reflecting an eruptive process characteristic of large-scale lunar magmatism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号