首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 82 毫秒
1.
The neighbouring volcanoes Villarrica and Llaima are two of the most active volcanoes in Chile and both currently degas continuously. We present a semi-continuous time series of SO2 fluxes for Villarrica and Llaima volcanoes. The time series was obtained using five scanning Mini-Differential Optical Absorption Spectrometers (Mini-DOAS, UV spectrometers) over 6 months (13 February to 31 July 2010) and is based on 6,829 scans for Villarrica and 7,165 scans for Llaima. Statistical analyses of the SO2 flux time series reveal a periodicity of degassing maxima about every 7 days, and further a conspicuous synchronicity of the degassing maxima and minima between the two volcanoes. Intra-day variations in SO2 fluxes also show a striking correlation between Villarrica and Llaima. All these patterns correlate well with the trend of the modelled solid Earth tide curves, where the 7-day degassing maxima correspond with both the fortnightly tidal maxima and minima. The intra-day degassing peaks mostly correlate well with the periods of maximum deformation rates during the diurnal tidal cycle, and further with semidiurnal minima in atmospheric pressure, a phenomenon we refer to as “the tidal pump”. As there is little time lag between the tidal action and the changes in degassing rates, we infer that degassing at both volcanoes is controlled by conduit convection, involving physical separation between gas and magma at comparatively shallow levels. Variations in daily degassing rates were up to a factor of ca. 12 and 10 for Villarrica and Llaima, respectively, without any noticeable changes in the periodicity. We thus suggest that the described cyclic variations must be taken into account for all comparable volcanoes when using gas monitoring as a tool for volcanic hazard mitigation.  相似文献   

2.
Here we present the first systematic investigation of volatile geochemistry along the Southern Volcanic Zone (SVZ) of Chile. Holocene olivine-hosted melt inclusions in the most mafic tephras sampled from 16 volcanoes along the volcanic front of the SVZ between 33°S and 43°S were analysed for pre-eruptive sulphur, chlorine, and major element contents. These results are combined with trace element compositions of the host whole rocks. The highest fractionation-corrected gas contents occur in the least-degassed melt inclusions from small monogenetic cones of Los Hornitos, Cabeza de Vaca, and Apagado from both the transitional and the southern-central SVZ, reaching ~3,000 μg/g S and 1,400 μg/g Cl, while the lowest abundances of ~1,100 μg/g S and ~600 μg/g Cl were found in the central SVZ at Volcán Lonquimay, Volcán Llaima, and Volcán Villarrica. Chlorine co-varies with trace element indicators for the degree of melting and/or source enrichment, such that the lowest Cl contents are found in high-degree melts from the most depleted mantle sources. The size of the volcanic edifices correlates inversely with Cl abundances in the melt. This could reflect more extensive degassing during ascent through the complex magma plumbing systems beneath the stratovolcanoes or greater dilution during larger degrees of melting of more depleted sources, or a combination of these factors. Compared to other subduction zones, the SVZ melt inclusions exhibit Cl and S abundances in the same range as most of those from the Central American and those from the Marianas arcs.  相似文献   

3.
《地学前缘(英文版)》2020,11(5):1789-1803
Video cameras are common at volcano observatories,but their utility is often limited during periods of crisis due to the large data volume from continuous acquisition and time requirements for manual analysis.For cameras to serve as effective monitoring tools,video frames must be synthesized into relevant time series signals and further analyzed to classify and characterize observable activity.In this study,we use computer vision and machine learning algorithms to identify periods of volcanic activity and quantify plume rise velocities from video observations.Data were collected at Villarrica Volcano,Chile from two visible band cameras located~17 km from the vent that recorded at 0.1 and 30 frames per second between February and April 2015.Over these two months,Villarrica exhibited a diverse range of eruptive activity,including a paroxysmal eruption on 3 March.Prior to and after the eruption,activity included nighttime incandescence,dark and light emissions,inactivity,and periods of cloud cover.We quantify the color and spatial extent of plume emissions using a blob detection algorithm,whose outputs are fed into a trained artificial neural network that categorizes the observable activity into five classes.Activity shifts from primarily nighttime incandescence to ash emissions following the 3 March paroxysm,which likely relates to the reemergence of the buried lava lake.Time periods exhibiting plume emissions are further analyzed using a row and column projection algorithm that identifies plume onsets and calculates apparent plume horizontal and vertical rise velocities.Plume onsets are episodic,occurring with an average period of~50 s and suggests a puffing style of degassing,which is commonly observed at Villarrica.However,the lack of clear acoustic transients in the accompanying infrasound record suggests puffing may be controlled by atmospheric effects rather than a degassing regime at the vent.Methods presented here offer a generalized toolset for volcano monitors to classify and track emission statistics at a variety of volcanoes to better monitor periods of unrest and ultimately forecast major eruptions.  相似文献   

4.
Glaciers in the southern province of the Southern Volcanic Zone (SVZ) of Chile (37–46°S) have experienced significant frontal retreats and area losses in recent decades which have been primarily triggered by tropospheric warming and precipitation decrease. The resulting altitudinal increase of the Equilibrium Line Altitude or ELA of glaciers has lead to varied responses to climate, although the predominant volcanic stratocone morphologies prevent drastic changes in their Accumulation Area Ratios or AAR. Superimposed on climate changes however, glacier variations have been influenced by frequent eruptive activity. Explosive eruptions of ice capped volcanoes have the strongest potential to destroy glaciers, with the most intense activity in historical times being recorded at Nevados de Chillán, Villarrica and Hudson. The total glacier area located on top of the 26 active volcanoes in the study area is ca. 500 km2. Glacier areal reductions ranged from a minimum of −0.07 km2 a −1 at Mentolat, a volcano with one of the smallest ice caps, up to a maximum of −1.16 km2 a −1 at Volcán Hudson. Extreme and contrasting glacier–volcano interactions are summarised with the cases ranging from the abnormal ice frontal advances at Michinmahuida, following the Chaitén eruption in 2008, to the rapid melting of the Hudson intracaldera ice following its plinian eruption of 1991. The net effect of climate changes and volcanic activity are negative mass balances, ice thinning and glacier area shrinkage. This paper summarizes the glacier changes on selected volcanoes within the region, and discusses climatic versus volcanic induced changes. This is crucial in a volcanic country like Chile due to the hazards imposed by lahars and other volcanic processes.  相似文献   

5.
During December 2003, three seismic stations were installed close to the hornitos of the hydrothermal system at Dallol, complemented by radiometer and infrasonic measurements. A combined geophysical data set was collected for about three days. During this period thermal, seismic and acoustic records indicate the presence of two regimes characterized by a different energy distribution in frequency. Few volcano-tectonic events appear superimposed to the continuous hydrothermal tremor. The continuous data indicate variable shallow processes most likely related with variations in temperature and degassing processes within the shallow geothermal system. This alternation of low and high regimes shows significant similarities with other volcanic systems of different nature, although at Dallol the transition is more evident in the thermal than in the seismic and acoustic data.  相似文献   

6.
松辽盆地改造残留的古火山机构与现代火山机构的类比分析   总被引:20,自引:3,他引:17  
现代火山机构形态有盾状、锥状和穹状,可按喷发样式进一步划分为7种类型。据此分类,在松辽盆地周缘剖面及其北部徐家围子断陷区可识别出4类火山机构:盾状火山机构,由喷溢相熔岩组成,可夹有薄层爆发相火山碎屑岩;层火山机构,由互层的熔岩与火山碎屑岩组成,喷溢相与爆发相交替的序列明显;火山碎屑锥,几乎全部由火山碎屑(熔)岩组成,爆发相为主;熔岩穹丘由高粘度的流纹质、英安质熔岩堵塞火山口后缓慢挤出形成,喷溢相和侵出相发育,兼有火山通道相。盆地内埋藏火山机构最小坡度为3°,最大坡度为25°,底部直径为2~14 km,分布面积为4~50 km2,火山岩厚度为100~600 m;总体上呈现出数目多、个体规模小、受区域大断裂控制、具裂隙式-多中心喷发、彼此相互叠置的特征。火山岩岩性和岩相是控制松辽盆地古火山机构类型及形态的主要因素。  相似文献   

7.
Volcanic earthquakes on Kamchatka can be divided into two large groups: earthquakes with depths of 0–40 km generated by stresses which arise during magma migration in the Earth's crust under volcanos (the first group), and the earthquakes directly connected with the eruptions (volcanic tremor, explosive earthquakes, etc.—the second group). This paper presents a review of some energetic, spectral and spatio-temporal characteristics of the Kamchatkan volcanic earthquakes of the first group and their relationship with volcanic phenomena.

Seismicity related to volcanic activity has the following specific features: a local and predominantly swarm-like pattern of earthquake origination; iteration of earthquake swarms in the same seismically active zones; many shallow and relatively small events; a small magnitude limit (up to 5.5–6); the existence of longer-period variations of volcanic earthquake foci as compared to the tectonic one; and a comparatively high value of the slope of the earthquake recurrence plot. At the same time, similarity in behaviour of some parameters of the seismic regime during the preparation and development of eruptions and prior to large earthquakes, as well as the destruction of samples, are noted.  相似文献   


8.
We document the mineralogical and geochemical composition of tephra layers identified in the late Quaternary sediments of Puyehue Lake (Southern Volcanic Zone of the Andes, Chile, 40°S) to identify the source volcanoes and to present the first tephrostratigraphic model for the region. For the last millennium, we propose a multi-criteria correlation model based on five tephra layers identified at seven coring sites. The two upper tephras are thin fine-grained green layers composed of more than 80% rhyodacitic glass shards, and associated to the AD 1960 and AD 1921-22 eruptions of the Puyehue-Cordon de Caulle volcanic complex. The third tephra is a sandy layer dominated by orthopyroxene, and related to the AD 1907 eruption of Rininahue maar. An olivine-rich tephra was deposited at the end of the 16th century, and a tephra characterized by a two-pyroxene association marks the second half of the first millennium AD. In addition, we detail the tephra succession of an 11.22-m-long sediment core covering the last 18,000 yr. The results demonstrate that the central province of the Southern Volcanic Zone has been active throughout the last deglaciation and the Holocene, with no increase in volcanic activity during glacial unloading.  相似文献   

9.
火山区温室气体排放研究进展   总被引:2,自引:0,他引:2  
火山活动是地球深部脱气的重要途径之一,它在大气圈温室气体浓度变化及全球碳排放研究中具有重要的作用。以国外火山气体研究成果为基础,概述火山气体的研究内容、研究方法(包括样品采集、实验室测试),并重点探讨国外间歇期火山区土壤脱气、温泉脱气及喷气孔脱气的温室气体排放通量估算方法及其相应规模。结果表明,全球范围内火山间歇期土壤...  相似文献   

10.
We localized crustal earthquakes in the Andean arc, between 35°S and 36°S, from December 2009 to May 2010. This research shows a seismicity increase, in a narrow longitudinal area, of more than nine times after the great Mw 8.8 Maule earthquake.The localized seismicity defines an area of ∼80 km long and ∼18 km wide and NNW to NNE trend. The Md magnitudes varied from 0.7 to 3.1 except for two earthquakes with Mw of 3.9 and 4.5, located in the northern end of the area. The focal mechanisms for these two last events were normal/strike-slip and strike-slip respectively.During 2011, a network of 13 temporary stations was installed in the trasarc region in Malargüe, Argentina. Sixty earthquakes were localized in the study region during an 8 month period.We explored how changes in Coulomb conditions associated with the mega-thrust earthquake triggered subsequent upper-plate events in the arc region. We assumed the major proposed structures as receiver faults and used previously published earthquake source parameters and slip distribution for the Maule quake. The largest contribution to static stress change, up to 5 bars, derives from unclamping resulting consistent with co-seismic dilatational deformation inferred from GPS observations in the region and subsidence in nearby volcanoes caused by magma migration.Three different Quaternary tectonic settings–extensional, strike-slip and compressional-have been proposed for the arc region at these latitudes. We found that the unclamping produced by the Maule quake could temporarily change the local regime to normal/strike-slip, or at least it would favor the activation of Quaternary NNE to N-trending dextral strike-slip faults with dextral transtensional movement.  相似文献   

11.
12.
Located in the heart of the Lesser Caucasus mountains, where the Arabian and Eurasian tectonic plates collide, Armenia occupies an exceptional geological position shaped through millions of years of subduction and collision. It is a unique place on the Earth recording extensive intrusive and volcanic activity related to the long-standing continental convergence. The volcanoes of Armenia provide a rare opportunity to study the sources and processes involved in this unusual type of magmatism. More than 500 Quaternary volcanoes have been mapped in Armenia, most of them formed from single eruptive episodes. Among several large composite volcanoes, the mighty Aragats stands out as the largest volcano in Armenia and the region altogether. Volcanic deposits testify to the range of eruptive styles—from the ignimbrites formed in eruptions as explosive and voluminous as any seen globally in the modern era to the enormous fissure-fed lava flows that form the Southern Caucasus flood basalt province, the smallest and youngest Large Igneous Province in the world. Several pre-historical and historical eruptions have been documented, highlighting the potential for future volcanic activity in the region. In recent years, research has focused on the volcanic hazards associated with the Armenian Nuclear Power Plant, located in the foothills of Aragats volcano. This article highlights some of the extraordinary volcanic and intrusive features observed in Armenia and summarizes aspects of recent volcanological and petrological research.  相似文献   

13.
Volcanic eruptions may create a wide range of risks in inhabited areas and, as a consequence, major economic damage to the surrounding territory. An example of volcanic hazard was given between 1998 and 2001 by Mt. Etna volcano, in Italy, with its frequent paroxysmal explosive activity that caused more than a hundred fire-fountain episodes. In the period January–June 2000, in particular, 64 lava fountains took place at the Southeast Crater. During the most intense explosive phase of each episode, a sustained column often formed, reaching up to 6 km above the eruptive vent. Then, the column started to expand laterally causing more or less copious tephra fallout on the slopes of Etna; ash and lapilli, therefore, constituted a serious danger for vehicular and air traffic. A software and hardware warning system was developed to mitigate the volcanic hazard indicating the areas affected by potential ash and lapilli fallout. The alert system was mainly based on the good correspondence between the pattern of volcanic tremor amplitude and the evolution of explosive activity. When a fixed tremor threshold was exceeded, a semiautomatic process started to send faxes to Civil Defence and Municipalities directly affected by tephra fallout, together with information on wind directions from the Meteorological Office. The application of this methodology, during the last 14 eruptive episodes in 2000 and the 14 events occurred in 2001, demonstrated the good correspondence between the forecasts on the areas affected by tephra fallout and the effective tephra distribution on land. Despite the integrity of the performance provided by the alert system, small discrepancies occurred in the technical procedure of alerting, for which possible solutions have been discussed. The improvement of this type of system, could become basic for the Etnean region and be proposed for similar volcanic areas throughout the world.  相似文献   

14.
内蒙东部晚第四纪火山活动与新构造   总被引:8,自引:4,他引:4  
本文所指的晚第四纪包括晚更新世和全新世。内蒙东部晚第四纪火山活动强烈,北起大兴安岭北部的鄂伦春诺敏河火山群、经阿尔山-柴河、锡林浩特-阿巴嘎火山群,南抵察右后旗乌兰哈达火山群,断续延伸约1000km,分布着约390余座大小不一、形态各异的火山,构成了内蒙东部壮观的北北东向第四纪火山喷发带。火山类型包括玛珥式、夏威夷式、斯通博利式、亚布里尼式和冰岛式,以斯通博利式最为发育。爆破式火山作用包括射汽、射汽-岩浆爆发和岩浆爆发。火山岩类型主要为碱性玄武岩及其火山碎屑物(岩),火山岩具初期裂谷构造属性。火山活动主体受北北东向基底断裂控制,但就具体火山群而言,又多处于北东和北西向基底深断裂交会处。区内新构造与火山活动密切相关,深部岩浆的上侵,可能是控制本区新构造活动的主因。尤其是全新世火山的空间展布,显示了内蒙东部新构造的活动性。  相似文献   

15.
In regions with limited knowledge of the historical volcanic record, like remote areas in the Andean Southern Volcanic Zone, the definition of reliable age-depth models for lake sequences represents a valuable tool for tephra layers dating. In Lake Futalaufquen (42.8°S), Northern Patagonia, a short sedimentary sequence was extracted after the AD 2008 Chaitén eruption with the purpose to analyze the records of volcanic eruptions at these poorly studied latitudes. The sequence was dated by 210Pb, 137Cs, and 14C techniques. Five tephras were identified for the last 1600 years, restricted to the last 5 centuries. Sedimentology, morphology, and geochemical properties allowed the characterization of the tephras and their correlation with tephras recently identified proximal to the sources, mainly from Chaitén and Huequi volcanoes, and Michinmahuida accessory cones, representing the first distal records reported of these tephras. Furthermore, tephras modeled ages obtained by the sequence age-depth model shrink the ages for the volcanic events, like a potential cycle of activity from Michinmauida accessory cones during AD 1530 ± 55, one eruption from Huequi volcano at AD 1695 ± 50, and a possible recent eruption from Chaitén at AD 1775 ± 40. Additionally, the work contributes to improve the regional volcanic records knowledge, basic for volcanic hazard assessment.  相似文献   

16.
《International Geology Review》2012,54(11):1384-1400
A better understanding of the chemical evolution of fluids in geothermal and hydrothermal systems requires data-based knowledge regarding the interplay between active tectonics and fluid flow. The Southern Andes volcanic zone is one of the best natural laboratories to address this issue because of the occurrence of numerous geothermal areas, recent seismic activity generated by regional fault systems, and intense volcanic activity. Geothermal systems have been understudied in this area, and limited scientific information exists about the role of local kinematic conditions on fluid flow and mineralization during the development and evolution of geothermal reservoirs. In this study, we provide data for a 1:200,000 scale geological and structural map of the Villarrica–Chihuio area as a setting in which to perform a structural analysis of active geothermal areas. This structural analysis, combined with geochemical modelling of hot spring data, allows the identification of two magmatic-tectonic-geothermal domains based on fault systems, volcanic activity, and lithologies. The Liquiñe–Ofqui fault system (LOFS) domain encompasses geothermal areas located either along the master or subsidiary faults. These are favourably orientated for shear and extension, respectively. In the LOFS domain, the geochemistry of hot spring discharges is controlled by interaction with the crystalline basement, and is characterized by low B/Cl conservative element ratios and high pH. In marked contrast, the arc-oblique long-lived fault systems (ALFS) domain includes geothermal occurrences located on the flanks of volcanoes forming WNW-trending alignments; these systems are built over faults that promote the development of crustal magma reservoirs. Unlike the first domain, the fluid chemistry of these geothermal discharges is strongly controlled by volcanic host rocks, and is typified by lower pH and higher B/Cl ratios. Reaction path modelling supports our model: chemical evolution of geothermal fluids in the Villarrica–Chihuio area is strongly dependent on structurally controlled mechanisms of heat transfer. Within this framework, heat transfer by conduction is responsible for the LOFS domain, whereas magmatically enhanced advective transport dominates heat flow in the ALFS domain. Although more studies are needed to constrain the complex interplay between tectonics and fluid flow, results from this study provide new insights towards efficient exploration strategies of geothermal resources in Southern Chile.  相似文献   

17.
松辽盆地含CO_2火山岩气藏的形成和分布   总被引:2,自引:0,他引:2  
松辽盆地特有的深部构造背景和裂谷演化特征,造成盆地内含CO_2火山岩气藏的形成和富集。松辽裂谷盆地中新生代火山岩浆活动发育,总体上具有多期喷发、分布广泛和储集条件良好的特点。火山活动以中心式喷发为主,主要发育中基性-酸性火山岩,发育流纹岩、凝灰岩等多种岩石类型,爆发相和溢流相2种火山岩相。中生代火山岩在盆地内分布广泛,营域组构成深层有利储层,新生代火山岩在盆地外围出露较多,而在盆内出露较少。盆地高含量的二氧化碳为无机幔源成因,由青山口期和新生代幔源岩浆脱气形成。含CO_2火山岩气藏的形成主要受深部构造背景、深大断裂和中新生代火山岩控制。已发现含CO_2火山岩气藏主要分布于古中央隆起带及其两侧断陷的营城组火山岩中,具有点状、带状分布,局部富集的特点。根据主控因素分析,预测了5个CO_2富集区带。  相似文献   

18.
More than 65 potentially active volcanoes on the Kamchatka Peninsula and the Kurile Islands pose a substantial threat to aircraft on the Northern Pacific (NOPAC), Russian Trans-East (RTE), and Pacific Organized Track System (PACOTS) air routes. The Kamchatka Volcanic Eruption Response Team (KVERT) monitors and reports on volcanic hazards to aviation for Kamchatka and the north Kuriles. KVERT scientists utilize real-time seismic data, daily satellite views of the region, real-time video, and pilot and field reports of activity to track and alert the aviation industry of hazardous activity. Most Kurile Island volcanoes are monitored by the Sakhalin Volcanic Eruption Response Team (SVERT) based in Yuzhno-Sakhalinsk. SVERT uses daily moderate resolution imaging spectroradiometer (MODIS) satellite images to look for volcanic activity along this 1,250-km chain of islands. Neither operation is staffed 24 h per day. In addition, the vast majority of Russian volcanoes are not monitored seismically in real-time. Other challenges include multiple time-zones and language differences that hamper communication among volcanologists and meteorologists in the US, Japan, and Russia who share the responsibility to issue official warnings. Rapid, consistent verification of explosive eruptions and determination of cloud heights remain significant technical challenges. Despite these difficulties, in more than a decade of frequent eruptive activity in Kamchatka and the northern Kuriles, no damaging encounters with volcanic ash from Russian eruptions have been recorded.  相似文献   

19.
Eruption records in the terrestrial stratigraphy are often incomplete due to erosion after tephra deposition, limited exposure and lack of precise dating owing to discontinuity of strata. A lake system and sequence adjacent to active volcanoes can record various volcanic events such as explosive eruptions and subaqueous density flows being extensions of eruption triggered and secondary triggered lahars. A lacustrine environment can constrain precise ages of such events because of constant and continuous background sedimentation. A total of 71 subaqueous density flow deposits in a 28 m long core from Lake Inawashiro‐ko reveals missing terrestrial volcanic activity at Adatara and Bandai volcanoes during the past 50 kyr. Sedimentary facies, colour, grain size, petrography, clay mineralogy, micro X‐ray fluorescence analysis and chemistry of included glass shards characterize the flow event deposits and clarify their origin: (i) clay‐rich grey hyperpycnites, extended from subaerial cohesive lahars at Adatara volcano, with sulphide/sulphate minerals and high sulphur content which point to a source from hydrothermally altered material ejected by phreatic eruptions; and (ii) clay‐rich brown density flow deposits, induced by magmatic hydrothermal eruptions and associated edifice collapse at Bandai volcano, with the common presence of fresh juvenile glass shards and low‐grade hydrothermally altered minerals; whereas (iii) non‐volcanic turbidites are limited to the oldest large slope failure and the 2011 Tohoku‐oki earthquake events. The high‐resolution chronology of volcanic activity during the last 50 kyr expressed by lacustrine event deposits shows that phreatic eruption frequency at Adatara has roughly tripled and explosive eruptions at Bandai have increased by ca 50%. These results challenge hikers, ski‐fields and downstream communities to re‐evaluate the increased volcanic risks from more frequent eruptions and far‐reaching lahars, and demonstrate the utility of lahar and lacustrine volcanic density flow deposits to unravel missing terrestrial eruption records, otherwise the recurrence rate may be underestimated at many volcanoes.  相似文献   

20.
Volcanic terrains such as magmatic arcs are thought to display the most complex surface environments on Earth. Ancient volcaniclastics are notoriously difficult to interpret as they describe the interplay between a single or several volcanoes and the environment. The Early Miocene Tepoztlán Formation at the southern edge of the Transmexican Volcanic Belt belongs to the few remnants of this ancestral magmatic arc, and therefore is thought to represent an example of the initial phase of evolution of the Transmexican Volcanic Belt. Based on geological mapping, detailed logging of lithostratigraphic sections, palaeocurrent data of sedimentary features and anisotropy of magnetic susceptibility, mapping of two‐dimensional panels from outcrop to field scale, and geochronological data in an area of ca 1000 km2, three periods in the evolution of the Tepoztlán Formation were distinguished, which lasted around 4 Myr and are representative of a volcanic cycle (edifice growth phases followed by collapse) in a magmatic arc setting. The volcaniclastic sediments accumulated in proximal to medial distances on partly coalescing aprons, similar to volcanic ring plains, around at least three different stratovolcanoes. These volcanoes resulted from various eruptions separated by repose periods. During the first phase of the evolution of the Tepoztlán Formation (22·8 to 22·2 Ma), deposition was dominated by fluvial sediments in a braided river setting. Pyroclastic material from small, andesitic–dacitic composite volcanoes in the near vicinity was mostly eroded and reworked by fluvial processes, resulting in sediments ranging from cross‐bedded sand to an aggradational series of river gravels. The second phase (22·2 to 21·3 Ma) was characterized by periods of strong volcanic activity, resulting in voluminous accumulations of lava and tuff, which temporarily overloaded and buried the original fluvial system with its detritus. Continuous build‐up of at least three major volcanic centres further accentuated the topography and, in the third phase (21·3 to 18·8 Ma), mass flow processes, represented by an increase of debris flow deposits, became dominant, marking a period of edifice destruction and flank failures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号