首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 33 毫秒
1.
Stoichiometric solubility constants of calcite in initially supersaturated solutions of various magnesium to calcium concentration ratios but identical ionic strength were determined at 25°C and one atmosphere total pressure.The thermodynamic solubility constant of calcite is used with ion pairing equations to interpret the data reported in this study. Results indicate that even though magnesian calcites, rather than pure calcite, precipitate from seawater solutions containing magnesium ions, the incorporation of MgCO3 in the calcite crystal lattice does not extensively alter the equilibrium calcium carbonate activity product.The equilibrium activity of the ionic species in solution and the composition of magnesian calcite overgrowths precipitated from solutions of similar composition are used to calculate the solubility of magnesian calcites. The values for magnesian calcite solubilities obtained by this approach are lower than those obtained from the dissolution kinetics of biogenic carbonates.  相似文献   

2.
The seeded precipitation (crystal growth) of aragonite and calcite from sea water, magnesium-depleted sea water, and magnesium-free sea water has been studied by means of the steady-state disequilibrium initial rate method. Dissolved magnesium at sea water levels appears to have no effect on the rate of crystal growth of aragonite, but a strong retarding effect on that of calcite. By contrast, at levels less than about 5 per cent of the sea water level, Mg has little or no effect on calcite growth. Extended crystal growth on pure calcite seeds in sea water of normal Mg content resulted in the crystallization of magnesium calcite overgrowths, containing 7–10 mole % MgCO3 in solid solution. This suggests that the rate inhibition by Mg is due to its incorporation within the calcite crystal structure during growth, which causes the resulting magnesian calcite to be considerably more soluble than pure calcite. The standard free energy of formation of 8.5 mole% Mg calcite calculated on this assumption is in good agreement with independent estimates of magnesian calcite stability.From the work of Katz (Geochim. Cosmochim. Acta37, 1563–1586, 1973), Plummer and Mackenzie (Amer. J. Sci. 273, 515–522, 1974), and the present paper, it can be predicted that the most stable calcite in Ca-Mg exchange equilibrium with sea water contains between 2 and 7 mole%MgCO3 in solid solution. Likewise, calcites containing more than 8.5 mole% MgCO3 are less stable, and those containing less than 8.5 mole% MgCO3 are more stable than aragonite plus Ca and Mg in sea water.  相似文献   

3.
When pure crystalline calcite seeds are added to supersaturated seawater, precipitation results in a coating which with time equilibrates at atmospheric pressure with seawater and corresponds to a calcite containing probably only 2 or 3% of MgCO3 (mole fraction).If synthetic crystalline magnesian calcite is added, the surface layer equilibrates not only with respect to seawater but also in relation with the crystalline sites initiating precipitation. Adding Mg0.03Ca0.97CO3 results in a coating with a solubility close to that of calcite. This confirms that the surface coating on pure calcite seeds contains about 2 or 3% MgCO3 (K'sp = 10?6.30).The surface layer precipitated on a synthetic Mg0.08Ca0.92CO3 equilibrates finally with a carbonate more soluble than calcite (K'sp = 10?5.94) corresponding to the seeds composition.Experiments at 1000 kg cm t-2 imply that when magnesian calcites are precipitated at the surface of calcite or magnesian calcite seeds, the precipitate must be hydrated, otherwise pressure accelerated recrystallization or rearrangement with loss of Mg would thermodynamically be impossible.By changing the pressure of a seawater sample originally saturated with a solid carbonate phase, changes in pH result from the effect of pressure on the dissociation constants of carbonic acid and boric acid causing either undersaturation or supersaturation with respect to the solid. By changing pressure we can show whether precipitation, dissolution and recrystallization are reversible processes if pH is taken as criteria of reversibility.  相似文献   

4.
Recent work has established that marine teleost (bony) fish represent a prolific source of mud grade, mainly high‐Mg calcite, carbonate sediment by means of primary precipitation within the intestine. Previously documented crystalline products display a diverse array of morphologies, many unique in shallow tropical marine settings, and have a wide range of magnesium contents (from 18 to 39 mol% MgCO3). This study utilizes scanning electron microscopy, energy‐dispersive X‐ray spectroscopy, X‐ray diffraction and liquid ion chromatography to provide a more extensive and expansive morphological, mineralogical and chemical characterization of the crystalline forms produced by a wider range of piscine functional groups (covering 21 different fish species common in The Bahamas). Several crystal morphologies not previously described in fish‐derived carbonates are documented, and chemical composition is found to be more variable than previously reported: in addition to high‐Mg calcites with >18 mol% MgCO3, high‐Mg calcites with lower MgCO3 contents and low‐Mg calcites are identified. From the expanded species range, MgCO3 content in fish‐derived carbonates ranges from ca 0˙5 to > 40 mol%, and particle length is in the range 0˙1 to >50 μm (typically <2 μm for individual crystals). Amorphous Mg‐carbonates (with detectable CaCO3 of <2 mol%) are also found to varying extent in the precipitates of many species. Dominant mineralogy and MgCO3 content varies with producing species and crystal morphology (itself a species‐dependent variable). Given the very small grain size and often high MgCO3 contents of these carbonates, interesting questions arise about their preservation potential. Thus, the extent to which carbonates produced by different species may follow different post‐excretion preservation pathways is considered.  相似文献   

5.
Carbonate ooze in the deep troughs between the Bahama Banks is a mixture of pelagic and bank-derived material. It consists of aragonite, calcite and magnesium calcite in a ratio of about 3:2:1. Where exposed in erosional cuts at the sea floor, this ooze lithifies within 100,000 years and is transformed into calcite micrite of only 3.5-5 mol % MgCO3. Where buried, the ooze maintains its original composition for at least 200,000-400,000 years and remains unlithified for tens of millions of years. Quite unexpectedly, the path of sea-floor diagenesis of peri-platform ooze was found to be the same as that of freshwater diagenesis. Most of the aragonite is leached, pteropod shells often leaving cement-lined moulds behind; magnesian calcite recrystallizes and loses magnesium; polyhedral calcite of 2-4 μm size appears as cement. The setting and the carbon-oxygen isotope ratios rule out any freshwater influence. Carbon isotope ratios remain heavy, oxygen ratios shift towards equilibrium with the cold bottom water. The calcite cement has 3.5-5 mol % MgCO3 and can be interpreted as the least soluble form of calcite emerging from alteration at the sea floor or, alternatively, as a direct precipitate from cold sea water. The change in the composition of calcite cements with water depth supports the second interpretation. In the Bahamas and elsewhere in the world ocean, magnesium in calcite cements decreases from the warm surface waters down to 700-1200 m, i.e. the boundary between intermediate and cold deep-water masses. Below this level, calcite prevails and magnesian calcite and aragonite cements are restricted to semi-enclosed seas with exceptionally warm bottom waters.  相似文献   

6.
Summary 32 carbonate samples from a series of metamorphic rocks of greenschist to almandine-amphibolite facies in the Zillerthal Alps were investigated by optical and chemical methods, X-ray diffractometry, and the scanning electron microscope.The carbonates consist mainly of calcite which contains up to 11 mole % (MgCO3+FeCO3). Some of the calcites are characterized by skeleton-like dolomitic exsolutions of rhombohedral shape that are orientated on rhombohedron planes of the calcite matrix.The relations between metamorphic grade and calcite composition will be discussed. The (FeCO3+MgCO3)-content of calcite depends on the temperature of formation, CO2 pressure, and the Fe and Mg concentrations of the carbonate-forming solutions.
Mineralogische und chemische Zusammensetzung von Karbonaten aus den Zillertaler Alpen, Tirol (Österreich)
Zusammenfassung 32 Karbonatproben aus den Zillertaler Alpen (Tirol, Österreich) wurden mit optischen und röntgendiffraktometrischen Methoden sowie mit dem Elektronenrastermikroskop untersucht.Die Karbonate sind Calcite, die bis zu 11 Mol% (MgCO3+FeCO3) enthalten. Die Calcitkristalle zeichnen sich durch skelettartige Dolomitentmischungen aus, die parallel zu Rhomboederflächen des Calcites orientiert sind.Die Karbonate stammen aus einer Serie metamorpher Gesteine der Grünschiefer- bis Almandin-Amphibolitfazies. Es werden die Beziehungen zwischen der Calcitzusammensetzung und dem Metamorphosegrad diskutiert. Der (FeCO3+MgCO3)-Gehalt der Calcite hängt von der Bildungstemperatur, vom CO2-Druck und vom Fe- und Mg-Gehalt der Lösungen ab, aus denen sich die Karbonate gebildet haben.


With 10 Figures  相似文献   

7.
The results of experiments on the hydrothermal dolomitization of calcite (between 252 and 295°C) and aragonite (at 252°C) by a 2 M CaCl2-MgCl2 aqueous solution are reported and discussed. Dolomitization of calcite proceeds via an intermediate high (ca. 35 mole %) magnesian calcite, whereas that of aragonite is carried out through the conversion of the reactant into a low (5.6 mole %) magnesian calcite which in turn transforms into a high (39.6 mole %) magnesian calcite. Both the intermediate phases and dolomite crystallize through a dissolution-precipitation reaction. The intermediate phases form under local equilibrium within a reaction zone surrounding the dissolving reactant grains. The volume of the reaction zone solution can be estimated from Sr2+ and Mg2+ partitioning equations. In the case of low magnesian calcite growing at the expense of aragonite at 252°C, the total volume of these zones is in the range of 2 × 10?5 to 2 × 10?4 1., out of 5 × 10?3 1., the volume of the bulk solution.The apparent activation energies for the initial crystallization of high magnesian calcite and dolomite are 48 and 49 kcal/mole, respectively.Calcite transforms completely into dolomite within 100 hr at 252°C. The overall reaction time is reduced to approximately 4 hr at 295°C. The transformation of aragonite to dolomite at 252°C occurs within 24 hr. The nature of the reactant dictates the relative rates of crystallization of the intermediate phases and dolomite. With calcite as reactant, dolomite growth is faster than that of magnesian calcite; this situation is reversed when aragonite is dolomitized.Coprecipitation of Sr2+ with dolomite is independent of temperature (within analytical error) between 252 and 295°C. Its partitioning, with respect to calcium, between dolomite and solution results in distribution coefficients in the range of 2.31 × 10?2 to 2.78 × 10?2.  相似文献   

8.
The oxygen isotope fractionation accompanying the hydrothermal dolomitization of CaCO3 between 252 and 295°C has been investigated. Dolomitization (which occurs via the crystallization of one or more intermediate magnesian calcite phases) is characterised by a progressive lowering in δ8O, which smoothly correlates with the change in the Mg/(Mg + Ca) and the Sr(Mg + Ca) ratios and with the sequential phase formation. The data support the proposals of Katz and Matthews (1977) that (a) all reaction occurs by solution and reprecipitation, (b) intermediate phases and dolomite form sequentially and (c) the intermediate phases form within limited solution zones surrounding the dissolving precursor. Calculated volumes of the solution zone for the aragonite → low magnesian calcite transformation are within the range 3.7–6.7 × 10?5 liters (out of 5 × 10?3 liters, the volume of the bulk solution used in the present study), and agree well with those calculated from strontium and magnesium partitioning data. Dolomite precipitates in apparent isotopic equilibrium with the bulk solution. The temperature dependence of the fractionation is defined by the equation 1000 InαD-H2O = 3.06 × 106T?2 ? 3.24 Dolomite-water fractionations from this equation are significantly lower than those obtained by extrapolation of the Northrop And Clayton (1966) calibration. The reaction zone model can be applied to explain near zero dolomite-calcite oxygen isotope fractionations reported by Epsteinet al. (1964).  相似文献   

9.
Limited solid solution of Mg and Fe2+ occurs in calcite coexisting with dolomiteankerite. This substitution is strongly temperature-dependent. Experimentally determined calcite compositions co-existing with a dolomite phase are available in the binary system CaCO3-MgCO3 between 500° C and 900° C (Harker and Tuttle, 1955). This information is extrapolated to lower temperatures and is combined with three synthetic calcite-ankerite pairs determined at 400° C, 450° C and 500° C (Rosenberg, 1967).The compositions of six naturally occurring calcites coexisting with ankerites from Sofala, N.S.W. are not accurately known, but X-ray determined compositional limits assuming firstly Mg substitution then Fe substitution yield maximum and minimum values for both possibilities. These limits are plotted on the ternary CaCO3-MgCO3-FeCO3 together with the experimentally derived solvus isotherms. Assuming equilibration at constant temperature, actual compositions of these natural calcites plot along the 415° C isotherm.  相似文献   

10.
The large variation in precipitation rate and abundance of mineralscomprising the CaCO3–MgCO3 binary join can be understood in terms of their large differences in activation energy. Following the treatment of Lippmann (1973), activation energy isextrapolated along the join as a linear function of mole percentmagnesium. For the dolomite-type carbonates, the predicted activationenergy is compatible with recent measurements of calcian protodolomitekinetics; cation ordering in ideal dolomite can thus be seen as anadditional contribution to activation energy. Although no activationenergies are available for magnesian calcites, treatment of rate datafor these phases using the formalism of stoichiometric saturationsuggests a possible change in mechanism or rate-limiting step astemperature is decreased from 25 to 5 °C.  相似文献   

11.
The dissolution behavior of two biogenic Mg-calcites, the echinoid, Tripneustes (12 mol% MgCO3), and the red alga, Neogoniolithon (18 mol% MgCO3 plus brucite), was studied using free-drift methods in distilled water and phosphate-spiked solutions at 25°C and PCO2 = 1 atm. Small concentrations of phosphate strongly inhibit dissolution rates. Inhibition increases with increased phosphate levels and with approach toward saturation. Near saturation, dissolution rates are reduced by 103 by the presence of 0.6 μmol adsorbed-P/m2. The magnitude of phosphate inhibition is similar to that observed for low-Mg calcite, and like calcite, the mechanism of inhibition is probably by adsorption of P at surface kink sites. Phosphate appears to inhibit removal of Mg and Ca equally during Mg-calcite dissolution. Rates of brucite dissolution are unaffected by phosphate.Mg-calcites containing >8.5 mol% MgCO3 should be thermodynamically unstable relative to aragonite in most natural waters. Recent work, however, shows that in contrast to its effect on the behavior of Mg-calcites. phosphate does not inhibit aragonite dissolution. The presence of phosphate might thus reverse the relative stability of these two minerals during diagenesis of shallow marine carbonate sediments.  相似文献   

12.
Plio‐Pleistocene speleothems from australopithecine‐bearing caves of South Africa have the potential to yield paleoenvironmental and geochronological information using isotope geochemistry. Prior to such studies it is important to assess the preservation of geochemical signals within the calcitic and aragonitic speleothems, given the tendency of aragonitic speleothems to recrystallize to calcite. This study documents the geochemical suitability of speleothems from the principal hominin‐bearing deposits of South Africa. We use petrography, together with stable isotope and trace element analysis, to identify the occurrence of primary aragonite, primary calcite, and secondary calcite. This study highlights the presence of diagenetic alteration at many of the sites, often observed as interbedded primary and secondary fabrics. Trace element and stable isotopic values distinguish primary calcite from secondary calcite and offer insights into geochemical aspects of the past cave environment. δ13C values of the primary and secondary calcites range from +6 to −9‰ and δ18O values range from −4 to −6‰. The data are thus typical of meteoric calcites with highly variable δ13C and relatively invariant δ18O. High carbon isotope values in these deposits are associated with the effects of recrystallization and rapid outgassing of CO2 during precipitation. Mg/Ca and Sr/Ca ratios differ between primary and secondary calcite speleothems, aiding their identification. Carbon and oxygen isotope values in primary calcite reflect the proportion of C3 and C4 vegetation in the local environment and the oxygen isotope composition of rainfall. Primary calcite speleothems preserve the pristine geochemical signals vital for ongoing paleoenvironmental and geochronological research. © 2009 Wiley Periodicals, Inc.  相似文献   

13.
This survey of magnesium stable isotope compositions in marine biogenic aragonite and calcite includes samples from corals, sclerosponges, benthic porcelaneous and planktonic perforate foraminifera, coccolith oozes, red algae, and an echinoid and brachiopod test. The analyses were carried out using MC-ICP-MS with an external repeatability of ±0.22‰ (2SD for δ26Mg; n = 37), obtained from a coral reference sample (JCp-1).Magnesium isotope fractionation in calcitic corals and sclerosponges agrees with published data for calcitic speleothems with an average Δ26Mgcalcite-seawater = −2.6 ± 0.3‰ that appears to be weakly related to temperature. With one exception (Vaceletia spp.), aragonitic corals and sclerosponges also display uniform Mg isotope fractionations relative to seawater with Δ26Mgbiogenic aragonite-seawater = −0.9 ± 0.2.Magnesium isotopes in high-Mg calcites from red algae, echinoids and perhaps some porcelaneous foraminifera as well as in all low-Mg calcites (perforate foraminifera, coccoliths and brachiopods) display significant biological influences. For planktonic foraminifera, the Mg isotope data is consistent with the fixation of Mg by organic material under equilibrium conditions, but appears to be inconsistent with Mg removal from vacuoles. Our preferred model, however, suggests that planktonic foraminifera synthesize biomolecules that increase the energetic barrier for Mg incorporation. In this model, the need to remove large quantities of Mg from vacuole solutions is avoided. For the high-Mg calcites from echinoids, the precipitation of amorphous calcium carbonate may be responsible for their weaker Mg isotope fractionation.Disregarding superimposed biological effects, it appears that cation light isotope enrichments in CaCO3 principally result from a chemical kinetic isotope effect, related to the incorporation of cations at kink sites. In this model, the systematics of cation isotope fractionations in CaCO3 relate to the activation energy required for cation incorporation, which probably reflects the dehydration of the cation and the crystal surface and bond formation at the incorporation site. This kinetic incorporation model predicts (i) no intrinsic dependence on growth rate, unless significant back reaction upon slow growth reduces the isotope fractionation towards that characteristic for equilibrium isotope partitioning (this may be observed for Ca isotopes in calcites), (ii) a small decrease of isotope fractionation with increasing temperature that may be amplified if higher temperatures promote back reaction and (iii) a sensitivity to changes in the activation barrier caused by additives such as anions or biomolecules or by the initial formation of amorphous CaCO3.  相似文献   

14.
Mg-bearing calcite was precipitated at 25°C in closed system free-drift experiments from solutions containing NaHCO3, CaCl2 and MgCl2. The chemical and isotope composition of the solution and precipitate were investigated during time course experiments of 24-h duration. Monohydrocalcite and calcite precipitated early in the experiments (<8 h), while Mg-calcite was the predominant precipitate (>95%) thereafter. Solid collected at the end of the experiments displayed compositional zoning from pure calcite in crystal cores to up to 23 mol% MgCO3 in the rims. Smaller excursions in Mg were superimposed on this chemical record, which is characteristic of oscillatory zoning observed in synthetic and natural solid-solution carbonates of differing solubility. Magnesium also altered the predominant morphology of crystals over time from the {104} to {100} and {110} growth forms.The oxygen isotope fractionation factor for the magnesian-calcite-water system (as 103lnαMg-cl-H2O) displayed a strong dependence on the mol% MgCO3 in the solid phase, but quantification of the relationship was difficult due to the heterogeneous nature of the precipitate. Considering only the Mg-content and δ18O values for the bulk solid, 103lnαMg-cl-H2O increased at a rate of 0.17 ± 0.02 per mol% MgCO3; this value is a factor of three higher than the single previous estimate (Tarutani T., Clayton R.N., and Mayeda T. K. (1969) The effect of polymorphims and magnesium substitution on oxygen isotope fractionation between calcium carbonate and water. Geochim. Cosmochim. Acta 33, 987-996). Nevertheless, extrapolation of our relationship to the pure calcite end member yielded a value of 27.9 ± 0.02, which is similar in magnitude to published values for the calcite-water system. Although no kinetic effect was observed on 103lnαMg-cl-H2O for precipitation rates that ranged from 103.21 to 104.60 μmol · m−2 · h−1, it was impossible to disentangle the potential effect(s) of precipitation rate and Mg-content on 103lnαMg-cl-H2O due to the heterogeneous nature of the solid.The results of this study suggest that paleotemperatures inferred from the δ18O values of high magnesian calcite (>10 mol% MgCO3) may be significantly underestimated. Also, the results underscore the need for additional experiments to accurately characterize the effect of Mg coprecipitation on the isotope systematics of calcite from a chemically homogeneous precipitate or a heterogeneous material that is analyzed at the scale of chemical and isotopic zonation.  相似文献   

15.
Calcite Mg/Ca is usually assumed to vary linearly with solution Mg/Ca, that a constant partition coefficient describes the relationship between these two ratios. Numerous published empirical datasets suggests that this relationship is better described by a power function. We provide a compilation of these literature data for biotic and abiotic calcite in the form of Calcite Mg/Ca = F(Solution Mg/Ca)H, where F and H are empirically determined fitting parameters describing the slope and deviation from linearity, respectively, of the function. This is equivalent to Freundlich sorption behavior controlling Mg incorporation in calcite. Using a power function, instead of a partition coefficient, lowers Phanerozoic seawater Mg/Ca estimates based on echinoderm skeletal material by, on average, 0.5 mol/mol from previous estimates.These functions can also be used to model the primary skeletal calcite Mg/Ca of numerous calcite phases through geologic time. Such modeling suggests that the Mg/Ca of all calcite precipitated from seawater has varied through the Phanerozoic in response to changing seawater Mg/Ca and that the overall range in Mg/Ca measured among various calcite phases would be greatest when seawater Mg/Ca was also high (e.g., “aragonite seas”) and lowest when seawater Mg/Ca was low (e.g., “calcite seas”). It follows that, during times of “calcite seas” when the seawater Mg/Ca is presumed to have been lower, deposition of calcite with low Mg contents would have resulted in a depressed drive for diagenetic stabilization of shelfal carbonate and, in turn, lead to greater preservation of crystal and skeletal microfabrics and primary chemistries in biotic and abiotic calcites.  相似文献   

16.
Magnesium/calcium, Sr/Ca, and Na/Ca atom ratios were determined in the calcite and aragonite regions of Mytilus edulis shells which were grown in semi-artificial ‘seawater’ solutions having varying Mg/Ca, Sr/Ca, and Na/Ca ratios. These ratios were measured by instrumental neutron activation, atomic absorption, and electron microprobe analytical techniques. Strontium/calcium ratios in both calcite and aragonite were linearly proportional to solution Sr/Ca ratios. Magnesium/calcium ratios in calcite increased exponentially when solution Mg/Ca ratios were raised above the normal seawater ratio; whereas in aragonite, Mg/Ca ratios increased linearly with increases in solution Mg/Ca ratios. Sodium/calcium and sulfur/calcium ratios in calcite covaried with Mg/Ga solution ratios. Conversely, in aragonite, Na/Ca ratios varied linearly with solution Na/Ca ratios.Magnesium is known to inhibit calcite precipitation at its normal seawater concentration. We infer from the results of the work reported here that Mytilus edulis controls the Mg activity of the outer extrapallial fluid, thus facilitating the precipitation of calcitic shell. Increases in sulfur content suggest that changes in shell organic matrix content occur as a result of environmental stress. Certain increases in Mg content may also be correlated to stress. Sodium/calcium variations, and their absolute amounts in calcite and aragonite, are best explained by assuming that a substantial amount of Na is adsorbed on the calcium carbonate crystal surface. Strontium/calcium ratios show more promise than either Mg/Ca or Na/Ca ratios as seawater paleochemistry indicators, because the Sr/Ca distribution coefficients for both aragonite and calcite are independent of seawater Ca and Sr concentrations.  相似文献   

17.
Significant amounts of SO42?, Na+, and OH? are incorporated in marine biogenic calcites. Biogenic high Mg-calcites average about 1 mole percent SO42?. Aragonites and most biogenic low Mg-calcites contain significant amounts of Na+, but very low concentrations of SO42?. The SO42? content of non-biogenic calcites and aragonites investigated was below 100 ppm. The presence of Na+ and SO42? increases the unit cell size of calcites. The solid-solutions show a solubility minimum at about 0.5 mole percent SO42? beyond which the solubility rapidly increases. The solubility product of calcites containing 3 mole percent SO42? is the same as that of aragonite. Na+ appears to have very little effect on the solubility product of calcites. The amounts of Na+ and SO42? incorporated in calcites vary as a function of the rate of crystal growth. The variation of the distribution coefficient (D) of SO42? in calcite at 25.0°C and 0.50 molal NaCl is described by the equation D = k0 + k1R where k0 and k1 are constants equal to 6.16 × 10?6 and 3.941 × 10?6, respectively, and R is the rate of crystal growth of calcite in mg·min?1·g?1 of seed. The data on Na+ are consistent with the hypothesis that a significant amount of Na+ occupies interstitial positions in the calcite structure. The distribution of Na+ follows a Freundlich isotherm and not the Berthelot-Nernst distribution law. The numerical value of the Na+ distribution coefficient in calcite is probably dependent on the number of defects in the calcite structure. The Na+ contents of calcites are not very accurate indicators of environmental salinities.  相似文献   

18.
The geochemical significance of three selected ions (Mg2+, Na+, and Sr2+) supports a model of dolomitization by brackish groundwater. This groundwater zone contains sufficient quantities of Mg2+ to facilitate dolomitization (MgCaratios 1). Rising and falling of sea level and fluctuations of the phreatic zone related to climatic variations account for the thickness of the dolomite layers and the chemical distributions within these layers. Sodium concentrations in the calcite are 70–185 ppm, indicating formation in brackish water. Dolomite has sodium concentrations between 50–1400 ppm, suggesting formation in waters of similar salinity.Strontium in calcite ranges from 320–600 ppm, suggesting diagenesis in slightly saline waters in an open system. Dolomite contains 241 ppm Sr2+ on the average and calcite has 418 ppm Sr2+. The Sr2+ concentrations of the dolomite are characteristic of diagenesis in water less saline than sea water. Average strontium concentrations in the dolomite occur in two distinct groups, 260 ppm for dolomite with 39–43 mole-% MgCo3 and 195 ppm for the dolomite with 44–50 mole-% MgCO3. The difference in the Sr2+ concentrations of the two dolomite groups indicates the higher mole-% MgCO3 dolomite recrystallized in a less saline environment than the lower mole-% MgCO3 dolomite. These different environments are attributed to a relatively more saline coastal environment and a less saline inland environment.The more nearly stoichiometric dolomite (44–50 mole-% MgCO3) has less scatter when mole-% MgCO3 is plotted against Sr2+ and Na+. This suggests a greater approach to equilibrium with the dolomitizing fluid than the lower mole-% MgCO3 (39–43) dolomite. The more saline environment has higher Mg/Ca ratios and promotes more calcium-rich dolomite during diagenesis because of the inhibition from competing foreign ions and because it is thermodynamically a more favorable environment which causes more rapid crystallization. The less saline waters allow recrystallization to proceed more slowly, producing better ordering in the dolomites, textural preservation and development of subhedral to euhedral rhombic crystals.  相似文献   

19.
Density-functional electronic structure calculations are used to compute the equilibrium constants for 26Mg/24Mg and 44Ca/40Ca isotope exchange between carbonate minerals and uncomplexed divalent aquo ions. The most reliable calculations at the B3LYP/6-311++G(2d,2p) level predict equilibrium constants K, reported as 103ln (K) at 25 °C, of −5.3, −1.1, and +1.2 for 26Mg/24Mg exchange between calcite (CaCO3), magnesite (MgCO3), and dolomite (Ca0.5Mg0.5CO3), respectively, and Mg2+(aq), with positive values indicating enrichment of the heavy isotope in the mineral phase. For 44Ca/40Ca exchange between calcite and Ca2+(aq) at 25 °C, the calculations predict values of +1.5 for Ca2+(aq) in 6-fold coordination and +4.1 for Ca2+(aq) in 7-fold coordination. We find that the reduced partition function ratios can be reliably computed from systems as small as and embedded in a set of fixed atoms representing the second-shell (and greater) coordination environment. We find that the aqueous cluster representing the aquo ion is much more sensitive to improvements in the basis set than the calculations on the mineral systems, and that fractionation factors should be computed using the best possible basis set for the aquo complex, even if the reduced partition function ratio calculated with the same basis set is not available for the mineral system. The new calculations show that the previous discrepancies between theory and experiment for Fe3+-hematite and Fe2+-siderite fractionations arise from an insufficiently accurate reduced partition function ratio for the Fe3+(aq) and Fe2+(aq) species.  相似文献   

20.
Ammonium acetate dissolution experiments were performed on shell material of the modern bivalves, Crassostrea virginica (calcite) and Mercenaria mercenaria (aragonite). Their purpose was to determine the order of preferential dissolution of Sr, Mg and Ca; these results subsequently were compared with Sr, Mg and Ca data from other Recent as well as ancient mollusks.Results from these experiments suggest the following relative order of abundance of readily exchangeable Mg and Sr in biogenic carbonates: Mg(arag) > Mg(calc) > Sr(calc) > Sr(arag). It is apparent that incongruent dissolution of minerals with different solubilities cannot entirely explain the observed dissolution patterns for Sr, Mg and Ca in these biogenic carbonates. Secular changes in whole shell Mg and Sr concentrations for Recent and unrecrystallized fossil mollusks suggest an order of “ionic mobility” in diagenesis identical to the order of abundance for readily exchangeable ions found in the NH4Ac dissolution experiments. It is concluded that this “ionic mobility” is due to a post mortem, early diagenetic (pre-recrystallization) approach to equilibrium with the surrounding chemical environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号