首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Far-travelled ash layers from explosive volcanic eruptions can provide invaluable marker horizons for dating and correlating regional to global sedimentary archives. Here, we present a new cryptotephra associated with the ~5.9 cal ka bp Towada-Chuseri eruption (To-Cu) in a peat sediment record from northeast China. This tephra exhibits a rhyolitic glass composition that can be distinguished from other widespread tephra layers around the region of Japan and northeast China. Our findings extend the known range of this ash significantly, making it now traceable about 1200 km from its source, Towada volcano, Japan. Notably, this tephra provides an important isochron for synchronising palaeoenvironmental studies during the mid-Holocene period from the western Pacific, central Japan, Japan Sea and northeast China.  相似文献   

2.
Due to a lack of visible tephras in the Dead Sea record, this unique palaeoenvironmental archive is largely unconnected to the well-established Mediterranean tephrostratigraphy. Here we present first results of the ongoing search for cryptotephras in the International Continental Drilling Program (ICDP) sediment core from the deep Dead Sea basin. This study focusses on the Lateglacial (~15–11.4 cal. ka BP), when Lake Lisan – the precursor of the Dead Sea – shrank from its glacial highstand to the Holocene low levels. We developed a glass shard separation protocol and counting procedure that is adapted to the extreme salinity and sediment recycling of the Dead Sea. Cryptotephra is abundant in the Dead Sea record (up to ~100 shards cm-3), but often glasses are physically and/or chemically altered. Six glass samples from five tephra horizons reveal a heterogeneous geochemical composition, with mainly rhyolitic and some trachytic glasses potentially sourced from Italian, Aegean and Anatolian volcanoes. Most shards likely originate from the eastern Anatolian volcanic province and can be correlated using major element analyses with tephra deposits from swarm eruptions of the Süphan Volcano ~13 ka BP and with ashes from Nemrut Volcano, presumably the Lake Van V-16 volcanic layer at ~13.8 ka BP. In addition to glasses that match the TM-10-1 from Lago Grande di Monticchio (15 820±790 cal. a BP) tentatively correlated with the St. Angelo Tuff of Ischia, we further identified a cryptotephra with glass analyses which are chemically identical with those of the PhT1 tephra in the Philippon peat record (13.9–10.5 ka BP), and also a compositional match for the glass analyses of the Santorini Cape Riva Tephra (Y-2 marine tephra, 22 024±642 cal. a BP). These first results demonstrate the great potential of cryptotephrochronology in the Dead Sea record for improving its chronology and connecting the Levantine region to the Mediterranean tephra framework.  相似文献   

3.
Using contiguous high resolution sampling methods, we report the detection of a Glacier Peak volcanic ash from North America in Lateglacial Interstadial lake sediments in western Scotland. It occurs in close proximity to the Icelandic Borrobol and Penifiler tephras, but is distinguishable by its rhyolitic major-element composition that is consistent with the earliest set G layer, one of a number of mid-Interstadial Glacier Peak eruptions dated between 13.71 and 13.41 cal ka bp. Another cryptotephra layer present in these same Interstadial sediments has a rhyolitic composition consistent with the Icelandic Katla source. However, it is in a stratigraphic position below the widespread mid-Lateglacial Stadial Vedde Ash from Katla, which is also present in these cores. The Katla layer is stratigraphically well defined, suggesting primary airfall, and is compositionally similar to a mid-Interstadial rhyolitic tephra reported from a North Atlantic marine sequence south of Iceland dated to ~13.6 ka. The detection of Glacier Peak G in the European tephrostratigraphy will permit direct high-precision correlation of mid-Interstadial palaeoenvironments between North American and European terrestrial sequences. Any correlation between the new Katla layer and similar marine layers remains provisional, though if verified would permit similar correlation between North Atlantic marine and European terrestrial records.  相似文献   

4.
Volcanic ash (tephra) erupted from the frequently active Campi Flegrei volcano forms layers in many palaeoenvironmental archives across Italy and the Mediterranean. Proximal deposits of 50 of the post-15 ka eruptions have been thoroughly sampled and analysed to produce a complete database of glass compositions (>1900 analyses) to aid identification of these units. The deposits of individual eruptions are compositionally diverse and this variability is often greater than that observed between different units. Many of the tephra units do not have a unique glass chemistry, with compositionally similar tephra often erupted over long periods of time (1000s years). Thus, glass chemistry alone is not enough to robustly correlate most of the tephra from Campi Flegrei, especially in the last 10 kyrs. In order to reliably correlate the eruption units it is important to take into account the stratigraphy, chronology, magnitude, and dispersal of the eruptions, which has been collated to aid identification. An updated chronology is also presented, which was constrained using Bayesian analysis (OxCal) of published radiocarbon dates and 40Ar/39Ar ages. All the data presented can be employed to help correlate post-15 ka tephra units preserved in archaeological and Holocene palaeoenvironmental archives. The new database of proximal glass compositions has been used to correlate proximal volcanic deposits through to distal tephra layers in the Lago di Monticchio record (Wulf et al., 2004, Wulf et al., 2008) and these correlations provide information on eruption stratigraphy and the tempo of volcanism at Campi Flegrei.  相似文献   

5.
Here we present the results of a detailed cryptotephra investigation through the Lateglacial to early Holocene transition, from a new sediment core record obtained from Lake Hämelsee, Germany. Two tephra horizons, the Laacher See Tephra (Eifel Volcanic Field) and the Saksunarvatn Ash (Iceland), have been previously described in this partially varved sediment record, indicating the potential of the location as an important Lateglacial tephrochronological site in northwest Europe. We have identified three further tephra horizons, which we correlate to: the c. 12.1 ka BP Vedde Ash (Iceland), the c. 11 ka BP Ulmener Maar tephra (Eifel Volcanic Field) and the c. 10.8 ka BP Askja‐S tephra (Iceland). Three additional cryptotephra deposits have been found (locally named HÄM_T1616, HÄM_T1470 and HÄM_T1456‐1455), which cannot be correlated to any known eruption at present. Geochemical analysis of the deposits suggests that these cryptotephras most likely have an Icelandic origin. Our discoveries provide age constraints for the new sediment records from Lake Hämelsee and enable direct stratigraphical correlations to be made with other tephra‐bearing sites across Europe. The new tephrostratigraphical record, within a partially varved Lateglacial sediment record, highlights the importance of Lake Hämelsee as a key site within the European tephra lattice.  相似文献   

6.
Several cryptotephra layers that originate from Icelandic volcanic eruptions with a volcanic explosivity index (VEI) of ≤ 4 and tephra volumes of < 1 km3 have previously been identified in Northern Europe, albeit within a restricted geographical area. One of these is the Hekla 1947 tephra that formed a visible fall-out in southern Finland. We searched for the Hekla 1947 tephra from peat archives within the previously inferred fall-out zone but found no evidence of its presence. Instead, we report the first identification of Hekla 1845 and Hekla 1510 cryptotephra layers outside of Iceland, the Faroe Islands, Ireland and the UK. Additionally, Hekla 1158 tephra was found in Finland for the first time. Our results confirm that Icelandic eruptions of moderate size can form cryptotephra deposits that are extensive enough to be used in inter-regional correlations of environmental archives and carry a great potential for refining regional tephrochronological frameworks. Our results also reveal that Icelandic tephra has been dispersed into Finnish airspace at least seven times during the past millennium and in addition to a direct eastward route the ash clouds can travel either via a northerly or a southerly transport pathway.  相似文献   

7.
Tephrochronology and especially crypto-tephrochronology is an established chronological technique employed in a range of depositional environments in Europe and beyond. During the late Quaternary, Icelandic cryptotephra deposits are widely found in palaeorecords across northern latitudes of Europe e.g. Scotland, Ireland, Norway, Sweden and the Faroe Islands but are sporadic in southerly latitudes as distance from Iceland increases. As yet, very few Icelandic cryptotephras have been identified in Wales or southern England which may well reflect the geographical limit of Icelandic tephra distribution. Here, however, we report the discovery of an Icelandic cryptotephra deposit within a sediment sequence retrieved from the Pant-y-Llyn turlough (Carmarthenshire, south Wales), the only known turlough in Britain. Turloughs are groundwater-fed ephemeral lakes associated with limestone bedrock and can accumulate sediments that may yield records suitable for palaeoreconstructions. A discrete peak of glass shards originating from the Askja-S eruption is identified in the sediment record. This discovery extends the distribution of this early Holocene eruption giving new insight into its dispersal patterns and also indicates that sedimentary sequences from sites in these more southerly latitudes are valuable repositories for ash preservation. Furthermore, its discovery within a carbonate-rich sequence provides a minimum age constraint on the timing of sediment accumulation and provides an alternative tool for what is typically a problematic dating environment.  相似文献   

8.
Studies of recent eruptions have improved our understanding of volcanic ash transport and deposition, but have also raised important questions about the behaviour of far-travelled (distal) volcanic ash. In particular, it is difficult to reconcile estimates of distal ash mass and transport distance determined from eyewitness accounts, mapped deposits, satellite-based observations and cryptotephra records. Here we address this problem using data from well-characterized eruptions that, collectively, include all four data types. Data from recent eruptions allow us to relate eyewitness accounts to mapped deposits on the ground and satellite-based observations of ash in the air; observations from an historical eruption link eyewitness accounts to cryptotephra deposits. Together these examples show that (i) 10–20% of the erupted mass is typically deposited outside the mapped limits; (ii) estimates of the ash mass transported in volcanic clouds cannot account for all of this unmapped ash; and (iii) ash fall observed at distances beyond mapped deposits can have measurable impacts, and can form cryptotephra deposits with high (>~1000 cm−3) shard counts. We conclude that cryptotephra data can be incorporated into volcanological studies of ash transport and deposition and provide important insight into both the behaviour and impacts of far-travelled volcanic ash particles.  相似文献   

9.
Violent explosive eruptions occurred between c. 51 and 29 thousand years ago—during the Last Glacial Maximum in East‐Central Europe—at the picturesque volcano of Ciomadul, located at the southernmost tip of the Inner Carpathian Volcanic Range in Romania. Field volcanology, glass geochemistry of tephra, radiocarbon and optically stimulated luminescene dating, along with coring the lacustrine infill of the two explosive craters of Ciomadul (St Ana and Mohos), constrain the last volcanic activity to three subsequent eruptive stages. The explosivity was due to the silicic composition of the magma producing Plinian‐style eruptions, and the interaction of magma with the underlying, water‐rich rocks resulting in violent phreatomagmatic outbursts. Tephra (volcanic ash) from these eruptions are interbedded with contemporaneous loess deposits, which form thick sequences in the vicinity of the volcano. Moreover, tephra layers are also preserved in the older Mohos crater infill, providing an important archive for palaeoclimate studies. Identifying the final phreatomagmatic eruption of Ciomadul at c. 29.6 ka, which shaped the present‐day landform of the 1600‐m‐wide St Ana explosion crater, we were able to correlate related tephra deposits as far as 350 km from the source within a thick loess‐palaeosol sequence at the Dniester Delta in Roxolany, Ukraine. A refined tephrostratigraphy, based on a number of newly found exposures in the Ciomadul surrounding region as well as correlation with the distal terrestrial and marine (e.g. Black Sea) volcano‐sedimentary record, is expected from ongoing studies.  相似文献   

10.
Late Pleistocene tephras derived by large explosive volcanic eruptions are widespread in the Mediterranean and surrounding areas. They are important isochronous markers in stratigraphic sections and therefore it is important to constrain their sources. We report here tephrochronology results using multiple criteria to characterize the volcanic products of the Late Pleistocene Ciomadul volcano in eastern–central Europe. This dacitic volcano had an explosive eruption stage between 57 and 30 ka. The specific petrological character (ash texture, occurrence of plagioclase and amphibole phenocrysts and their compositions), the high-K calc-alkaline major element composition and particularly the distinct trace element characteristics provide a strong fingerprint of the Ciomadul volcano. This can be used for correlating tephra and cryptotephra occurrences within this timeframe. Remarkably, during this period several volcanic eruptions produced tephras with similar glass major element composition. However, they differ from Ciomadul tephras by glass trace element abundances, ratios of strongly incompatible trace elements and their mineral cargo that serve as discrimination tools. We used (U-Th)/He zircon dates combined with U-Th in situ rim dates along with luminescence and radiocarbon dating to constrain the age of the explosive eruptions of Ciomadul that yielded distal tephra layers but lack of identified proximal deposits.  相似文献   

11.
Investigations of Lateglacial to Early Holocene lake sediments from the Nahe palaeolake (northern Germany) provided a high-resolution palynological record. To increase the temporal resolution of the record a targeted search for cryptotephra was carried out on the basis of pollen stratigraphy. Three cryptotephra horizons were detected and geochemically identified as G10ka series tephra (a Saksunarvatn Ash), Vedde Ash and Laacher See Tephra. Here we present the first geochemically confirmed finding of the ash from the Laacher See Eruption in Schleswig-Holstein—extending the so far detected fallout fan of the eruption further to the north-west. These finds enable direct stratigraphical correlations and underline the potential of the site for further investigations.  相似文献   

12.
A hitherto unknown distal volcanic ash layer has been detected in a sediment core recovered from the southeastern Levantine Sea (Eastern Mediterranean Sea). Radiometric, stratigraphic and sedimentological data show that the tephra, here termed as S1 tephra, was deposited between 8970 and 8690 cal yr BP. The high-silica rhyolitic composition excludes an origin from any known eruptions of the Italian, Aegean or Arabian volcanic provinces but suggests a prevailing Central Anatolian provenance. We compare the S1 tephra with proximal to medial-distal tephra deposits from well-known Mediterranean ash layers and ash fall deposits from the Central Anatolian volcanic field using electron probe microanalyses on volcanic glass shards and morphological analyses on ash particles. We postulate a correlation with the Early Holocene ‘Dikkart?n’ dome eruption of Erciyes Da? volcano (Cappadocia, Turkey). So far, no tephra of the Central Anatolian volcanic province has been detected in marine sediment archives in the Eastern Mediterranean region. The occurrence of the S1 tephra in the south-eastern part of the Levantine Sea indicates a wide dispersal of pyroclastic material from Erciyes Da? more than 600 km to the south and is therefore an important tephrostratigraphical marker in sediments of the easternmost Mediterranean Sea and the adjacent hinterland.  相似文献   

13.
We detected late Pleistocene cummingtonite-bearing cryptotephras in loess deposits in NE Japan and correlated them with known tephras elsewhere by using major-element compositions of the cummingtonite. This is the first time cryptotephras have been identified by analysis of a crystal phase rather than glass shards. In central NE Japan, four cummingtonite-bearing tephras, the Ichihasama pumice, the Dokusawa tephra, the Naruko–Nisaka tephra, and the Adachi–Medeshima tephra, are present in late Pleistocene loess deposits. Because the cummingtonite chemistry of each tephra is different and characteristic, it is potentially a powerful tool for detecting and identifying cryptotephras. An unidentified cummingtonite-bearing cryptotephra previously reported to be present in the late Pleistocene loess deposits at Kesennuma (Pacific coast) did not correlate with any of the known cummingtonite-bearing tephras in central NE Japan, but instead with the Numazawa–Kanayama tephra (erupted from the Numazawa caldera, southern NE Japan), although Kesennuma is well beyond the previously reported area of the distribution of the Numazawa–Kanayama tephra. Three new cummingtonite-bearing cryptotephras in the mid and late Pleistocene loess deposits (estimated to be less than 82 ka, 100–200 ka, and ca. 250 ka) on the Isawa upland were also detected.  相似文献   

14.
The generation of reliable age models for palaeoenvironmental and archaeological records in the Eurasian Arctic is often problematic when using conventional dating techniques. Tephrochronology can potentially improve the chronologies of such records and synchronise disparate sedimentary archives. However, to date, systematic tephra studies are lacking for this region. This paper presents the first cryptotephra data from the White Sea region (northwestern Russia) based on a peat core spanning the past ~1800 years. We identify seven geochemical glass populations that derive from six Icelandic volcanoes and correlate four of them to north European tephra isochrons; these include Askja ad 1875, the basaltic component of the ad 877 Landnám tephra, and tephras BTD-15 (c. ad 1750–1650) and SL-2/SB-2 (ad 803–767) from unknown eruptions of Katla and Snæfellsjökull, respectively. The remaining three populations originate from Grímsvötn, Hekla and Katla; however, their attribution to individual eruptions remains ambiguous. These findings highlight the potential to extend the Late Holocene tephrochronological framework of northern Europe to the west Eurasian Arctic. The detection of at least three basaltic tephras in the core suggests that basaltic shards can be transported over larger distances than previously known and that peatlands are well suited to preserve such components.  相似文献   

15.
Two cores were recovered in the southeastern part of Lake Shkodra (Montenegro and Albania) and sampled for identification of tephra layers. The first core (SK13, 7.8 m long) was recovered from a water depth of 7 m, while the second core (SK19, 5.8 m long) was recovered close to the present‐day shoreline (water depth of 2 m). Magnetic susceptibility investigations show generally low values with some peaks that in some cases are related to tephra layers. Naked‐eye inspection of the cores allowed the identification of four tephra layers in core SK13 and five tephra layers in core SK19. Major element analyses on glass shards and mineral phases allowed correlation of the tephra layers between the two cores, and their attribution to six different Holocene explosive eruptions of southern Italy volcanoes. Two tephra layers have under‐saturated composition of glass shards (foiditic and phonolitic) and were correlated to the AD 472 and the Avellino (ca. 3.9 cal. ka BP) eruptions of Somma‐Vesuvius. One tephra layer has benmoreitic composition and was correlated to the FL eruption of Mount Etna (ca. 3.4 cal. ka BP). The other three tephra layers have trachytic composition and were correlated to Astroni (ca. 4.2 cal. ka BP), Agnano Monte Spina (ca. 4.5 cal. ka BP) and Agnano Pomici Principali (ca. 12.3 cal. ka BP) eruptions of Campi Flegrei. The ages of tephra layers are in broad agreement with eight 14C accelerator mass spectrometric measurements carried out on plant remains and charcoal from the lake sediments at different depths along the two cores. The recognition of distal tephra layers from Italian volcanoes allowed the physical link of the Holocene archive of Lake Shkodra to other archives located in the central Mediterranean area and the Balkans (i.e. Lake Ohrid). Five of the recognised tephra layers were recognised for the first time in the Balkans area, and this has relevance for volcanic hazard assessment and for ash dispersal forecasting in case of renewed explosive activity from some of the southern Italy volcanoes. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
Five cores from the southern Tyrrhenian and Ionian seas were studied for their tephra and cryptotephra content in the 4.4–2.0 ka time interval. The chronological framework for each core was obtained by accelerator mass spectrometry 14C dating, the occurrence of distinct marker tephra and stratigraphic correlation with adjacent records. Tephrochronology allowed us to correlate the analyzed deposits with tephra markers associated with Somma-Vesuvius (79 ad ), Ischia Island (Cretaio), Mt Etna (FG, FL and FS) and Campi Flegrei (Astroni-Agnano Monte Spina) events. For the first time in the marine setting, a large single glass data set is provided for the Late Holocene Etnean marker beds including the FS tephra (ca. 4.3 ka). Moreover, unknown deposits from Lipari (ca. 2.2–2.0 ka) and Vulcano (3.6–3.3 ka) are also recognized at more distal sites than previously reported. These results contribute to improve the high-resolution tephrostratigraphic framework of the central Mediterranean Sea. They also provide new insights into the chemical composition and dispersal pattern of tephras that can be used as inter-archive tools for regional and ‘local’ stratigraphic correlations and for addressing paleoclimate research.  相似文献   

17.
Volcanic ash can disperse thousands of kilometres from the source volcano and provide valuable chronostratigraphic markers for palaeoclimate studies. We present new cryptotephra findings of historical and modern Icelandic eruptions in annually laminated lacustrine sediment records from several sites within a 570 km SW–NE transect across northern Poland. Sediments from the two lakes Wąsoskie and Szurpiły contain glass shards originating from the Plinian Askja ad 1875 eruption and showing bimodal, rhyolitic and dacitic affinities. A further cryptotephra finding in Lake Lubińskie suggests a potential origin from the Hekla ad 1845 eruption. These new findings extend the tephra dispersal map towards the south-east and provide valuable isochrons for the synchronisation of palaeoclimate proxy data at the termination of the Little Ice Age in central eastern Europe. Very low glass concentrations of modern cryptotephra in Lake Wąsoskie were potentially correlated with the Eyjafjallajökull ad 2010 eruption. Further findings in the uppermost sediments of lakes Szurpiły and Żabińskie in north-eastern Poland tentatively suggest other sources from either the Hekla and/or Kamchatkan volcanoes.  相似文献   

18.
This paper presents the results of an investigation of early Holocene cryptotephra layers recovered from sediments in two kettle-hole basins at Inverlair (Glen Spean) and Loch Etteridge (Glen Fernisdale). Electron probe micro-analysis (EPMA) of shards from two cryptotephra layers revealed that the uppermost layer in both sequences has a composition similar to the An Druim tephra, first reported from a site in Northern Scotland. We present evidence that distinguishes the An Druim from the chemically very similar early Holocene Ashik tephra. The lowermost layer at Inverlair matches the composition of the Askja-S tephra found in the Faroe Islands, Ireland, Sweden, Germany and Switzerland. This is the first published record of the Askja-S tephra from mainland Scotland. As at other sites, the Askja-S seems to mark a short-lived climatic deterioration, most likely the Pre-Boreal Oscillation: at Inverlair it occurs just above an oscillation represented by a reduction in LOI values and in the abundance of Betula pollen, and by a peak in Juniperus pollen. The lowermost layer at Loch Etteridge has a Katla-type chemistry and extends through the upper part of the Loch Lomond (Younger Dryas/GS-1) Stadial to the Stadial/Holocene transition; it may represent a composite layer which merges the Vedde and Abernethy tephras. One of the key conclusions is that the glacial-melt deposits in the vicinity of Inverlair (kames and kame terraces) were ice-free by c. 10.83 ka (the age of the Askja-S), providing a limiting age on the disappearance of LLR ice in Glen Spean.  相似文献   

19.
Kamchatka Peninsula is one of the most active volcanic regions in the world. Many Holocene explosive eruptions have resulted in widespread dispersal of tephra-fall deposits. The largest layers have been mapped and dated by the 14C method. The tephra provide valuable stratigraphic markers that constrain the age of many geological events (e.g. volcanic eruptions, palaeotsunamis, faulting, and so on). This is the first systematic attempt to use electron microprobe (EMP) analyses of glass to characterize individual tephra deposits in Kamchatka. Eighty-nine glass samples erupted from 11 volcanoes, representing 27 well-identified Holocene key-marker tephra layers, were analysed. The glass is rhyolitic in 21 tephra, dacitic in two, and multimodal in three. Two tephra are mixed with glass compositions ranging from andesite/dacite to rhyolite. Tephra from the 11 eruptive centres are distinguished by their glass K2O, CaO, and FeO contents. In some cases, individual tephra from volcanoes with multiple eruptions cannot be differentiated. Trace element compositions of 64 representative bulk tephra samples erupted from 10 volcanoes were analysed by instrumental neutron activation analysis (INAA) as a pilot study to further refine the geochemical characteristics; tephra from these volcanoes can be characterized using Cr and Th contents and La/Yb ratios.

Unidentified tephra collected at the islands of Karaginsky (3), Bering (11), and Attu (5) as well as Uka Bay (1) were correlated to known eruptions. Glass compositions and trace element data from bulk tephra samples show that the Karaginsky Island and Uka Bay tephra were all erupted from the Shiveluch volcano. The 11 Bering Island tephra are correlated to Kamchatka eruptions. Five tephra from Attu Island in the Aleutians are tentatively correlated with eruptions from the Avachinsky and Shiveluch volcanoes.  相似文献   

20.
The Mt. Edgecumbe Volcanic Field (MEVF), located on Kruzof Island near Sitka Sound in southeast Alaska, experienced a large multiple-stage eruption during the last glacial maximum (LGM)-Holocene transition that generated a regionally extensive series of compositionally similar rhyolite tephra horizons and a single well-dated dacite (MEd) tephra. Marine sediment cores collected from adjacent basins to the MEVF contain both tephra-fall and pyroclastic flow deposits that consist primarily of rhyolitic tephra and a minor dacitic tephra unit. The recovered dacite tephra correlates with the MEd tephra, whereas many of the rhyolitic tephras correlate with published MEVF rhyolites. Correlations were based on age constraints and major oxide compositions of glass shards. In addition to LGM-Holocene macroscopic tephra units, four marine cryptotephras were also identified. Three of these units appear to be derived from mid-Holocene MEVF activity, while the youngest cryptotephra corresponds well with the White River Ash eruption at ∼ 1147 cal yr BP. Furthermore, the sedimentology of the Sitka Sound marine core EW0408-40JC and high-resolution SWATH bathymetry both suggest that extensive pyroclastic flow deposits associated with the activity that generated the MEd tephra underlie Sitka Sound, and that any future MEVF activity may pose significant risk to local population centers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号