首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 646 毫秒
1.
In order to simulate the soil response during principal stress rotation, anisotropic unified hardening (UH) model is developed within the framework of elastoplastic theory. Without introducing any additional mechanism to display the role of stress rotation specifically, this model achieves the simulation by considering the material anisotropy. The effect of inherent anisotropy is reflected using the anisotropic transformed stress method, but a new formula for the stress mapping is adopted to keep the mean stress unchanged. Analysis indicates that from the view of the transformed stress tensor, the anisotropic soil is subjected to loading during pure rotation of principal stress axes, so that plastic strains can be calculated. To represent the induced anisotropy, a fabric evolution law is proposed based on laboratory and numerical test results. At the critical state, the fabric tensor reaches a stable value determined by the stress state, while the critical state line is unique in the plane of void ratio versus mean stress. The anisotropic UH model has concise formulation and explicit elastoplastic flexibility matrix and can provide reasonable predictions for the deformation of anisotropic soils when principal stresses rotate.  相似文献   

2.
吴越  杨仲轩  徐长节 《岩土力学》2016,37(9):2569-2576
采用离散元方法,利用半径扩展法和重力沉积法分别生成具有初始各向同性和各向异性内结构的试样,并开展三轴不排水压缩和拉伸试验,研究不同制样方法产生的初始各向异性对砂土宏微观力学特性及其临界状态的影响。运用组构张量对砂土的各向异性进行量化,分析不同初始组构各向异性对组构张量演化的影响并确定了组构张量的临界值。试验结果表明:初始组构各向异性对试样的剪胀性有重要影响,由于受重力影响形成初始各向异性,其各向异性程度越大、组构方向与加载方向越一致,剪胀性越显著;初始组构各向异性对试样的临界状态没有影响,砂土的组构张量具有唯一的临界状态值。  相似文献   

3.
李学丰  黄茂松  钱建固 《岩土力学》2013,34(12):3417-3424
针对传统本构理论无法描述土体单剪试验非共轴变形的不足,采用非共轴修正模型进行改进。模型基于材料状态相关临界状态理论,采用宏-细观结合的方法,将1个新的各向异性状态变量引入本构模型来描述砂土的各向异性。考虑细观组构张量和应力张量的几何关系的变化,模型可以描述砂土在主应力轴旋转条件下材料状态的变化,材料状态变化直接导致模型的硬化规律和剪胀性发生变化,因此,模型可以描述该条件下原生向异性对砂土变形的影响。引入非共轴理论对本构模型进行修正,建立了三维非共轴各向异性模型。单剪试验的加载条件会造成主应力轴相对土体沉积面发生旋转,修正模型不但能够描述砂土在主应力轴旋转条件下其原生各向异性对变形的影响,而且可以描述主应力轴旋转造成的应力诱发各向异性对土体变形的影响,因此,该模型能够对整个单剪试验的变形规律进行描述,而且物理意义清晰。通过铝棒堆积体和Toyoura砂单剪试验验证表明,非共轴修正各向异性模型能对单剪试验的整个变形过程进行较好的模拟。  相似文献   

4.
SANISAND is the name of a family of bounding surface plasticity constitutive models for sand within the framework of critical state theory, which have been able to realistically simulate the sand behavior under conventional monotonic and cyclic loading paths. In order to incorporate the important role of evolving fabric anisotropy, one such model was modified within the framework of the new anisotropic critical state theory and named SANISAND-F model. Yet the response under continuous stress principal axes rotation requires further modification to account for the effect of ensuing noncoaxiality on the dilatancy and plastic modulus. This modification is simpler than what is often proposed in the literature, since it does not incorporate an additional plastic loading mechanism and/or multiple dilatancy and plastic modulus expressions. The new model named SANISAND-FN is presented herein and is validated against published data for loading that includes drained stress principal axes rotation on Toyoura sand.  相似文献   

5.
Hu  Nian  Yu  Hai-Sui  Yang  Dun-Shun  Zhuang  Pei-Zhi 《Acta Geotechnica》2020,15(5):1125-1151

This paper presents a fabric tensor-based bounding surface model accounting for anisotropic behaviour (e.g. the dependency of peak strength on loading direction and non-coaxial deformation) of granular materials. This model is developed based on a well-calibrated isotropic bounding surface model. The yield surface is modified by incorporating the back stress which is proportional to a contact normal-based fabric tensor for characterising fabric anisotropy. The evolution law of the fabric tensor, which is dependent on both rates of the stress ratio and the plastic strain, rules that the material fabric tends to align with the loading direction and evolves towards a unique critical state fabric tensor under monotonic shearing. The incorporation of the evolution law leads to a rotational hardening of the yield surface. The anisotropic critical state is assumed to be independent of the initial values of void ratio and fabric tensor. The critical state fabric tensor has the same intermediate stress ratio (i.e. b value) and principal directions as the critical state stress tensor. A non-associated flow rule in the deviatoric plane is adopted, which is able to predict the non-coaxial flow naturally. The stress–strain relation and fabric evolution of model predictions show a satisfactory agreement with DEM simulation results under monotonic shearing with different loading directions. The model is also validated by comparing with laboratory test results of Leighton Buzzard sand and Toyoura sand under various loading paths. The comparison results demonstrate encouraging applicability of the model for predicting the anisotropic behaviour of granular materials.

  相似文献   

6.
Various factors, such as the volumetric fraction of constituents, mineralogy, and pore fluids, affect heat flow in granular materials. Although the stress applied on granular materials controls the formation of major pathways for heat flow, few studies have focused on a detailed investigation of its significance with regard to the thermal conductivity and anisotropy of the materials. This paper presents a numerical investigation of the stress-induced evolution of anisotropic thermal conductivity of dry granular materials with supplementary experimental results. Granular materials under a variety of stress conditions in element testing are analyzed by the three-dimensional discrete element method, and quantitative variations in their anisotropic effective thermal conductivity are calculated via the network model and conductivity tensor measurements. Results show that the directional development of contact area and fabric under anisotropic stress conditions leads to the evolution of anisotropy in thermal conductivity. The anisotropy induced in thermal conductivity by shear stress is higher than that induced by compressive stress because shear stress causes more significant changes in microstructural configurations and boundary conditions. The shear-stress-induced evolution of anisotropy between principal thermal conductivities depends on dilatancy as well as shearing mode, and the shear-driven discontinuity localizes the conductivity. Factors involved in the stress-induced evolution and their implications on the thermal conductivity characterization are discussed.  相似文献   

7.
Sun  Yifei  Sumelka  Wojciech  Gao  Yufeng  Nimbalkar  Sanjay 《Acta Geotechnica》2021,16(10):3115-3132

The stress–dilatancy relation is of critical importance for constitutive modelling of geomaterial. A novel fractional-order stress–dilatancy equation had been developed for granular soil, where a nonlinear stress–dilatancy response was always predicted. However, it was experimentally observed that after a certain extent of shearing, an almost linear response between the stress ratio and the dilatancy ratio, rather than the nonlinear response, usually existed. To capture such stress–dilatancy behaviour, a new fractional stress–dilatancy model is developed in this study, where an apparent linear response of the stress–dilatancy behaviour of soil after sufficient shearing is obtained via analytical solution. As the fractional order varies, the derived stress–dilatancy curve and the associated phase transformation state stress ratio keep changing. But, unlike existing researches, no other specific parameters, except the parameter related to fractional order, concerning such shift are required. Then, the developed stress–dilatancy model is applied to constitutive modelling of granular soil and soil–structure interface, for further validation. A series of test results of different granular soils and soil–structure interfaces under different loading conditions are simulated and compared, where a good model performance is observed.

  相似文献   

8.
蒋明镜  周卫  刘静德  李涛 《岩土力学》2016,37(12):3347-3355
在岩土破损力学基础上,基于微观破损机制,提出了考虑各向异性的结构性砂土本构理论。采用Lade-Duncan强度准则考虑中主应力对抗剪强度的影响;采用考虑颗粒排列组构的各向异性状态变量A反映各向异性对土体强度和变形的影响;通过相似扩大重塑土的屈服面反映结构性对土性的影响;通过引入非相关联流动法则考虑各向异性和结构性对土体塑性变形的影响。同时,将基于微观力学机制的损伤演化规律引入结构性土的硬化规律;该硬化规律同时考虑了塑性体积应变和剪切应变对各向异性结构性土强度的影响。然后将该模型用于模拟室内三轴压缩试验,初步验证了该模型的合理性和适用性。  相似文献   

9.
This paper presents a novel, exact, semi-analytical solution for the quasi-static undrained expansion of a cylindrical cavity in soft soils with fabric anisotropy. This is the first theoretical solution of the undrained expansion of a cylindrical cavity under plane strain conditions for soft soils with anisotropic behaviour of plastic nature. The solution is rigorously developed in detail, introducing a new stress invariant to deal with the soil fabric. The semi-analytical solution requires numerical evaluation of a system of six first-order ordinary differential equations. The results agree with finite element analyses and show the influence of anisotropic plastic behaviour. The effective stresses at critical state are constant, and they may be analytically related to the undrained shear strength. The initial vertical cross-anisotropy caused by soil deposition changes towards a radial cross-anisotropy after cavity expansion. The analysis of the stress paths shows that proper modelling of anisotropic plastic behaviour involves modelling not only the initial fabric anisotropy but also its evolution with plastic straining.  相似文献   

10.
刘元雪  施建勇 《岩土力学》2002,23(3):304-308
从土的各向异怀角度对土的可恢复剪胀现象进行了解释。基于各向异性情况下的土体弹性本构关系理论分析,认为土的可恢复剪胀现象可部分归因于土的各向异性引起的弹性剪胀。借助有关土体弹性参数实验结果,研究了应力诱导各迥异性对土体弹性剪胀的影响,结果表明:随土体应力诱导各向异性的增大,土体的弹性剪胀也增大。从土体弹性剪胀角度研究了土的卸荷体缩条件,认为土体卸荷体缩取决于加载应力路径的应力增量比,给出了土体出现卸荷体缩的区域。  相似文献   

11.
A simple method called anisotropic transformed stress (ATS) method is proposed to develop failure criteria and constitutive models for anisotropic soils. In this method, stress components in different directions are modified differently in order to reflect the effect of anisotropy. It includes two steps of mapping of stress. First, a modified stress tensor is introduced, which is a symmetric multiplication of stress tensor and fabric tensor. In the modified stress space, anisotropic soils can be treated to be isotropic. Second, a TS tensor is derived from the modified stress tensor for the convenience of developing anisotropic constitutive models to account for the effect of intermediate principal stress. By replacing the ordinary stress tensor with the TS tensor directly, the unified hardening model is extended to model the anisotropic deformation of soils. Anisotropic Lade's criterion is adopted for shear yield and shear failure in the model. The form of the original model formulations remains unchanged, and the model parameters are independent of the loading direction. Good agreement between the experimental results and predictions of the anisotropic unified hardening model is observed. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
This paper presents a micromechanics-based approach to investigate the effects of fabric anisotropy on the behavior of localized failure in granular materials. Based on a micromechanical analysis, the origin of deviatoric stress is decomposed into two components: contact force anisotropy and fabric anisotropy. Using a micro–macro approach, the back stress is interpreted as an contribution to the change of the fabric’s principal direction. The evolution of the back stress is deduced from the stress–fabric relationship and determined with reference to the deviation of the principal directions between the rate of the reduced stress tensor and the actual reduced stress tensor. With this micro–macro framework, a mixed (isotropic–kinematic) hardening model is developed based on the classical isotropic hardening theory. A laboratory simple shear test is first analyzed to validate the proposed model and illustrate the kinematic-hardening mechanism which is usually displayed under non-proportional loading. The analysis further focuses on the anisotropic aspect of localized failure. It has been discovered that the fabric anisotropy can play an important role in the occurrence of shear banding. An increasing degree of fabric anisotropy tends to delay the initiation of the strain localization and result in higher failure strength. The effects of fabric anisotropy have also been illustrated by comparing the theoretical predictions and measured results on the shear band inclination angle, shear strain level and dilatancy at bifurcation.  相似文献   

13.
田雨  姚仰平  罗汀 《岩土力学》2018,39(6):2035-2042
从发挥面的角度出发,分析论证各向异性是引起岩土材料出现非共轴现象的根本原因,得到与材料力学一致的结论。当共轭的两发挥面与沉积面的夹角不相等时,主应力面上将出现塑性应变增量的切向分量,所以塑性应变增量的主方向与应力的主方向非共轴。按照这一结论,对非共轴的数值模拟,也应当根据各向异性本构模型进行。为考虑各向异性影响新近提出的各向异性变换应力法,改变了各应力分量的相对大小,得到的各向异性变换应力张量与真实应力张量的主方向不一致,因此也能反映非共轴。利用各向异性变换应力法,能够在现有的弹塑性本构模型的框架下,描述土的非共轴现象。以各向异性UH模型为例,预测各种加载条件下的非共轴变形,验证了该方法的有效性。  相似文献   

14.
刘鹏  栾茂田  王忠涛 《岩土力学》2013,34(3):667-673
剪胀性是土特有的一种材料属性,而准确地描述砂土的剪胀性则是建立砂土本构模型的重要基础。大量常规三轴试验发现,在以相同加载条件下剪切时密砂和松砂会表现出完全不同的剪胀性和应力-应变关系特性,说明砂土的剪胀性不仅与其所处的应力状态有关,也与其物理状态相关。状态参量理论很好地解释了砂土所处应力状态和物理状态对剪胀性的共同作用。空心扭剪三轴试验仪可以实现不同主应力方向的单调剪切试验。试验结果表明,当砂土以不同主应力方向单调剪切时,即使处于相同初始应力条件和物理状态,砂土也会表现出不同的剪胀性,说明了主应力方向也是决定砂土剪胀性的重要条件。本文通过分析试验中主应力方向对砂土剪胀性的影响,提出了一个含有主应力方向的状态参量,并建立了相应的剪胀方程。通过与试验数据的对比,验证了该方法的正确性和准确性。  相似文献   

15.
祝恩阳  李晓强 《岩土力学》2018,39(1):112-122
结构性土颗粒间的胶结使试样剪切破坏最终应力比高于相应重塑土,也限制了试样剪切时体积应变的自由发挥。在考虑结构垮塌为主的结构性土统一硬化(UH)模型基础上,将应力空间中静止的临界状态线扩展为动态的移动临界状态线。据此,通过建立新的屈服面方程并修正剪胀方程,将结构性土统一硬化(UH)模型扩展为胶结结构性土统一硬化(UH)模型。相对于原模型,新模型增加了1个模型参数,即初始胶结应力,反映土颗粒之间的初始胶结作用。通过4种结构性土试验数据与模型预测对照表明:所提模型能够较合理地描述结构性土等向压缩、常规三轴排水与不排水剪切等特性。  相似文献   

16.
The paper describes and evaluates an incremental plasticity constitutive model for unsaturated, anisotropic, nonexpansive soils (CMUA). It is based on the modified Cam-Clay (MCC) model for saturated soils and enhances it by introducing anisotropy (via rotation of the MCC yield surface) and an unsaturated compressibility framework describing a double dependence of compressibility on suction and on the degree of saturation of macroporosity. As the anisotropic and unsaturated features can be activated independently, the model is downwards compatible with the MCC model. The CMUA model can simulate effectively: the dependence of compressibility on the level of developed anisotropy, uniqueness of critical state independent of the initial anisotropy, an evolving compressibility during constant suction compression, and a maximum of collapse. The model uses Bishop's average skeleton stress as its first constitutive variable, favouring its numerical implementation in commercial numerical analysis codes (eg, finite element codes) and a unified treatment of saturated and unsaturated material states.  相似文献   

17.

In granular soils grain crushing reduces dilatancy and stress obliquity enhances crushability. These are well-supported specimen-scale experimental observations. In principle, those observations should reflect some peculiar micromechanism associated with crushing, but which is it? To answer that question the nature of crushing-induced particle-scale interactions is here investigated using an efficient DEM model of crushable soil. Microstructural measures such as the mechanical coordination number and fabric are examined while performing systematic stress probing on the triaxial plane. Numerical techniques such as parallel and the newly introduced sequential probing enable clear separation of the micromechanical mechanisms associated with crushing. Particle crushing is shown to reduce fabric anisotropy during incremental loading and to slow fabric change during continuous shearing. On the other hand, increased fabric anisotropy does take more particles closer to breakage. Shear-enhanced breakage appears then to be a natural consequence of shear-enhanced fabric anisotropy. The particle crushing model employed here makes crushing dependent only on particle and contact properties, without any pre-established influence of particle connectivity. That influence does not emerge, and it is shown how particle connectivity, per se, is not a good indicator of crushing likelihood.

  相似文献   

18.
19.
According to classical critical state theory (CST) of granular mechanics, two analytical conditions on the ratio of stress invariants and the void ratio are postulated to be necessary and sufficient for reaching and maintaining critical state (CS). The present work investigates the sufficiency of these two conditions based on the results of a virtual three-dimensional discrete element method experiment, which imposes continuous rotation of the principal axes of stress with fixed stress principal values at CS. Even though the fixity of the stress principal values satisfies the two analytical CST conditions at the initiation of rotation, contraction and abandonment of CS occur, which proves that these conditions may be necessary but are not sufficient to maintain CS. But if fixity of stress and strain rate directions in regard to the sample is considered at CS, the two analytical conditions of CST remain both necessary and sufficient. The recently proposed anisotropic critical state theory (ACST) turned this qualitative requirement of fixity into an analytical condition related to the CS value of a fabric anisotropy variable A defined in terms of an evolving fabric tensor and the plastic strain rate direction, thus, enhancing the two CST conditions by a third. In this way, the three analytical conditions of ACST become both necessary and sufficient for reaching and maintaining CS. In addition, the use of A explains the observed results by relating the stress-strain response, in particular the dilatancy, to the evolution of fabric by means of the relevant equations of ACST.  相似文献   

20.
Consideration of fabric anisotropy is crucial to gaining an improved understanding of the behavior of granular materials. This paper presents a constitutive model to describe the sand behavior associated with fabric anisotropy within a framework of a strain space multiple mechanism model. In the proposed model, a second-order fabric tensor is extended by incorporating a new function that represents the effect of inherent (or initial fabric) anisotropy, along with three additional parameters: two of them, a1 and a2 , control the degree of anisotropy, and the second mode of inherent anisotropy can be expressed by introducing the parameter a2 as well as the first mode by the parameter a1 . The third parameter, θ0 , expresses the principal direction of inherent anisotropy (eg, the normal vector direction of bedding planes relative to horizontal axis). The formulation of the dilative component of dilatancy (ie, positive dilatancy) is also extended to consider the effect of inherent anisotropy based on the interlocking mechanism. Experimental data on the complex anisotropic responses of Fraser River sand and Toyoura sand under monotonic loading is used to validate this model. The proposed model is shown to successfully capture anisotropic responses, which become contractive or dilative depending on different principal-stress directions, with a single set of anisotropy parameters; thus, the model is considered to possess the capability to simulate the anisotropic behaviors of granular materials. In addition to different loadings on the same fabric, the effects of different fabric anisotropies upon the sand behavior under the same loadings are also investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号