首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
非饱和土的水力和力学特性及其弹塑性描述   总被引:6,自引:3,他引:3  
孙德安 《岩土力学》2009,30(11):3217-3231
简单回顾了非饱和土本构模型研究的发展历程,总结了近几年非饱和土弹塑性本构模型最新研究成果,重点介绍了能统一模拟非饱和土水力性状和力学性状耦合的弹塑性本构模型。通过对建立模型过程中的几个核心问题讨论,较详细地说明该类模型的结构、性能以及相关问题。非饱和土水力性状的滞回性用假定存在饱和度弹性区间的弹塑性过程来模拟;该类耦合模型不仅考虑了吸力对非饱和土水力性状和力学性状的影响,还考虑了饱和度对应力-应变关系和强度的影响以及土体变形对土-水特征曲线的影响。用同一套模型参数,耦合模型可统一预测在吸力控制或含水率控制下沿各种应力路径下非饱和土的水力-力学特性,并简单介绍了膨胀性非饱和土的弹塑性本构模型以及耦合模型在有限元数值计算中的应用。  相似文献   

2.
Xiong  Hao  Yin  Zhen-Yu  Zhao  Jidong  Yang  Yi 《Acta Geotechnica》2021,16(2):399-419

The flow direction is generally different from the gravity direction in geotechnical structures or slopes, the effect of which during suffusion remains unclear. This paper presents a coupled computational fluid dynamics and discrete element method approach to simulate the particle–fluid interaction relevant to this problem. The CFD-DEM approach is first benchmarked by a classic granular system problem, which is then used to investigate the characteristics of suffusion and its impact on the mechanical behavior. Five different angles between gravity and seepage directions for gap-graded soils with two fines contents are examined. Both the macroscopic and microscopic characteristics during suffusion and triaxial loading tests are analyzed. The direction angle is found to play a significant role affecting the erosion process and the mechanical consequence of soils. The results show that the greater the angle is, the harder it is for suffusion to occur and continue.

  相似文献   

3.
The mechanical behaviour of bonded geomaterials is described by means of an elastoplastic strain‐hardening model. The internal variables, taking into account the ‘history’ of the material, depend on the plastic strains experienced and on a conveniently defined scalar measure of damage induced by weathering and/or chemical degradation. For the sake of simplicity, it is assumed that only internal variables are affected by mechanical and chemical history of the material. Despite this simplifying assumption, it can be shown that many interesting phenomena exhibited by weathered bonded geomaterials can be successfully described. For instance, (i) the transition from brittle to ductile behaviour with increasing pressure of a calcarenite with collapsing internal structure, (ii) the complex behaviour of chalk and other calcareous materials in oedometric tests, (iii) the chemically induced variation of the stress and strain state of such kind of materials, are all phenomena that can be qualitatively reproduced. Several comparisons with experimental data show that the model can capture the observed behaviour also quantitatively. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

4.
5.

This paper presents a simple hypoplastic constitutive model that describes the essential features of the material behaviour of partially saturated clayey soils observed in oedometric compression tests. The model is formulated in terms of net stress and degree of saturation. The total strain rate is decomposed into a portion related to the changes in saturation and a portion for the evolution of net stress. However, no distinction is made between plastic and elastic strains. With this strain rate decomposition, the maximum swelling strain/stress are obtained by simulating wetting processes under constant stress/strain conditions. In addition to the void ratio, the model includes two scalar variables to track the loading history (preloading). The calibration of the model constants using common laboratory tests is discussed. Confined and unconfined swelling tests under oedometric conditions with subsequent loading and unloading phases carried out on three different materials were satisfactorily simulated by the model. Its promising results call for an extension to a 3D formulation.

  相似文献   

6.
潜蚀是深厚覆盖层渗透稳定性问题中比较主要和突出的一种表现型式,开展深厚覆盖层潜蚀问题的相关试验及理论研究,对于保障中国已建、待建重大水电工程的安全均具有重要的理论和实际意义。首先,区分了潜蚀与向后侵蚀管涌,指出潜蚀与向后侵蚀管涌的发生机制完全不同,两者不能混淆在一起。与向后侵蚀管涌相比,潜蚀更具隐蔽性,其发生发展机制更加复杂。其次,从潜蚀发生的几何条件、水力条件及潜蚀数学模型等3个方面详细梳理总结了潜蚀研究的相关进展。最后,结合雅鲁藏布江下游水电开发等国家重大工程,提出未来应着重加强对原状覆盖层土体内部稳定性评价,对极端条件、复杂渗流条件、复杂地层条件下潜蚀发生发展机制,潜蚀时间效应及其长期影响的评价和控制,对潜蚀本构关系及其数学模型等方面的试验及理论研究。  相似文献   

7.
孙德安  陈振新 《岩土力学》2012,33(Z2):16-021
目前大多数非饱和土的弹塑性本构模型用非饱和击实土的试验结果进行验证,但现场其他类型的土,如沉积土经常有在非饱和状态下外部环境变化的情况。现有的非饱和土弹塑性模型是否适用于沉积土一类的现场土是需要研究的课题。进行非饱和上海第③层土的吸力控制排水排气三轴剪切试验,使用文中提出的能统一考虑非饱和土水力性状和力学性状的弹塑性本构模型,预测上述三轴试验结果,并与试验数据进行比较。比较结果显示,建立的本构模型能够很好地预测非饱和上海软土的水力和力学性质,说明该模型不仅可以适用击实土的预测,还能够很好地适用于其他类型非饱和土的水力和力学性质的模拟。  相似文献   

8.
In the last decades, a number of hydro-mechanical elastoplastic constitutive models for unsaturated soils have been proposed. Those models couple the hydraulic and mechanical behaviour of unsaturated soils, and take into account the effects of the degree of saturation on the stress–strain behaviour and the effects of deformation on the soil–water characteristic response with a simple reversible part for the hysteresis. In addition, the influence of the suction on the stress–strain behaviour is considered. However, until now, few models predict the stress–strain and soil–water characteristic responses of unsaturated soils in a fully three-dimensional Finite Element code. This paper presents the predictions of an unsaturated soil model in a Three-dimensional Framework, and develops a study on the effect of partial saturation on the stability of shallow foundation resting on unsaturated silty soil. Qualitative predictions of the constitutive model show that incorporating a special formulation for the effective stress into an elastoplastic coupled hydro-mechanical model opens a full range of possibilities in modelling unsaturated soil behaviour.  相似文献   

9.
10.
An elastoplastic-viscoplastic constitutive model for soils is presented in this study, based on an original approach concerning viscous modelling. In this approach, the viscous behaviour is defined by internal viscous variables and a viscous yield surface. The model has been developed from a basic elastoplastic model (CJS model) by considering an additional viscous mechanism. The evolution of the viscous yield surface is governed by a particular hardening called ‘viscous hardening’. This model is able to explain the time-dependent behaviour of soils such as creep (primary, secondary and un-drained creep rupture), stress relaxation and strain rate effects in static and cyclic loadings. The existing problems in the classical elasto-viscoplastic models related to the plasticity failure, the rapid loading and the cyclic loading are solved in the proposed model. The physical meanings and the identification strategy of model parameters are clearly given. The validation on certain triaxial test results and the simulation of cyclic triaxial test indicate the capacity of this model in prediction of time-dependent behaviour of clayey soils.  相似文献   

11.
The Barcelona basic model cannot predict the mechanical behaviour of unsaturated expansive soils, whereas the Barcelona expansive model (BExM) can only predict the stress–strain behaviour of unsaturated expansive soils without the water‐retention behaviour being incorporated. Moreover, the micro‐parameters and the coupling function between micro‐structural and macro‐structural strains in the BExM are difficult to determine. Experimental data show that the compression curves for non‐expansive soils under constant suctions are shifted towards higher void ratios with increasing suction, whereas the opposite is true for expansive soils. According to the observed water‐retention behaviour of unsaturated expansive soils, the air‐entry value increases with density, and the relationship between the degree of saturation and void ratio is linear at constant suction. According to the above observation, an elastoplastic constitutive model is developed for predicting the hydraulic and mechanical behaviour of unsaturated expansive soils, based on the existing hydro‐mechanical model for non‐expansive unsaturated soil. The model takes into consideration the effect of degree of saturation on the mechanical behaviour and that of void ratio on the water‐retention behaviour. The concept of equivalent void ratio curve is introduced to distinguish the plastic potential curve from the yield curve. The model predictions are compared with the test results of an unsaturated expansive soil, including swelling tests under constant net stress, isotropic compression tests and triaxial shear tests under constant suction. The comparison indicates that the model offers great potential for quantitatively predicting the hydraulic and mechanical behaviour of unsaturated expansive soils. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
This paper presents a new approach for the development of an elastoplastic constitutive model to predict the strength and deformation behaviour of soils under general stress conditions. The proposed approach was based on characteristic stress, which considers the effect of the intermediate principal stress on the material strength. Referring to the Cam-clay model, the shear dilatancy equation, plastic potential function and hardening parameter for the developed model were all derived using the characteristic stress. The model predictions indicated that the established model could quantitatively reproduce the negative dilatancy behaviour, positive dilatancy behaviour, and three-dimensional strength properties of soils.  相似文献   

13.
A general thermo-hydro-mechanical framework for the modelling of internal erosion is proposed based on the theory of mixtures applied to two-phase porous media. The erodible soil is partitioned in two phases: one solid phase and one fluid phase. The solid phase is composed of nonerodible grains and erodible particles. The fluid phase is composed of water and fluidized particles. Within the fluid phase, species diffuse. Across phases, species transfer. The modelling of internal erosion is contributed directly by mass transfer from the solid phase towards the fluid phase. The constitutive relations governing the thermomechanical behaviour, generalised diffusion, and transfer are structured by the dissipation inequality. The particular case of soil suffusion is investigated with a focus on constitutive laws. A new constitutive law for suffusion is constructed based on thermodynamic conditions and experimental investigations. This erosion law is linearly related to the power of seepage flow and to the erosion resistance index. Owing to its simplicity, this law tackles the overall trend of the suffusion process and permits the formulation of an analytical solution. This new model is then applied to simulate laboratory experiments, by both analytical and numerical methods. The comparison shows that the newly developed model, which is theoretically consistent, can reproduce correctly the overall trend of the cumulated eroded mass when the permeability evolution is small. In addition, the results are provided for four different materials, two different specimen sizes, and various hydraulic loading paths to demonstrate the applicability of the new proposed law.  相似文献   

14.
Existing models for predicting the small strain behaviour of unsaturated soil are not capable of predicting the initial shear stiffness during suction reduction under normally consolidated conditions. This problem has been addressed in the present study by combining an existing elastoplastic model and recent experimental data to provide a new model for the initial shear stiffness. The model, which is similar to that typically adopted for saturated soils, uses the average skeleton stress and an additional function of the degree of saturation. This new model not only captures the behaviour of the new experimental results, but it also describes a unique relationship between saturated and unsaturated soils.  相似文献   

15.
This paper presents a three‐dimensional elastoplastic constitutive model for predicting the hydraulic and mechanical behaviour of unsaturated soils. It is based on experimental results obtained from a series of controlled‐suction triaxial tests on unsaturated compacted clay with different initial densities. Hydraulic hysteresis in the water‐retention behaviour is modelled as an elastoplastic process, with the elastic part modelled by a series of scanning curves and the elastoplastic part modelled by the main drying and wetting curves. The effect of void ratio on the water‐retention behaviour is studied using data obtained from controlled‐suction wetting–drying cyclic tests on unsaturated compacted clay with different initial densities. The effect of the degree of saturation on the stress–strain‐strength behaviour and the effect of void ratio on the water‐retention behaviour are considered in the model, as is the effect of suction on the hydraulic and mechanical behaviour. The initial density dependency of the compacted soil behaviour is modelled by experimental relationships between the initial density and the corresponding yield stress and, thereby, between the initial density and the normal compression line. The model is generalized to three‐dimensional stress states by assuming that the shapes of the failure and yield surfaces in the deviatoric stress plane are given by the Matsuoka–Nakai criterion. Model predictions of the stress–strain and water‐retention behaviour are compared with those obtained from triaxial tests with different initial densities under isotropic compression, triaxial compression and triaxial extension, with or without variation in suction. The comparisons indicate that the model accurately predicts the hydraulic and mechanical behaviour of unsaturated compacted soils with different initial densities using the same material constant. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

16.
17.
18.
王军祥  姜谙男  宋战平 《岩土力学》2014,35(Z2):626-637
在地下水渗流场、应力场、损伤场的耦合作用下更易造成隧道围岩坍塌或涌水等灾害。首先,将围岩材料视作各向同性连续介质,基于Drucker-Prager准则建立岩石弹塑性损伤本构模型,采用完全隐式返回映射算法实现弹塑性损伤本构方程的数值求解。其次,以上述研究为基础根据岩石处于弹塑性状态时渗透系数动态演化公式,建立岩石弹塑性应力-渗流-损伤耦合模型,并给出三场耦合情况下的数值求解迭代方法。针对耦合模型中涉及参数较多且不易测定的问题,基于差异进化算法原理建立智能反分析方法,对耦合模型中的损伤参数进行反演。最后,利用C++语言编制相应的岩石弹塑性应力-渗流-损伤耦合程序和参数反演程序,利用所编程序进行以下计算:(1)对智能反分析程序的性能、正确性进行分析,对比不同差异策略、交叉因子、变异因子的反演精度和收敛速度。(2)分别采用弹性模型和弹塑性损伤模型进行隧道围岩位移场、应力场的计算。(3)不考虑力学作用的情况下进行孔隙水压力、渗流量的计算。(4)采用所建耦合模型计算得到隧道围岩应力场、渗流场以及损伤场的相互影响规律。研究结果表明,基于差异进化算法的智能反分析程序能够较好地解决耦合模型中损伤参数不易确定的难题,为实际工程中获得不易测定的计算参数提供了有效的方法,同时所建立的耦合模型通过应力、渗流和损伤的相互作用更能够真实地反映出岩石材料的宏观破坏现象,所编计算程序能够模拟地下水渗流场、应力场、损伤场之间的耦合特性,为受地下水影响严重的工程建设提供了方法,研究结论为后期对实际隧道工程进行耦合计算奠定基础。  相似文献   

19.
In this paper, an existing elastoplastic constitutive model, originally developed for granular soils, is adapted to describe the stress–strain behaviour of cemented granular soils. The existing model (CJS), due to its modular formulation, can be easily developed to take into account different supplementary behavioural aspects in soil mechanics. In the present study, the failure mechanism of the CJS model is modified by introducing the essential aspects in the behaviour of cemented granular soils in its formulation. All of the model parameters have clear physical meaning and can be identified using classical laboratory tests. A set of direct relations between model parameters and famous mechanical parameters of soils such as internal friction angle and cohesion at peak and residual states is presented. In order to validate the model, the results of triaxial and uniaxial tests in the compression and extension performed on cemented granular materials are used. The validation results indicate the good capability of the proposed model.  相似文献   

20.
A unified constitutive model for unsaturated soils is presented in a critical state framework using the concepts of effective stress and bounding surface plasticity theory. Consideration is given to the effects of unsaturation and particle crushing in the definition of the critical state. A simple isotropic elastic rule is adopted. A loading surface and a bounding surface of the same shape are defined using simple and versatile functions. The bounding surface and elastic rules lead to the existence of a limiting isotropic compression line, towards which the stress trajectories of all isotropic compression load paths approach. A non‐associated flow rule of the same general form is assumed for all soil types. Isotropic hardening/softening occurs due to changes in plastic volumetric strains as well as suction for some unsaturated soils, enabling the phenomenon of volumetric collapse upon wetting to be accounted for. The model is used to simulate the stress–strain behaviour observed in unsaturated speswhite kaolin subjected to three triaxial test load paths. The fit between simulation and experiment is improved compared to that of other constitutive models developed using conventional Cam‐Clay‐based plasticity theory and calibrated using the same set of data. Also, the model is used to simulate to a high degree of accuracy the stress–strain behaviour observed in unsaturated Kurnell sand subjected to two triaxial test load paths and the oedometric compression load path. For oedometric compression theoretical simulations indicate that the suction was not sufficiently large to cause samples to separate from the confining ring. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号