首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
Microstructural analysis of glacial deposits has recently been used as a research tool to determine sediment genesis. However, the occurrence of microstructures in deposits of known origin has not been sufficiently documented, hindering our ability to confidently interpret microstructures in sediments of unknown origin. Our objective is to present a calibration study of microstructures of recent sediment flow deposits and associated sediments from the Matanuska Glacier, Alaska, and to evaluate the degree of commonality with microstructures found in subglacially deformed sediments. Microstructures in sediment flow deposits can be formed as a result of sediment transport, deposition, and/or post-depositional processes, and are related to the viscosity regime of the source flow. Characteristic microstructures formed during brittle deformation include shears, faults, and brecciation; microstructures formed during ductile deformation include folds, pressure shadows, re-orientation of clasts around a 'core' stone, fine laminations, basal shear zones, imbrication, and flow fabrics. Other microstructures include fluid escape and injection structures, clast haloes, and fissility. The results of our comparison suggest that sediment flow deposits share many microstructures in common with subglacially deformed sediments.  相似文献   

2.
天然气水合物开采涉及传热、水合物分解相变、多相渗流和地层变形4个物理过程。多相渗流过程伴随着对流传热,影响传热效率;多相渗流过程影响孔隙压力的消散速率,引起有效应力改变而影响地层变形;多相渗流过程影响传热的效率和孔隙压力的消散速率,使温度和压力条件发生变化,影响水合物的分解。多相渗流过程中,某相流体的有效渗透率不仅与该相流体的饱和度有关,还与地层绝对渗透率有关。地层绝对渗透率是多相渗流过程的关键参数之一。概述不同贮存状态水合物、地层孔隙率、水合物饱和度和地层有效应力对地层绝对渗透率影响的研究内容。以国内外天然气水合物地层绝对渗透率研究成果为基础,将来的研究重点主要包括粉细砂、黏土类地层和各向异性地层多相渗流研究,以及地层有效应力对绝对渗透率影响研究。  相似文献   

3.
Faults in sedimentary rocks can act as fluid pathways or barriers to flow and display a range of deformation styles. These features can be explained by behaviours observed in deformation experiments on sedimentary rocks that reveal a transition from dilatant brittle faulting and permeability enhancement to cataclasis and permeability reduction, with increasing porosity, grain size and confining pressure. This transition implies that faults in sedimentary rocks are unlikely to act as fluid pathways shallower than ~3 km, unless the sediments have undergone early cementation, or have been exposed following burial and uplift. This has important implications for many geological processes, including fluid circulation in geothermal systems, formation of sediment-hosted mineral deposits and earthquakes in subduction zones. Stratiform Zn–Pb deposits that have been interpreted as syngenetic, seafloor deposits could instead be interpreted as early epigenetic deposits representing the depth at which faults change from fluid pathways to barriers.  相似文献   

4.
In this paper, a numerical model is developed for the fully coupled hydro‐mechanical analysis of deformable, progressively fracturing porous media interacting with the flow of two immiscible, compressible wetting and non‐wetting pore fluids, in which the coupling between various processes is taken into account. The governing equations involving the coupled solid skeleton deformation and two‐phase fluid flow in partially saturated porous media including cohesive cracks are derived within the framework of the generalized Biot theory. The fluid flow within the crack is simulated using the Darcy law in which the permeability variation with porosity because of the cracking of the solid skeleton is accounted. The cohesive crack model is integrated into the numerical modeling by means of which the nonlinear fracture processes occurring along the fracture process zone are simulated. The solid phase displacement, the wetting phase pressure and the capillary pressure are taken as the primary variables of the three‐phase formulation. The other variables are incorporated into the model via the experimentally determined functions, which specify the relationship between the hydraulic properties of the fracturing porous medium, that is saturation, permeability and capillary pressure. The spatial discretization is implemented by employing the extended finite element method, and the time domain discretization is performed using the generalized Newmark scheme to derive the final system of fully coupled nonlinear equations of the hydro‐mechanical problem. It is illustrated that by allowing for the interaction between various processes, that is the solid skeleton deformation, the wetting and the non‐wetting pore fluid flow and the cohesive crack propagation, the effect of the presence of the geomechanical discontinuity can be completely captured. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
贺文海  王通 《岩土力学》2020,41(8):2703-2711
饱和多孔介质的动力响应研究在众多工程领域具有重要意义。充分考虑孔隙率的变化规律与影响因素,有利于合理揭示饱和多孔介质的相关力学行为。为此,将动态孔隙率模型与用于表征饱和多孔介质动力特性的u-U-p型方程结合,构建相应的非线性力学模型,利用Comsol Multiphysis PDE求取相应的数值解,以此研究不同透水条件下,受谐波载荷激励的二维饱和土体的孔隙率、变形量及孔隙水压力的变化规律。结果表明:孔隙率的变化与土骨架的体应变及孔隙水压力直接相关,土体压缩过程中,孔隙率相应减小,土骨架与孔隙流体的相互作用增强,土体运动时所受阻力增大,其无量纲竖向位移小于孔隙率被视为常数时的情况,在此条件下,由于土体的变形量减小,其孔隙水压力也相对减小。故充分考虑动态孔隙率,有利于更加精确地研究等饱土体和多孔介质的相关力学行为。此外,土体上表面透水条件下,孔隙流体可以从土体表面自由排出,土骨架承受的载荷更大,与不透水条件相比,土体孔隙率、竖向位移、孔隙水压力等变化更为显著。  相似文献   

6.
Mechanisms for kilometre-scale, open-system fluid flow during regional metamorphism remain problematic. Debate also continues over the degree of fluid flow channellization during regional metamorphism, and the mechanisms for pervasive fluid flow at depth. The requirements for pervasive long-distance fluid flow are an interconnected porosity and a large regional gradient in fluid pressure and hydraulic head (thermally or structurally controlled) that dominates over local perturbations in hydraulic head due to deformation. In contrast, dynamic or transient porosity interconnection and fluid flow accompanying deformation of heterogeneous rock suites should result in moderately to strongly channellized flow at a range of scales, of which there are many examples in the literature. Classification of fluid flow types based on scale and degree of equilibration between fluid and rock, wallrock permeability, and mode of fluid transport contributes to an understanding of key factors that control fluid flow. Closed-system fluid behaviour, with restricted fluid flow in microcracks or cracks and limited fluid–rock interaction, occurs over a range of strains and crustal depths, but requires low permeabilities and/or small fluid fluxes. Long-distance, open-system fluid flow in channels is favoured in heterogeneous rocks at high strains, moderate (but variable) permeabilities, and moderate to high fluid fluxes. Long-distance, broad, pervasive fluid flow during regional metamorphism requires that the rocks are not accumulating high strains and have high permeabilities, low permeability contrasts, and high fluid fluxes. The ideal situation for such fluid flow is in situations where the rocks are undergoing stress relaxation immediately after a major deformation phase. In the mid-crust, fairly specific conditions are thus required for pervasive fluid flow. During active orogenesis, structurally controlled fluid flow (with focused open systems surrounding regions of closed-system behaviour) predominates in most, but not all, regional metamorphic situations, at a range of scales.  相似文献   

7.
Geotechnical property analyses on sediments recovered by DSDP drilling within select convergent margins were integrated to determine the variability in these properties along the trench inner-slope and to delineate the effects of convergence on these properties. Consolidation states range from very underconsolidated to highly overconsolidated, with preconsolidation pressures exceeding 46,000 kPa in Quaternary sediments. Underconsolidated sediments are attributed to:
1. (1) high sedimentation rates.
2. (2) low sediment permeability relative to the length of the drainage path; (3) laterally applied stresses; and (4) induced pore water pressures resulting from the subduction of pelagic sediments with high water content. Factors contributing to the state of overconsolidation include: (1) tectonically induced overpressures; (2) removal of overburden by mass movement processes.
3. (3) low sediment accumulation rates.
4. (4) age.
Vertical gradients of index properties also vary greatly with the maximum gradient associated with overconsolidated sediments. Values of porosity generally exceed 30% at all margins studied, suggesting this porosity represents the minimum attainable solely by the effects of convergence.Geotechnical property results and site-specific parameters suggest two end members should be considered in the general geotechnical property model for convergent margin sediments. Clastic dominated margins form the basis for the initial geotechnical property model. These margins are characterized by thick trench sediment sequences which are folded and faulted and become progressively more deformed upslope. Convergence rates are low, and no well-developed faults or hrst and graben structures are evident on the downbending oceanic plate. Highly overconsolidated sediments and index property values which change rapidly with depth result from the slow progressive deformation of trench and lower slope sediments. Examples of clastic-dominated margins include the Nankai Trough, Aleutian Trench, and Washington continental margin.Pelagic-dominated margins have significantly different geotechnical properties and site-specific parameters. These margins are characterized by thin clastic trench sediment sequences overlying pelagic sediments on a rapidly converging oceanic plate. Well-developed faults and/or hrst and graben structures are evident on the downbending oceanic plate. Sediment deformation along the trench and lower slope appears limited. These sediments are underconsolidated and index property values change gradually but often irregularly with depth. Japan Trench and Middle America Trench-Guatemala margins are considered pelagic-dominated. Middle America Trench-Mexico appears to represent an intermediate case having characteristics of both margin types.  相似文献   

8.
The theory of consolidation is extended to partly saturated clay soils, and formulated for finite element analyses. This formulation couples the effects of both stress and flow. It takes account of variations of this permeability of the soil and compressibility of the pore fluid with changes in void ratio, and the non-linear stress–strain behaviour of soil. The Cam Clay model is revised to model the stress–strain behaviour of compacted soils. The compressibility of pore fluid is derived using Boyle's Law and Henry's Law, taking into account the effect of surface tension. An empirical equation is developed for permeability of pore fluid. An example of settlement of a footing on partly saturated soil is described and discussed.  相似文献   

9.
海底多相流动区域沉积物孔隙内流体迁移-甲烷输运-水合物形成是一种普遍模式,形成的水合物在孔隙内沉淀并与多孔介质骨架胶结从而改变当地的地层结构和性质。水合物的不断形成将减少沉积地层孔隙度,改变孔隙内各相间界面张力,增大当地孔隙的进入压力及毛细压力,增强地层滞后效应,降低地层渗透率,同时多相流体流动前缘气液分离带变厚而使得气柱变长。建立了在这类环境里水合物-水-气-盐共同作用下的水合物成藏模型,选择合适的参数分析了水合物形成对沉积地层静水力学性质等的影响关系。最后根据资料估算了南海北部神狐海域沉积物内甲烷气柱的分布,结果表明:随着水合物在沉积物孔隙内逐渐饱和,临界甲烷气柱长度将在接近海底面处达到最大,约为09 m。  相似文献   

10.
Bifurcation of unsaturated soils into a localized shear band is a ubiquitous failure mode of partially saturated soils. The density and degree of saturation have major impacts on the inception of localized deformations in unsaturated soils. Unsaturated fluid flow may dramatically change the density and degree of fluid saturation of unsaturated soils. Therefore, the unsaturated fluid flow is a potential trigger for shear banding in such materials. In this paper, we derive a simplified bifurcation condition of localized deformation in unsaturated soils under the local transient condition at finite strain. This transient bifurcation condition is implemented into a nonlinear finite element code to study the inception of localized deformation in unsaturated soil specimens. Numerical simulations are conducted to study the impact of soil fabrics of density, a ‘bonding’ variable, and intrinsic permeability on the inception of localized failures via the transient bifurcation criterion. Mesh sensitivity analysis is performed to demonstrate the viscosity effect of unsaturated fluid flow on the localized deformation. Numerical simulations demonstrate that the transient bifurcation condition can detect the localized deformation triggered by the internal unsaturated fluid flow process in unsaturated soils. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
徐进  王少伟  杨伟涛 《岩土力学》2020,41(3):1065-1073
地下水开采等人类工程活动会引起地下水位变化,从而导致地面沉降问题。地面沉降具有土层变形长期发展的特点,土体的蠕变性是导致这一现象的重要原因之一。为此,针对基于Biot理论的地面沉降耦合模型,利用半解析数值原理和黏弹性流变理论,推导了可压缩土层黏弹性耦合变形的求解格式,该计算方法无需数值积分,且具有很好的解耦并行性。在此基础上,编制了FORTRAN计算程序,通过与已有解答的对比验证,说明了方法及程序的合理性,计算结果可以正确反映土体黏滞性所导致的变形滞后效应。通过数值算例,进一步探讨了渗透性、孔隙流体可压缩性和土体黏滞性等因素对土层长期变形的影响规律。  相似文献   

12.
Tetsuro Hirono   《Tectonophysics》2005,397(3-4):261-280
Geological investigation of the deformation structures and sedimentary setting of the Emi Group, a Miocene sand-rich accretionary complex, central Japan, revealed a six stage-structural evolution during shallow level accretion in a subduction zone. The early deformation (stage 1) is characterized by independent particulate flow in layer parallel faults, scaly cleavages and web structures, and upward dewatering in dish-and-pillar structures and breccia injections, while later deformation (stages 2–6) involve mappable scale folding, meso- to macro-scopic thrusts and web structures with cataclastic flow. Based on microscopic analyses of these structures, the early faulting with independent particulate flow (stage 1 deformation) is associated with dilatancy and preferred orientation of void space, whereas the later faulting with cataclastic flow (stage 2 deformation) occurs with compaction and crude preferred orientation. The former features imply more permeable fluid migration pathways, supported by the permeability measurements and direct imaging of fluid flow by X-ray CT. On the other hand, the later fault zone has lower permeability and porosity than intact rock, and plays as fluid sealing. Thus, in the early stage (stages 1), fluid flow occurs as focused flow through dilatant fault zones with independent particulate flow or fluid migration by upward dewatering forming dish-and-pillar structures and breccia injections, whereas no evidence of fluid flow is recognized at the later stages (stages 2–6). Namely the fault zones focus fluid flow during primary accretion in shallow levels, and the fluid flow is strongly controlled by the deformation mechanism. Furthermore, the change of the deformation mechanism could be effected by progressive increment of the confining pressure, accompanied with accretion and lithification in the accretionary prism. In the shallow, dilatant-faulting regime where the deformation mechanism is independent particulate flow, focused flow dominates, whereas in the deep, cataclastic regime distributed flow may play a main conduit rather than the focused flow.  相似文献   

13.
I. Lerche  Z. Yu  J. Liu 《地学学报》1995,7(4):459-466
A discussion is given of the impact of normal slant faults on basinal structure, compaction, fluid overpressure development, and thermal effects in sedimentary basins. Faults which are hydraulically closed or open to fluid flow are examined in a dynamical two-dimensional fluid/ flow compaction model.
From this numerical investigation three dominant factors characterize the effects of single and multiple faults with open or closed hydraulic behaviours: (i) there is a difference in excess pressure for fault planes with open or shut hydraulic conditions, but the neighbourhood where the effect of the fault is dominant is fairly localized (to within about half a kilometre or so laterally from the fault plane); (ii) the lateral and vertical motion of sediments between faulted blocks induces a thermal difference prior to, during, and post-faulting, which can play a role in influencing hydrocarbon generation, migration, and accumulation; (iii) porosity retention and permeability modification by fault development could influence hydrocarbon exploration decisions regarding sealing, migration pathways, and fluid retention.
The general patterns of slant fault effects described here should prevail in most geological situations, because the numerical experiments are designed to illuminate sharply the dominant response characteristics within the framework of simplified situations.  相似文献   

14.
Relatively few studies have examined fault rock microstructures in carbonates. Understanding fault core production helps predict the hydraulic behaviour of faults and the potential for reservoir compartmentalisation. Normal faults on Malta, ranging from <1 m to 90 m displacement, cut two carbonate lithofacies, micrite-dominated and grain-dominated carbonates, allowing the investigation of fault rock evolution with increasing displacement in differing lithofacies. Lithological heterogeneity leads to a variety of deformation mechanisms. Nine different fault rock types have been identified, with a range of deformation microstructures along an individual slip surface. The deformation style, and hence type of fault rock produced, is a function of host rock texture, specifically grain size and sorting, porosity and uniaxial compressive strength. Homogeneously fine-grained micrtie-dominated carbonates are characterised by dispersed deformation with large fracture networks that develop into breccias. Alternatively, this lithofacies is commonly recrystallised. In contrast, in the coarse-grained, heterogeneous grain-dominated carbonates the development of faulting is characterised by localised deformation, creating protocataclasite and cataclasite fault rocks. Cementation also occurs within some grain-dominated carbonates close to and on slip surfaces. Fault rock variation is a function of displacement as well as juxtaposed lithofacies. An increase in fault rock variability is observed at higher displacements, potentially creating a more transmissible fault, which opposes what may be expected in siliciclastic and crystalline faults. Significant heterogeneity in the fault rock types formed is likely to create variable permeability along fault-strike, potentially allowing across-fault fluid flow. However, areas with homogeneous fault rocks may generate barriers to fluid flow.  相似文献   

15.
The dynamics of shale compaction and evolution of pore-fluid pressures   总被引:7,自引:0,他引:7  
A mathematical model of sedimentation and compaction of fine-grained rocks such as shale has been constructed. Water is considered to flow upward or downward out of a compacting rock according to Darcy's law until the pore-water pressure within the rock is normal for the depth in question. The porosity decreases during compaction until a minimum porosity, determined by the difference between total vertical stress (overburden pressure) and pore-water pressure, is obtained. The model takes into account the dependence of permeability on porosity for a given rock type, and the dependence of water viscosity on salinity, temperature, and pressure. The derived equations have been computer programmed to obtain the time dependence of porosity, pressure, water velocity, permeability, and other factors within a compacting shale during (a) shale sedimentation, (b) a time lapse following shale deposition, (c) the deposition of normally pressured sediments over the shale, and (d) a second time lapse following deposition of the normally pressured unit. Solutions to these problems are given for the situation when the unit underlying the shale is normally pressured, and for the situation when the underlying unit is impermeable. The calculations show that a portion of a thick shale adjacent to a normally pressured unit may have a considerably reduced porosity and permeability, and act as a seal for the remainder of the shale. High fluid pressures may persist for many millions of years in thick shales with low permeability. The computations can be extended to cover more complicated cases of interbedded shales, sands, and other lithologies.  相似文献   

16.
砂岩三轴循环加卸载条件下的渗透率研究   总被引:6,自引:0,他引:6  
渗透率是地下工程的流-固耦合分析中的一个关键因素。对多孔红砂岩进行了三轴压缩试验,在不同变形阶段实施了轴向应力循环加卸载,并在试验全过程中测量轴向渗透率,得到了试样破坏全过程的渗透率演化规律。从平均应力和循环加卸载对渗透率的影响等两方面进行了深入分析,结果表明,(1)随着轴向变形的增加,初始压密阶段和弹性变形试样渗透率均匀减小;进入塑性变形阶段,渗透率与轴向变形的曲线逐渐趋于水平,低围压条件下渗透率略有增加。(2)轴向加载使骨架颗粒被压缩,引起孔隙减小,造成渗透率减小;采用经验公式定量描述了渗透率和平均应力之间的关系。(3)轴向应力循环加卸载过程中,骨架颗粒的不可恢复变形引起渗透率产生不可恢复现象。(4)峰值后渗透率只发生少许突跳,说明对于多孔砂岩,孔隙和裂隙对渗透率的影响相当,且渗透率的突跳程度随着围压的升高而降低。  相似文献   

17.
Summary A finite element formulation is proposed for finite deformation dynamic analysis of saturated soil systems. The formulation is based on an updated Lagrangian approach and specifically considers the finite deformation effects on the flow of water through a soil element which undergoes a large deformation or rotation. A two-surface plasticity model is used to model the stress-strain behaviour of the soil skeleton. The proposed formulation has been implemented and is applied to simulate the response of a centrifuge model embankment. The calculated response is in good agreement with the observed behaviour of the soil embankment in the centrifuge test.  相似文献   

18.
19.
The basement surface and sediments of the Kochkor basin have been studied by structural geological and geophysical methods. The work included high-resolution mapping of the southern basin margin, with a focus on Cenozoic basin stratigraphy, structural unconformities, basement/sediment contacts, and latest deformation (folds, fractures, and faults). Magnetotelluric (MT) soundings provided insights into basin and basement structure, especially important in the poorly exposed eastern flank of the basin margin. The sections across the southern margin of the basin based on geological and geophysical data reveal deformation in both the basement and the sediments. Deformation in sediments shows up as folding, conformal peneplain surfaces, large faults, low-angle detachment faults, and related thrust-fold belts. Thrusting in sediments is inferred to result from cataclastic flow and mass redistribution in disintegrated basement granites. With this mechanism, the total amount of thrusting in the central part of the basin can exceed the convergence of the basin sides.  相似文献   

20.
Abstract

Compaction driven fluid flow is inherently unstable such that an obstruction to upward fluid flow (i.e. a shock) may induce fluid-filled waves of porosity, propagated by dilational deformation due to an effective pressure gradient within the wave. Viscous porosity waves have attracted attention as a mechanism for melt transport, but are also a mechanism for both the transport and trapping of fluids released by diagenetic and metamorphic reactions. We introduce a mathematical formulation applicable to compaction driven flow for the entire range of rheological behaviors realized in the lithosphere. We then examine three first-order factors that influence the character of fluid flow: (1) thermally activated creep, (2) dependence of bulk viscosity on porosity, and (3) fluid flow in the limit of zero initial connected porosity. For normal geothermal gradients, thermally activated creep stabilizes horizontal waves, a geometry that was thought to be unstable on the basis of constant viscosity models. Implications of this stabilization are that: (1) the vertical length scale for compaction driven flow is generally constrained by the activation energy for viscous deformation rather than the viscous compaction length, and (2) lateral fluid flow in viscous regimes may occur on greater length scales than anticipated from earlier estimates of compaction length scales. In viscous rock, inverted geothermal gradients stabilize vertically elongated waves or vertical channels. Decreasing temperature toward the earth’s surface can induce an abrupt transition from viscous to elastic deformation-propagated fluid flow. Below the transition, fluid flow is accomplished by short wavelength, large amplitude waves; above the transition flow is by high velocity, low amplitude surges. The resulting transient flow patterns vary strongly in space and time. Solitary porosity waves may nucleate in viscous, viscoplastic, and viscoelastic rheologies. The amplitude of these waves is effectively unlimited for physically realistic models with dependence of bulk viscosity on porosity. In the limit of zero initial connected porosity, arguably the only model relevant for melt extraction, travelling waves are only possible in a viscoelastic matrix. Such waves are truly self-propagating in that the fluid and the wave phase velocities are identical; thus, if no chemical processes occur during propagation, the waves have the capacity to transmit geochemical signatures indefinitely. In addition to solitary waves, we find that periodic solutions to the compaction equations are common though previously unrecognized. The transition between the solutions depends on the pore volume carried by the wave and the Darcyian velocity of the background fluid flux. Periodic solutions are possible for all velocities, whereas solitary solutions require large volumes and low velocities. © Elsevier, Paris  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号