首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 681 毫秒
1.
A spatial relationship between high capacity municipal production wells (>5,000 m3/day), completed in a deep bedrock aquifer, and a buried bedrock valley was recognized in the city of Guelph, southwestern Ontario, Canada. Most production wells are completed in a discrete zone, ~60 m below ground surface, within flat-lying dolostones of the Silurian Amabel Formation. Thick overburden and limited subsurface data make characterization of the karstic aquifer difficult. This study integrates hydrogeologic data with models of karst formation, deriving a conceptual model of porosity development as it relates to valley incision. Bedrock valley incision likely occurred prior to the early Wisconsinan age (>60–75 ka). Incision created steep hydraulic gradients within the flat-lying bedrock, and provided the driving force required to integrate regional groundwater flow into karst conduits that drained at the base of the valley. Dissolution in production zone dolostones was favoured over dissolution in shallower bedrock due to abundant bedding plane partings and fossiliferous facies with high intercrystalline porosity. Burial of the valley during subsequent ice advances reduced the valley’s hydraulic influence and the efficacy of the flow system to cause dissolution. The high capacity municipal wells near the buried bedrock valley tap into the now dormant karst aquifer system.  相似文献   

2.
Buried valleys are characteristic features of glaciated landscapes, and their deposits host important aquifers worldwide. Understanding the stratigraphic architecture of these deposits is essential for protecting groundwater and interpreting sedimentary processes in subglacial and ice‐marginal environments. The relationships between depositional architecture, topography and hydrostratigraphy in dissected, pre‐Illinoian till sheets is poorly understood. Boreholes alone are inadequate to characterize the complex geology of buried valleys, but airborne electromagnetic surveys have proven useful for this purpose. A key question is whether the sedimentary architecture of buried valleys can be interpreted from airborne electromagnetic profiles. This study employs airborne electromagnetic resistivity profiles to interpret the three‐dimensional sedimentary architecture of cross‐cutting buried valleys in a ca 400 km2 area along the western margin of Laurentide glaciation in North America. A progenitor bedrock valley is succeeded by at least five generations of tunnel valleys that become progressively younger northward. Tunnel‐valley infills are highly variable, reflecting under‐filled and over‐filled conditions. Under‐filled tunnel valleys are expressed on the modern landscape and contain fine sediments that act as hydraulic barriers. Over‐filled tunnel valleys are not recognized in the modern landscape, but where they are present they form hydraulic windows between deep aquifer units and the land surface. The interpretation of tunnel‐valley genesis herein provides evidence of the relationships between depositional processes and glacial landforms in a dissected, pre‐Illinoian till sheet, and contributes to the understanding of the complex physical hydrology of glacial aquifers in general.  相似文献   

3.
In central Turkey, there are serious groundwater quality problems in the main river valleys and plains, and even in the lower parts of the secondary basins due to the underlying evaporitic geological formations. Groundwater quality improves towards the upstreams in the alluvium aquifers in most secondary valleys; however, groundwater potential decreases as well due to the reduced basin area, areal extent and thickness of the aquifers. The Malibogazi valley is situated to some 100 km north of Ankara. The dam constructed in the narrowest section of the valley has an average storage coefficient of 0.2 and the total and active storage capacities of 110,000 and 55,000 m3, respectively. The 20-m-thick aquifer extends for 6–7 km till the dam site within valley with an average width of 50–70 m. It mostly comprises sandy–gravely alluvial deposits. Malibogazi groundwater dam is a valve-controlled gravity flow dam. When the valves are opened, the water from the aquifer reservoir flows by gravity through supply pipe to the main irrigation channel, but when the valves are closed the water is stored in the aquifer and groundwater level begins to rise. Average groundwater discharge was about 20 l/s in 2005–2006 irrigation period. In this period, groundwater levels were about 2 m higher compared to the groundwater levels in the same seasons before the construction of the groundwater dam. Because the dam is of gravity flow type, it means an important contribution to the farmers since the operation cost is quite low. Malibogazi groundwater dam represents one of the first experiences of Turkey in the field of groundwater storage. Although the dam has small storage capacity, it may be a model for Turkey from the viewpoints of investigation, construction, dam wall, intake facility and measurements etc.  相似文献   

4.
A conceptual model of the transboundary Milk River Aquifer (MRA), extending across the Canada–USA border, was developed based on literature, focused fieldwork and a three-dimensional geological model. The MRA corresponds to the Virgelle Member of the Milk River Formation (Eagle Formation in Montana, USA) and it is an important groundwater resource over a large area (25,000 km2). The Virgelle outcrops near the international border and along the Sweet Grass Arch in Montana. The down-gradient limit of the MRA is the unconformity separating the Virgelle from the gas-bearing sandy shale of the Alderson Member. The MRA is confined above by the Pakowki/Claggett Formations aquitards and below by the Colorado Group aquitard. The MRA contains higher transmissivity areas resulting in preferential flowpaths, confirmed by natural geochemical tracers. Tritium and 14C delineate restricted recharge areas along the outcrops on both sides of the international border. Drastic decreases in horizontal hydraulic gradients indicate that the Milk River intercepts a large proportion of groundwater flowing to the north from the recharge area. Downgradient of the Milk River, groundwater movement is slow, as shown by 36Cl residence times exceeding 1 Ma. These slow velocities imply that groundwater discharge downgradient of the Milk River is via vertical leakage through the Colorado Group and upward along buried valleys, which act as drains and correspond to artesian areas. When confined, the MRA contains a fossil groundwater resource, not significantly renewed by modern recharge. Groundwater exploitation thus far exceeds recharge, a situation requiring properly managed MRA groundwater depletion.  相似文献   

5.
The Illinois Department of Nuclear Safety has characterized the Martinsville Alternative Site (MAS) for a proposed low-level radioactive waste disposal facility. The MAS is located in east-central Illinois approximately 1.6 km (1 mi) north of the city of Martinsville. Geologic investigation of the 5.5-km2 (1380-acre) site revealed a sequence of chiefly Illinoian glacigenic sediments from 6 to 60 m (20–200 ft) thick overlying two major bedrock valleys carved in Pennsylvanian strata. Relatively permeable buried units include basal, preglacial alluvium; a complex of intraglacial and subglacial sediment; englacial deposits; and supraglacial fluvial deposits. Postglacial alluvium underlies stream valleys on and adjacent to the site. In most areas, the buried sand units are confined by low-permeability till, lacustrine sediment, colluvium, and loess. The distribution and thickness of the most extensive and continuous buried sand units have been modified considerably by subglacial erosion, and their distributions have been influenced by the buried bedrock valleys. The most continuous of the various sand units were deposited as preglacial and postglacial alluvium and are the uppermost and lowermost stratigraphic units at the alternative site. Sand units that were deposited in englacial or ice-marginal environments are less continuous. Aquifer pumping tests, potentiometric head data, and groundwater geochemistry analyses indicate minimal interaction of groundwater across localized interconnections of the permeable units.  相似文献   

6.
Water management is one of the most challenges in Algeria, a semi-arid Mediterranean country confronted to a serious water stress. The country will have to endure, beyond 2025, a situation of chronic water penury, adding an excessive pollution of the majority of groundwater reservoirs. The management of water resources by combined approach using hydrogeological model and nitrates evolution model was experimented in the Middle Soummam valley. The alluvial aquifer, offering good hydrodynamic and geometrical characteristics, is over-exploited, providing in drinking water Akbou and Tazmalt cities and irrigation perimeters. If exploitation continues at these steady paces, the depletion of the water resource and the hydrochemical imbalance will be inevitable. On the one hand, the results of hydrodynamic model, based on an increase of the water takings and simulated needs from 24.71 Mm3/year in 2015 into 39.69 Mm3/year in 2030, show a critical withdrawal. The aquifer budget expresses the inversion of flow between the wadi and the aquifer where the wadi feeds the groundwater reservoir. This hydrodynamic inversion was attributed to simulated pumping rates which increased and exceeded 100,000 m3/day, but the aquifer was partially relieved by the weight of the exploitation through Tichy Haf dam. The water management strategy adopted in this study was based on management measures promoting zones, which have been delimited between Tazmalt and Akbou, and containing important water quantities available in the axis of the valley. However, according to the depleted in isotopes of 18O and 2H, which could be explained by the influence of a paleoclimatic effect and suggested that the aquifer recharge would have largely been made under a colder climate, pumped groundwater could be old, and the implementation of new pumping sites has been studied minutely. On the other hand, the hydrogeochemical modelling allowed following nitrates concentrations in order to project their evolution. Four wells on 25 react in face to the imposed conditions in each scenario simulated until 2030, showing inertia of pollution, and confirmed after three series of tests. This inertia would be related to the hydraulic gradients and hydraulic conductivities, aquifer thickness and recharge. The low hydraulic gradients lead to a rather slow flow velocity and thus to an inertia in the dispersion of nitrates, with a mass transport weakened by the hydrodynamic conditions. It is also related to the aquifer thickness; when the aquifer is powerful (65–85 m), the stock of water would be important and allows a dilution process. The reverse is true for the simulated boreholes where the concentrations remain invariant; the aquifer is less powerful (32–37 m). Finally, the recharge effect through the rain was evoked; the aquifer is unconfined, and the rain water and pollution that reached the piezometric level can remain in position in slow hydrodynamic conditions. The methodology was demonstrated through a combination of monitoring and modelling for both water quantity and quality and the importance to use numerical models to support water resources management strategy in the Mediterranean aquifers.  相似文献   

7.
A buried valley incised into a sequence of pre-Quaternary sediments is shown to seriously affect the vulnerability of groundwater. Often the existence of buried valleys is not known or is not described explicitly in a hydrogeological model. In the present study, two numerical groundwater models, representing two alternative conceptual models, were produced to help quantify the effect of the valley on groundwater vulnerability. One model included the buried valley and the other did not. Both models were subjected to calibration and were found to describe hydraulic head and river discharge equally well. Even though the two models showed similar calibration statistics; fluxes, travel paths and travel times were affected by the inclusion of the buried valley. The recharge area and the groundwater age of potential abstraction wells placed in the pre-Quaternary deep aquifers surrounding the buried valley were different for the two models, with significantly higher vulnerability when the valley was included in the model. Based on the results of the present study, it is concluded that a buried valley may not always be detectable when calibrating a wrong conceptual model. If reliable results should be obtained a good geological model has to be constructed.  相似文献   

8.
The Minqin Basin is at the lower reach of the Shiyang River of Gansu province in northwest China. Dramatic decline in groundwater level has resulted from over-abstraction of groundwater since the late 1950s to satisfy increasing irrigation and other demands. Severe water shortage led to environmental degradation. To better understand the spatial–temporal variation of groundwater levels and to evaluate the groundwater resources in the region, a three-dimensional regional groundwater flow model was built and calibrated under transient condition. The MODFLOW program was used and the research area was discretized as a square network with cell size of 400 × 400 m. The model showed that the aquifer was under destructive stress, with a groundwater resource deficit of 260 million cubic meters per year (Mm3/year) on average. Since the inflow of surface water from the upstream basin has declined to about 100–150 Mm3/year in recent decades, the irrigation return flow had become the main recharge and accounted for 60.6% of total recharge; meanwhile, abstraction by pumping wells took 99.2% from the total groundwater discharge.  相似文献   

9.
In Dakhla oasis, Western Desert of Egypt, groundwater is the only resource for all anthropogenic activities. During the last 50 years, the Nubian Sandstone Aquifer System (NSAS) has been undergoing serious stress through withdrawing its storage. Plans for expanding the agricultural areas in Dakhla oasis were given by the government. This article is an attempt to investigate the best management option that meets development ambitions and groundwater availability. Based on a calibrated regional three-dimensional groundwater flow model for the NSAS using FEFLOW, a refined (high resolution) local scale model was developed to simulate and predict the impact of applying the actual and planned extractions rates on Dakhla oasis. Five management scenarios were suggested. The application of the actual extraction rate of 1.2 × 106 m3/day for the oasis for the next 90 years resulted in a drawdown of 75 m and a depth to groundwater up to 75 m with an annual change in hydraulic head of 0.57 m. At the end of this simulation, only a few wells at the west of the oasis will still be free flowing. The application of the planned extraction rate (1.7 × 106 m3/day) resulted in great depths to groundwater (>100 m) and formed huge cones of depressions that connected together to cover the whole oasis and extend further beyond its borders. It was found that the best option for groundwater management in the oasis is the implementation of an extraction rate of 1.46 × 106 m3/day, as the depths to groundwater will never exceed the 100 m limit.  相似文献   

10.
The purpose of this study is to evaluate the groundwater-withdrawal potential of the Fraser River watershed, a mountainous drainage system in north-central Colorado. Laboratory tests, field investigations, and numerical modeling are conducted to present a quantitative understanding of the watershed’s groundwater-flow system. Aquifer hydraulic conductivity values obtained from aquifer tests range from 1E?5 to 1E?3 m/s. Groundwater withdrawal is concentrated in channel-fill deposits of the Troublesome Formation within the Fraser basin. A steady state groundwater-flow model of the Fraser River watershed is developed and calibrated using 24 observation wells in the Fraser River valley and estimated baseflow of the Fraser River. Modeling results suggest that surface recharge is the major source of groundwater in the watershed. Groundwater exits the watershed through evapotranspiration and discharge to rivers. Transient groundwater-flow modeling evaluates future withdrawal scenarios using the hydraulic head distribution from the steady state model as the initial condition. Drawdown within Troublesome Formation aquifers from the current pumping schedule approaches 2 m. When the daily pumping rate is doubled, drawdown approaches 4 m. The radius of influence is hundreds of meters to 1 km. Pumping wells withdraw approximately 2 and 15 % of groundwater flowing through the well field for hydraulic conductivity of 1E?3 and 1E?5 m/s, respectively. This study suggests that the groundwater system at the Fraser Valley could sustain current and future withdrawals, given that the current recharge condition is maintained.  相似文献   

11.
The dynamics of artificial recharge of winter surface flows coupled with increased summer groundwater use for irrigation in the Sokh aquifer (Central Asia) have been investigated. Water release patterns from the giant Toktogul reservoir have changed, as priority is now given to hydropower generation in winter in Kyrgyzstan. Winter flows have increased and summer releases have declined, but the Syr Darya River cannot pass these larger winter flows and the excess is diverted to a natural depression, creating a 40?×?109m3 lake. A water balance study of all 18 aquifers feeding the Fergana Valley indicated the feasibility of winter groundwater recharge in storage created by summer abstraction. This modeling study examines the dynamics of the process in one aquifer over a 5-year period, with four scenarios: the current situation; increased groundwater abstraction of around 625 million (M) m3/year; groundwater abstraction with an artificial recharge of 144 Mm3/year, equivalent to the volume available in low flow years in the Sokh River; and with a larger artificial recharge of 268 Mm3/year, corresponding to high flow availability. Summer surface irrigation diversions can be reduced by up to 350 Mm3 and water table levels can be lowered.  相似文献   

12.
Four recently discovered glacio-fluvial paleovalleys in southeast Jordan and northwest Saudi Arabia are described for the first time. The paleovalleys formed as a result of glacial erosion by series of sub-parallel valley glaciers during the Late Ordovician (Hirnantian) southern hemisphere glaciation on the Arabian Plate. The southwest-northeast orientation of the paleovalleys, Proterozoic erratic clasts and paleocurrent vectors indicate the advance of glaciers and subsequent glacio-fluvial siliciclastics emanating from a paleo-ice sheet located to the south on the Arabian Shield. U-shaped, paleovalley cross-sectional morphologies and gently inclined longitudinal profiles indicate initial glacial erosion of the ‘finger-like’ paleovalleys, probably as wet-based valley glaciers, eroded up to 250 m depth into Late Ordovician marine bedrock formations. Paleovalley-fill sequences comprise a tripartite upwards succession: (a) basal sandstone-dominated tillite with well-rounded, grooved and striated granitoid and metamorphic basement clasts derived from the Proterozoic Arabian Shield together with locally derived, rounded and elongate boulders eroded from the local bedrock at the margins of the paleovalleys (Retrogradational Lowstand Sequence); (b) green chloritic siltstone (Zarqa Formation) deposited during a progradational sea-level rise with marine influence (Transgressive Sequence); (c) coarse-grained, trough cross-bedded sandstone (Sarah Formation) attributed to progradational fluvial sedimentation as glacial outwash. Rapid sea-level rise during latest Hirnantian to Early Llandovery time resulted in marine flooding of the glacio-fluvial alluvial plain and deposition of organic-rich mudstones representing transgressive and high-stand sequences.  相似文献   

13.
A transient finite difference groundwater flow model has been calibrated for the Nasia sub-catchment of the White Volta Basin. This model has been validated through a stochastic parameter randomization process and used to evaluate the impacts of groundwater abstraction scenarios on resource sustainability in the basin. A total of 1500 equally likely model realizations of the same terrain based on 1500 equally likely combinations of the data of the key aquifer input parameters were calibrated and used for the scenario analysis. This was done to evaluate model non-uniqueness arising from uncertainties in the key aquifer parameters especially hydraulic conductivity and recharge by comparing the realizations and statistically determining the degree to which they differ from each other. Parameter standard deviations, computed from the calibrated data of the key parameters of hydraulic conductivity and recharge, were used as a yardstick for evaluating model non-uniqueness. All model realizations suggest horizontal hydraulic conductivity estimates in the range of 0.03–78.4 m/day, although over 70 % of the area has values in the range of 0.03–14 m/day. Low standard deviations of the horizontal hydraulic conductivity estimates from the 1500 solutions suggest that this range adequately reflects the properties of the material in the terrain. Lateral groundwater inflows and outflows appear to constitute significant components of the groundwater budgets in the terrain, although estimated direct vertical recharge from precipitation amounts to about 7 % of annual precipitation. High potential for groundwater development has been suggested in the simulations, corroborating earlier estimates of groundwater recharge. Simulation of groundwater abstraction scenarios suggests that the domain can sustain abstraction rates of up to 200 % of the current estimated abstraction rates of 12,960 m3/day under the current recharge rates. Decreasing groundwater recharge by 10 % over a 20-year period will not significantly alter the results of this abstraction scenario. However, increasing abstraction rates by 300 % over the period with decreasing recharge by 10 % will lead to drastic drawdowns in the hydraulic head over the entire terrain by up to 6 m and could cause reversals of flow in most parts of the terrain.  相似文献   

14.
The Tongue Creek watershed lies on the south flank of Grand Mesa in western Colorado, USA and is a site with 1.5 km of topographic relief, heat flow of 100 mW/m2, thermal conductivity of 3.3 W m–1 °C–1, hydraulic conductivity of 10-8 m/s, a water table that closely follows surface topography, and groundwater temperatures 3–15°C above mean surface temperatures. These data suggest that convective heat transport by groundwater flow has modified the thermal regime of the site. Steady state three-dimensional numerical simulations of heat flow, groundwater flow, and convective transport were used to model these thermal and hydrological data. The simulations provided estimates for the scale of hydraulic conductivity and bedrock base flow discharge within the watershed. The numerical models show that (1) complex three-dimensional flow systems develop with a range of scales from tens of meters to tens of kilometers; (2) mapped springs are frequently found at locations where contours of hydraulic head indicate strong vertical flow at the water table, and; (3) the distribution of groundwater temperatures in water wells as a function of surface elevation is predicted by the model.  相似文献   

15.
Stable isotopes of the water molecule (δ18O and δD) for groundwater, lake water, streams, and precipitation were coupled with physical flux measurements to investigate groundwater–lake interactions and to establish a water balance for a structurally complex lake. Georgetown Lake, a shallow high-latitude high-elevation lake, is located in southwestern Montana, USA. The lake is situated between two mountain ranges with highlands primarily to the east and south of the lake and a lower valley to the west. An annual water balance and (δ18O and δD) isotope balance were used to quantify annual groundwater inflows of 2.5?×?107 m3/year and lake leakage outflows of 1.6?×?107 m3/year. Roughly, 57% of total inflow to the lake is from groundwater, and 37% of total outflow at Georgetown Lake is groundwater. Stable isotopes of groundwater and springs around the lake and surrounding region show that the east side of the lake contains meteoric water recharged annually from higher mountain sources, and groundwater discharge to the lake occurs through this region. However, springs located in the lower western valley and some of the surrounding domestic wells west of the lake show isotopic enrichment indicative of strong to moderate evaporation similar to Georgetown Lake water. This indicates that some outflowing lake water recharges groundwater through the underlying west-dipping bedrock in the region.  相似文献   

16.
The style of Pleistocene outwash sedimentation in the foreland of the central European Mountains (the Carpathians and Sudetes) was controlled to a large extent by the topography. The deposits of three outwash plains formed in various morphological situations in front of the Upper Odra Lobe during the Odranian glaciation (older Saalian) are described here to show the conditions of their development and to reveal the relation between outwash plain sedimentology and proglacial topography. One outwash plain was formed between the mountain front and the ice-sheet margin, which advanced into the zone of fore-mountain alluvial fans. This outwash, deposited parallel to the ice margin, was under the considerable influence of extraglacial rivers flowing from the mountains. The second outwash was deposited in a small valley dipping away from the ice sheet and successively buried by glaciofluvial sediments. It evolved from a narrow valley sandur to an unconfined outwash plain. The third one was formed in a relatively broad, dammed valley dipping towards the ice sheet, where proglacial lake base level controlled the pattern of outwash channels as well as the character of the sedimentation. The studied outwash plains have different sedimentary successions. Their sedimentary profiles differ from each other even in the neighbouring valleys, indicating that distinct depositional conditions existed at the same time in closely spaced areas. It is suggested that the glaciomarginal deposition was controlled mostly by the orientation of the valleys and the inter-valley areas relative to the ice-sheet front. Size and morphology of valleys and interfluves were also important. Depending on their orientation, the outwash plains were fed by meltwaters in various ways; the dip of their surfaces was markedly different and the dynamics of the proglacial river systems were diverse.  相似文献   

17.
A hydrogeological study was conducted in Potsdam sandstones on the international border between Canada (Quebec) and the USA (New York). Two sandstone formations, arkose and conglomerate (base) and well-cemented quartz arenite (upper), underlie the study area and form the major regional aquifer unit. Glacial till, littoral sand and gravel, and marine silt and clay discontinuously overlie the aquifer. In both sandstone formations, sub-horizontal bedding planes are ubiquitous and display significant hydraulic conductivities that are orders of magnitude more permeable than the intact rock matrix. Aquifer tests demonstrate that the two formations have similar bulk hydrologic properties, with average hydraulic conductivities ranging from 2?×?10?5 to 4?×?10?5 m/s. However, due to their different lithologic and structural characteristics, these two sandstones impose rather different controls on groundwater flow patterns in the study area. Flow is sustained through two types of fracture networks: sub-horizontal, laterally extensive fractures in the basal sandstone, where hydraulic connectivity is very good horizontally but very poor vertically and each of the water-bearing bedding planes can be considered as a separate planar two-dimensional aquifer unit; and the more fractured and vertically jointed system found in the upper sandstone that promotes a more dispersed, three-dimensional movement of groundwater.  相似文献   

18.
Previous attention has been called to the morphology of the glaciated Appalachian Plateau, including periglacial phenomena (Coates, 1970; Conners, 1969). This paper deals with an unusually well-developed hierarchy of small landforms in the Great Bend area of the Susquehanna River. Essential properties of these features include: (1) concentration in N-S valleys, (2) till composition, (3) concavo-convex form, sometimes ending in a hill on the valley floor, (4) alternation with steep, truncated bedrock spurs, (5) a col in the interfluve at their head. These characteristics could be explained by the following sequence of events. A prior fluvial landscape was eroded with tributary streams forming lateral valleys that head in cols along the divides. The main stream flowed south between interlocking spurs. Ice then widened the valley, leaving truncated spurs and a straightened stream. Deposition of locally derived till filled tributary valleys, similar to till shadows (Coates, 1966). In periglacial conditions, while nivation was widening the tributary valley heads, solifluction in the unstable till was forming the concavo-convexities that alternate with the truncated bedrock spurs. The hierarchy of forms range from minor convexities to small hills on the main valley floor. Thus, the features are primarily of periglacial origin, but owe their development and position to prior subaerial and glacial events. The cycle may have occurred during more than a single glacial episode. The recession of bedrock spurs and the valley floor convexity of the till features have caused a reversal in stream sinuosity of the main valley.  相似文献   

19.
Few hydrology studies have investigated glacial till older than Illinoian time (> 300,000 BP) despite these older tills overlying a large portion of North America. An 8- and 6-well monitoring well nest installed into a 31 m thick pre-Illinoian till sequence near Cedar Rapids, Iowa was characterized using traditional hydrologic methods and chemical tracers. The aquitard system consists of about 9 m of fine-grained oxidized pre-Illinoian till overlying 22 m of unoxidized till and Devonian dolomite bedrock. Hydraulic conductivity ranged from 10−7 m/s in oxidized till and 10−10 m/s in unoxidized till. Hydraulic head relations indicated downward groundwater flow through the till profile with hydraulic gradients steepest near the unoxidized till/bedrock interface. Tritium and nitrate concentrations indicated recent (< 50 years old) recharge to a depth of 9–12 m below land surface. 18O and 2H results ranged between −6.2 to −7.9% and −38.0 to −50.9%, respectively, and plotted near the local Meteoric Water Line. A 1 per mil shift toward less negative 18O values with depth may suggest a climate change signal contained in the till water but more data are needed to verify this trend. Vertical groundwater velocity through the unoxidized till was estimated to range from 0.4 to 5.7 cm/year. The thickness of unoxidized pre-Illinoian till in Linn County was estimated from available records and contoured against vertical travel times to evaluate the effectiveness of pre-Illinoian till in preventing nitrate migration to underlying bedrock aquifers.  相似文献   

20.
A methodology is proposed to improve the groundwater budget model by determining the past, present, and future recharge and discharge rates. The model is applied to an increasingly urbanized and industrialized region with drying tendencies: the Toluca Valley, Mexico. This study includes spatially variable recharge determined from the historical climate data, the climate change predictions, and the multiple parameters used in the Hydrologic Evaluation of Landfill Performance (HELP3) model. Using HELP3 a spatial discretization for the average recharge is obtained and estimated at 376 million cubic meters per year (Mm3/year). When considering climate change predictions, by 2050 the average scenario projects recharge to decrease by 15 Mm3/year (from 376 to 361 Mm3/year), and in a worst case scenario up to a maximum decrease of 88 Mm3/year (from 376 to 288 Mm3/year). Groundwater pumping has increased steadily since 1970 and is estimated at 495 Mm3/year for 2010. The current average deficit estimated for 2010 is 172 Mm3/year with average projections increasing to over 292 Mm3/year by 2050. This study of two of the most important components of the water cycle (recharge and discharge) clearly shows that the decreasing water availability in the Toluca basin is due mainly to groundwater pumping and that the current pumping rates are not sustainable. The current deficit can be considered problematic and projections based on expected water consumption and climate change reinforce the need for management of the water resources to be addressed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号