首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Natural gas hydrates (NGHs) are globally recognized as an important type of strategic alternative energy due to their high combustion efficiency, cleanness, and large amounts of resources. The NGHs reservoirs in the South China Sea (SCS) mainly consist of clayey silts. NGHs reservoirs of this type boast the largest distribution range and the highest percentage of resources among NGHs reservoirs in the world. However, they are more difficult to exploit than sandy reservoirs. The China Geological Survey successfully carried out two NGHs production tests in the Shenhu Area in the northern SCS in 2017 and 2020, setting multiple world records, such as the longest gas production time, the highest total gas production, and the highest average daily gas production, as well as achieving a series of innovative theoretical results. As suggested by the in-depth research on the two production tests, key factors that restrict the gas production efficiency of hydrate dissociation include reservoir structure characterization, hydrate phase transition, multiphase seepage and permeability enhancement, and the simulation and regulation of production capacity, among which the hydrate phase transition and seepage mechanism are crucial. Study results reveal that the hydrate phase transition in the SCS is characterized by low dissociation temperature, is prone to produce secondary hydrates in the reservoirs, and is a complex process under the combined effects of the seepage, stress, temperature, and chemical fields. The multiphase seepage is controlled by multiple factors such as the physical properties of unconsolidated reservoirs, the hydrate phase transition, and exploitation methods and is characterized by strong methane adsorption, abrupt changes in absolute permeability, and the weak flow capacity of gas. To ensure the long-term, stable, and efficient NGHs exploitation in the SCS, it is necessary to further enhance the reservoir seepage capacity and increase gas production through secondary reservoir stimulation based on initial reservoir stimulation. With the constant progress in the NGHs industrialization, great efforts should be made to tackle the difficulties, such as determining the micro-change in temperature and pressure, the response mechanisms of material-energy exchange, the methods for efficient NGHs dissociation, and the boundary conditions for the formation of secondary hydrates in the large-scale, long-term gas production.©2022 China Geology Editorial Office.  相似文献   

2.
Drilling results suggest that the thickness of natural gas hydrates (NGHs) in the Shenhu Area, South China Sea (SCS) are spatially heterogenous, making it difficult to accurately assess the NGHs resources in this area. In the case that free gas exists beneath hydrate deposits, the frequency of the hydrate deposits will be noticeably attenuated, with the attenuation degree mainly affected by pore development and free gas content. Therefore, the frequency can be used as an important attribute to identify hydrate reservoirs. Based on the time-frequency characteristics of deposits, this study predicted the spatial distribution of hydrates in this area using the frequency division inversion method as follows. Firstly, the support vector machine (SVM) method was employed to study the amplitude versus frequency (AVF) response based on seismic and well logging data. Afterward, the AVF response was introduced as independent information to establish the nonlinear relationship between logging data and seismic waveform. Then, the full frequency band information of the seismic data was fully utilized to obtain the results of frequency division inversion. The inversion results can effectively broaden the frequency band, reflect the NGHs distribution, and reveal the NGHs reservoirs of two types, namely the fluid migration pathway type and the in situ self-generation self-storage diffusion type. Moreover, the inversion results well coincide with the drilling results. Therefore, it is feasible to use the frequency division inversion to predict the spatial distribution of heterogeneous NGHs reservoirs, which facilitates the optimization of favorable drilling targets and is crucial to the resource potential assessment of NGHs.©2022 China Geology Editorial Office.  相似文献   

3.
Various factors controlling the accumulation of natural gas hydrates (NGHs) form various enrichment and accumulation modes through organic combination. This study mainly analyzes the geological and geophysical characteristics of the NGHs occurrence in the uplifts and their slope zones within the deep-water area in the Qiongdongnan (QDN) Basin (also referred to as the study area). Furthermore, it investigates the dominant governing factors and models of NGHs migration and accumulation in the study area. The results are as follows. (1) The uplifts and their slope zones in the study area lie in the dominant pressure-relief direction of fluids in central hydrocarbon-rich sags in the area, which provide sufficient gas sources for the NGHs accumulation and enrichment through pathways such as gas chimneys and faults. (2) The top and flanks of gas chimneys below the bottom simulating reflectors (BSRs) show high-amplitude seismic reflections and pronounced transverse charging of free gas, indicating the occurrence of a large amount of gas accumulation at the heights of the uplifts. (3) Chimneys, faults, and high-porosity and high-permeability strata, which connect the gas hydrate temperature-pressure stability zones (GHSZs) with thermogenic gas and biogenic gas, form the main hydrate migration system. (4) The reservoir system in the study area comprises sedimentary interlayers consisting of mass transport deposits (MTDs) and turbidites. In addition, the reservoir system has developed fissure- and pore-filling types of hydrates in the pathways. The above well-matched controlling factors of hydrate accumulation enable the uplifts and their slope zones in the study area to become the favorable targets of NGHs exploration.©2022 China Geology Editorial Office.  相似文献   

4.
Traditional suction anchor technology is mainly used in the fields of subsea structure bearing foundations, single-point mooring systems and offshore wind power. It is characterized by providing sufficient lateral and vertical bearing capacities and lateral bending moment. The anchor structure of a traditional suction anchor structure is improved with wellhead suction anchor technology, where a central pipe is added as a channel for drilling and completion operations. To solve the technical problems of a low wellhead bearing capacity, shallow built-up depth, and limited application of conductor jetting in the second production test of natural gas hydrates (NGHs) in the South China Sea (SCS), the China Geological Survey (CGS) took the lead in independently designing and manufacturing a wellhead suction anchor, which fulfilled the requirements of the production test. This novel anchor was successfully implemented in the second production test for the first time, providing a stable wellhead foundation for the success of the second production test of NGHs in the SCS.©2022 China Geology Editorial Office.  相似文献   

5.
To alleviate the problems of casing collapse induced by the coupling effect of salt creep movement, as it relates to the curved sections of horizontal wells, an experimental approach was taken to determine the creep (visco-elastic) property of the salt-gypsum formation, using finite-difference software to establish a creep model with curved casing, wellbore and salt formation. With this model, the effects of borehole curvature, drilling direction and casing thickness on external pressure on casing were analyzed, and casing deformation in the non-uniform in situ stress field was simulated. For horizontal wells drilled through salt-gypsum formations, this analysis led to the following conclusions: (1) the casing tends to be much safer when drilling is undertaken along the direction of the minimum horizontal stress; (2) casing deformation occurs and stress increases as the borehole curvature increases; (3) for the same curvature and drilling direction, thicker casings are safer; (4) as the creep time increases, the external pressure on the casing rapidly increases until it reaches its maximum value, whereupon it stays at that value; (5) under the effect of non-uniform in situ stress, a larger non-uniform coefficient would result in greater external pressure on the casing. This model has been successfully applied to analyze the external pressure on curved casings in a build-up section for horizontal wells drilled through salt-gypsum formations in an oilfield in Northwest China. The model has helped to improve the casing design and reduce drilling downtime with greater wellbore stability in salt-gypsum formations.  相似文献   

6.
以程潮铁矿西区为例,通过对现场结构面和裂缝分布特征的调查,以及结合地表变形监测数据的分析,揭示了矿区结构面对地表变形的影响。研究结果表明,在矿区较大的水平应力条件下,岩体结构面改变了地表拉伸变形分布和破坏形态,加剧了岩体变形,在ⅰ区(剖面Ⅲ以东区域),目前最外侧裂缝以内的岩体沿着NNW结构面发生倾倒滑移破坏,地表变形以快速变形为主,而最外侧裂缝以外的岩体沿着NNW结构面发生弯曲变形,地表变形以线性稳定增长为主,进入了倾倒破坏阶段,该区域的岩体主要发生水平位移;在ⅱ区(剖面Ⅲ以西区域),岩体在开采沉陷引起的南北向应力作用下,分离成平行的块体,地表变形以快速变形为主,在局部区域,产生的一部分平行块体在近东西向的应力作用下,沿着NNW结构面产生倾倒破坏。所得成果对类似金属矿山的地表征地及安全高效生产具有实际指导意义。  相似文献   

7.
Roadway instability has always been a major concern in deep underground coal mines where the surrounding rock strata and coal seams are weak and the in situ stresses are high. Under the high overburden and tectonic stresses, roadways could collapse or experience excessive deformation, which not only endangers mining personnel but could also reduce the functionality of the roadway and halt production. This paper describes a case study on the stability of roadways in an underground coal mine in Shanxi Province, China. The mine was using a longwall method to extract coal at a depth of approximately 350 m. Both the coal seam and surrounding rock strata were extremely weak and vulnerable to weathering. Large roadway deformation and severe roadway instabilities had been experienced in the past, hence, an investigation of the roadway failure mechanism and new support designs were needed. This study started with an in situ stress measurement programme to determine the stress orientation and magnitude in the mine. It was found that the major horizontal stress was more than twice the vertical stress in the East–West direction, perpendicular to the gateroads of the longwall panel. The high horizontal stresses and low strength of coal and surrounding rock strata were the main causes of roadway instabilities. Detailed numerical modeling was conducted to evaluate the roadway stability and deformation under different roof support scenarios. Based on the modeling results, a new roadway support design was proposed, which included an optimal cable/bolt arrangement, full length grouting, and high pre-tensioning of bolts and cables. It was expected the new design could reduce the roadway deformation by 50 %. A field experiment using the new support design was carried out by the mine in a 100 m long roadway section. Detailed extensometry and stress monitorings were conducted in the experimental roadway section as well as sections using the old support design. The experimental section produced a much better roadway profile than the previous roadway sections. The monitoring data indicated that the roadway deformation in the experimental section was at least 40–50 % less than the previous sections. This case study demonstrated that through careful investigation and optimal support design, roadway stability in soft rock conditions can be significantly improved.  相似文献   

8.
水平井分段压裂技术已在低渗透油气藏及煤层气开发过程中得到了较为广泛的应用,并取得了良好的经济效果。但是,由于分段压裂会使直井段的套管承受交变应力作用,进而造成其在软硬交错地层处发生严重变形,从而影响压裂安全作业,甚至引发所有剩余压裂段报废。为探索其破坏机理,开发一个类似弹簧单元的用户子程序来模拟循环荷载作用下套管-水泥环界面的受力情况,并将该单元植入到套管-水泥环-岩层系统的ABAQUS轴对称有限元模型中,模拟水平井分段压裂过程中套管的力学行为。结果表明,在软硬交错地层中,采用水平井分段压裂时,注入压力与地应力之间的交变应力差会造成套管的大变形。此外,基于ABAQUS的数值模拟结果,采用FE-safe评估套管疲劳寿命,发现处于软硬交错地层处套管的疲劳寿命最短。基于上述研究,建议在具有软硬交错地层的低渗透油藏及煤层气储层中进行分段压裂时,应设法提高非压裂阶段压力,以减轻交变应力对软硬交错地层处的套管损伤。   相似文献   

9.
研究目的】中国地质调查局先后于2017年、2020年在南海北部神狐海域成功实施两轮水合物试采,创造了产气时间最长、产气总量最大、日均产气量最高等多项世界纪录,了解和掌握南海天然气水合物开采储层相变与渗流机理,有助于进一步揭示该类型水合物分解机理、产出规律、增产机制等,可为中国海域水合物资源规模高效开采提供理论基础。【研究方法】基于两轮试采实践,笔者通过深入研究发现,储层结构表征、水合物相变、多相渗流与增渗、产能模拟与调控是制约水合物分解产气效率的重要因素。【研究结果】研究表明,南海水合物相变具有分解温度低,易在储层内形成二次水合物等特点,是由渗流场-应力场-温度场-化学场共同作用的复杂系统;多相渗流作用主要受控于未固结储层的物性特征、水合物相变、开采方式等多元因素影响,具有较强的甲烷吸附性、绝对渗透率易突变、气相流动能力弱等特点;围绕南海水合物长期、稳定、高效开采目标,需要在初始储层改造基础上,通过实施储层二次改造,进一步优化提高储层渗流能力,实现增渗扩产目的。【结论】随着天然气水合物产业化进程不断向前推进,还需要着力解决大规模长时间产气过程中温度压力微观变化及物质能源交换响应机制以及水合物高效分解、二次生成边界条件等难题。创新点:南海水合物相变是由渗流场-应力场-温度场-化学场共同作用的复杂系统;南海泥质粉砂储层具有较强的甲烷吸附性、绝对渗透率易突变、气相流动能力弱等特点,多相渗流机理复杂。  相似文献   

10.
瓦斯抽排井套管失稳的事故时有发生。为了探索套管失稳机理,应用土力学原理分析了钻井和固管过程中孔壁地层超静孔隙水(气)压力的形成机制;建立了孔壁地层超静孔隙水(气)压力对套管作用的力学模型,该模型包含超静孔隙水(气)压力、地层孔隙率、井液液柱压力、套管抗外挤强度、固管水泥圈使套管抗外挤强度提高的效应系数和固管水泥圈与孔壁岩层界面处的抗张强度等参数;分别就新地层、基岩和煤层的超孔隙水(气)压力对套管稳定性影响的特点进行了分析。结合实例介绍了煤层超瓦斯压力引起套管失稳的分析方法。提出了局部提高套管抗外挤强度、提高固管水泥圈强度、延迟井液排空时间、增设套管扶正器等提高套管稳定性的具体措施。  相似文献   

11.
The distributed acoustic sensor (DAS) uses a single optical cable as the sensing unit, which can capture the acoustic and vibration signals along the optical cable in real-time. So it is suitable for monitoring downhole production activities in the process of oil and gas development. The authors applied the DAS system in a gas production well in the South China Sea for in situ monitoring of the whole wellbore for the first time and obtained the distributed acoustic signals along the whole wellbore. These signals can clearly distinguish the vertical section, curve section, and horizontal production section. The collected acoustic signal with the frequency of approximately 50 Hz caused by the electric submersible pump exhibit a signal-to-noise ratio higher than 27 dB. By analyzing the acoustic signals in the production section, it can be located the layers with high gas production rates. Once an accurate physical model is built in the future, the gas production profile will be obtained. In addition, the DAS system can track the trajectory of downhole tools in the wellbore to guide the operation. Through the velocity analysis of the typical signals, the type of fluids in the wellbore can be distinguished. The successful application of the system provides a promising whole wellbore acoustic monitoring tool for the production of marine gas hydrate, with a good application prospect.©2022 China Geology Editorial Office.  相似文献   

12.
在松Ⅰ~松Ⅵ6条深反射地震剖面上依据震相特征并结合地质演化过程分析识别石炭—二叠系,分析其层位反射特征及同相轴特征,建立松辽盆地北部地区石炭—二叠系地震震相特征识别标志。主要震相特征为中—强反射能量,局部存在高值,整体同相轴连续—较连续,由南到北、由西向东规律变化。利用已有的钻遇石炭—二叠系的探井资料和地震波传播速度,得到研究区时间-深度转换关系。由研究区石炭—二叠系相位追踪对比后的反射时间分布,计算石炭—二叠纪地层顶界面与底界面在深反射地震时间剖面上的走时之差,通过时深转换得出研究区基底石炭—二叠纪地层厚度和分布。全区地层分布不很均匀,主要在中央隆起带以东地区及西部断陷区出现2个厚度高值区;地层整体由浅到深大致可分为上、中、下3层,且地震震相特征互不相同。松辽盆地北部石炭—二叠系分布对东北地区主力油层之下的深层油气勘探提供了有价值的依据。  相似文献   

13.
中国西北地区存在大量的新近纪硬土软岩滑坡灾害,为研究该类滑坡的变形特征,开展两组离心机模型试验模拟滑带劣化引起滑坡变形破坏的全过程,获取模型坡体土压及位移的实时变化曲线。研究表明,当软弱带强度降低时,硬土软岩滑坡的上部滑体呈块体状滑动,在快速运动滑动过程中,滑体呈现块状平移,不会彻底解体、液化;硬土软岩滑坡中前部出现水平应力集中,导致下伏滑带塑性流动变形,诱发其中前部上覆滑体的水平运动,并向滑坡后缘扩展,最终形成多级水平滑动。  相似文献   

14.
夏开宗  陈从新  付华  郑允  邓洋洋 《岩土力学》2016,37(5):1434-1440
以典型陡倾结构面条件下的金属矿山--程潮铁矿西区为例,通过对矿区的地表变形监测资料及宏观破坏特征分析,认为矿区的岩层移动分为2个阶段,第1阶段为采空区顶板岩体破坏扩展至地表引起塌陷阶段;第2阶段为采空区周边围岩向采空区的倾倒破坏阶段,并得出了倾倒滑移区的地表岩体变形规律:岩体主要发生水平移动,水平移动值大于沉降值;变形先以缓慢变形为主,然后进入一个快速变形阶段,存在明显的转折点;开采沉陷和地形引起的应力同向叠加作用,使得地表岩体沿下坡方向的变形值增大,特别是水平移动值。同时揭示了矿区岩层移动角的分布特征;南部岩层移动角大于北部,究其原因是北部受最为发育的NNW、NNE结构面影响,倾倒破坏较为严重。所得成果为其他类似的金属矿山工程提供可借鉴的规律。  相似文献   

15.
近期中国南方页岩气勘查在黄陵隆起南缘的下寒武统和震旦系取得重大突破,本文针对古老地层页岩气构造保存问题,研究黄陵隆起构造演化历史,反演钻井沉积地层埋藏史,通过二维地震剖面解析黄陵隆起南缘的构造学特征,统计分析相关地质年代学数据。认为该区域在约800 Ma经历了花岗岩侵入,形成了以花岗岩为主体的黄陵隆起基底;该区域在800~200 Ma构造较稳定,缺乏这一时期的构造年代学数据;中侏罗世震旦系陡山沱组埋深可达约8 km,晚侏罗世及以后经过多期抬升至现在的构造格局。本研究说明黄陵隆起的古老基底经过元古宙大量花岗岩侵入,可能均质性高而表现为刚性基底,后期所遭受构造改造程度较低,埋深相对较浅。因此,该地区页岩表现为演化程度适中,构造改造弱,后期热事件影响小,有利于页岩气的保存,是目前黄陵隆起南缘获得页岩气勘查突破的关键。并指出南方具有类似构造的雪峰山隆起、神农架背斜和汉南古陆周缘具有良好的下寒武统页岩气勘查潜力。  相似文献   

16.
刘超  张庆龙  葛荣峰 《江苏地质》2011,35(2):113-122
太行大断裂是山西沁水盆地与太行山隆起的分界,也是华北克拉通内部重要的构造变形带。通过对断层破碎带、断层相关褶皱及共轭节理的野外详细测量,研究了太行大断裂的构造变形特征,探讨其形成的古构造应力场。研究认为,太行大断裂可能经历了3期构造应力作用:(1)印支期在华南、华北板块碰撞的远程效应作用下表现出近N—S向挤压构造应力场。(2)燕山期表现为E—W向至NWW—SEE向挤压构造应力场。(3)喜马拉雅期由NWW—SEE向挤压转换为NE—SW向挤压(或NW—SE向伸展)。太行大断裂由北至南可分为:(1)北段,由3条呈右阶斜列的大型逆断层组成,基岩出露,以逆冲推覆为主。(2)中段,地表出露斜歪褶皱和逆冲断层组合。(3)南段,发育强烈的挤压破碎带,该带中广泛发育构造角砾岩和构造透镜体,构造挤压带内的构造透镜体陡立,显示近水平方向的挤压。  相似文献   

17.
在详细分析霍洛湾煤矿水文地质条件基础上,根据2-2煤层上覆不同岩层的岩石力学参数建立了工作面回采过程中覆岩变形与破坏特征的数值模拟模型,研究了工作面回采过程中顶板覆岩在不同来压阶段导水裂隙带和垮落带的发育高度;通过对钻孔冲洗液漏失量的现场观测,进行了“两带”发育高度的探测。将数值模拟结果及现场观测资料对比分析,确定22101工作面的导水裂隙带高度为33.6~37.8m,垮落带高度约9.6m。这为评价研究区水体下开采可行性和水体下开采防水煤柱的设计提供了科学依据。   相似文献   

18.
山西某煤矿开采地表变形破坏特征分析   总被引:1,自引:0,他引:1  
河南、山西和西北地区煤层多赋存于山区地表条件下,开采引起的岩层移动不仅与覆岩性质有关,还与地表地形和工作面的组合关系相关。本文以山西某矿31002工作面为研究对象,利用有限元数值模拟方法,对比分析了该工程地质条件下2种典型工况模型和工作面实际走向剖面下山区地表变形破坏特征,总结出最大下沉点偏向覆岩较薄的位置,地势突起的部位水平位移值较大,坡体部位为地质灾害易发区域。  相似文献   

19.
近距离上保护层开采瓦斯运移规律数值分析   总被引:10,自引:1,他引:9  
采动裂隙是瓦斯运移的通道,搞清瓦斯运移规律是瓦斯治理的前提。在考虑岩石动态破坏过程和含瓦斯煤岩渗流-应力-损伤耦合的基础上,结合平煤五矿实际地质条件和开采工艺,建立了数值计算模型,应用RFPA-Gas程序模拟了近距离上保护层采动顶底板岩层变形破坏、裂隙演化规律与瓦斯运移规律。模拟结果较好地再现了保护层开采过程中煤岩层应力变化、顶底板损伤及裂隙演化过程,得到了上覆岩层移动的“上三带”(冒落带、裂隙带和弯曲下沉带)和底板变形的“下两带”(底板变形破坏带和弹塑性变形带)。得到了被保护层瓦斯流量分布、瓦斯压力分布和透气系数的变化规律,卸压煤层瓦斯透气性增大了2 500倍,得到了煤壁下方压缩区和膨胀区之间的张剪瓦斯渗流通道,并将保护层底板压缩区和膨胀区的瓦斯渗流特征提炼出来:压缩区对应的是渗流减速减量区、膨胀区由卸压膨胀陡变区和卸压膨胀平稳区组成,分别对应着渗流急剧增速增量区和渗流平稳增量区。指出卸压膨胀陡变区是瓦斯突出危险区,为近距离保护层开采瓦斯治理指明了方向。实践表明,瓦斯治理效果显著。  相似文献   

20.
《China Geology》2020,3(4):591-601
The Sichuan Basin is one of the vital basins in China, boasting abundant hydrocarbon reservoirs. To clarify the intensity of the tectonic stress field of different tectonic episodes since the Mesozoic and to identify the regional dynamic background of different tectonic movements in the Sichuan Basin and its adjacent areas, the characteristics of the acoustic emission in rocks in different strata of these areas were researched in this paper. Meanwhile, the tectonic stress magnitude in these areas since the Mesozoic was restored. The laws state that the tectonic stress varied with depth was revealed, followed by the discussion of the influence of structural stress intensity on structural patterns in different tectonic episodes. These were conducted based on the paleostress measurement by acoustic emission method and the inversion principle of the stress fields in ancient periods and the present, as well as previous research achievements. The results of this paper demonstrate that the third episode of Yanshanian Movement (Yanshanian III) had the maximum activity intensity and tremendously influenced the structural pattern in the study area. The maximum horizontal principal stress of Yanshanian III varied with depth as follows: 0.0168 x + 37.001 (MPa), R2 = 0.8891. The regional structural fractures were mainly formed in Yanshanian III in Xujiahe Formation, west Sichuan Basin, of which the maximum paleoprincipal stress ranging from 85.1 MPa to 120.1 MPa. In addition, the law stating the present maximum horizontal principal stress varies with depth was determined to be 0.0159 x+10.221 (MPa), R2=0.7868 in Wuling Mountain area. Meanwhile, it was determined to be 0.0221 x+9.4733 (MPa), R2=0.9121 in the western part of Xuefeng Mountain area and 0.0174 x+10.247 (MPa), R2=0.8064 in the whole study area. These research results will not only provide data for the simulation of stress field, the evaluation of deformation degree, and the prediction of structural fractures, but also offer absolute geological scientific bases for the elevation of favorable shale gas preservation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号