首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
Initial 129I/127I values (I-Xe ages) have been obtained for individual mineralogically characterized chondrules and interchondrule matrix from the enstatite chondrites Qingzhen (EH3) and Kota Kota (EH3). In view of the absence of aqueous alteration and the low-peak metamorphic temperatures experienced by these meteorites, we suggest that the I-Xe ages for the chondrules record the event in which they were formed. These ages are within the range recorded for chondrules from ordinary chondrites, demonstrating that chondrules formed during the same time interval in the source regions of both ordinary chondrites and enstatite chondrites. The timing of this chondrule-forming episode or episodes brackets the I-Xe closure age of planetesimal bodies such as the Shallowater aubrite parent body. Although chondrule formation need not have occurred close to planetesimals, the existence of planetesimals at the same time as chondrule formation provides constraints on models of this process. Whichever mechanisms are proposed to form and transport chondrules, they must be compatible with models of the protosolar nebula which predict the formation of differentiated bodies on the same timescale at the same heliocentric distance.  相似文献   

2.
The examination of the physical properties of chondrules has generally received less emphasis than other properties of meteorites such as their mineralogy, petrology, and chemical and isotopic compositions. Among the various physical properties of chondrules, chondrule size is especially important for the classification of chondrites into chemical groups, since each chemical group possesses a distinct size-frequency distribution of chondrules. Knowledge of the physical properties of chondrules is also vital for the development of astrophysical models for chondrule formation, and for understanding how to utilize asteroidal resources in space exploration. To examine our current knowledge of chondrule sizes, we have compiled and provide commentary on available chondrule dimension literature data. We include all chondrite chemical groups as well as the acapulcoite primitive achondrites, some of which contain relict chondrules. We also compile and review current literature data for other astrophysically-relevant physical properties (chondrule mass and density). Finally, we briefly examine some additional physical aspects of chondrules such as the frequencies of compound and “cratered” chondrules. A purpose of this compilation is to provide a useful resource for meteoriticists and astrophysicists alike.  相似文献   

3.
We found thirty compound chondrules in two CV3 carbonaceous chondrites. The abundance in each meteorite relative to single chondrules is 29/1846 (1.6%) in Allende and 1/230 (0.4%) in Axtell. We examined petrologic features, major element concentrations and oxygen isotopic compositions. Textural, compositional and isotopic evidence suggests that multiple, different mechanisms are responsible for the formation of compound chondrules.Seven compound chondrules are composed of two conjoined porphyritic chondrules with a blurred boundary. At the boundary region of this type of compounds, a poikilitic texture is commonly observed. This suggests that the two chondrules were melted when they came to be in contact. On the other hand, seventeen compound chondrules consist of two conjoined chondrules with a discrete boundary. The preservation of spherical boundary planes of an earlier-formed chondrule of this type implies that it already solidified before fusing with a later-formed chondrule that was still melted. Six samples out of 17 compound chondrules of this type are composed of two BO chondrules. The BO-BO compound chondrules have a unique textural feature in common: the directions of the barred olivines are mostly parallel between two chondrules. This cannot be explained by a simple collision process and forces another mechanism to be taken into consideration.The remaining six compound chondrules differ from the others; they consist of an earlier-formed chondrule enclosed by a later-formed chondrule. A large FeO enrichment was observed in the later-formed chondrules and the enrichment was much greater than that in the later-formed chondrules of other types of compounds. This is consistent with the relict chondrule model, which envisages that the later-formed chondrule was made by a flash melting of a porous FeO-rich dust clump on an earlier-formed chondrule. The textural evidence of this type of compound shows that the earlier-formed chondrule has melted again to varying degrees at the second heating event. This implies that FeO concentrations in bulk chondrules increases during the second heating event if an earlier-formed chondrule was totally melted together with the FeO-rich dust aggregates.Silicate minerals such as olivine and low-Ca pyroxene in compound chondrules have oxygen isotope compositions similar to those in single chondrules from CV3 chondrites. The oxygen isotope composition of each part of the compound chondrule is basically similar to their chondrule pair, but silicates in some chondrules show varying degrees of 16O-enrichment down to −15‰ in δ18O, while those in their partners have 16O-poor invariable compositions near 0 ‰ in δ18O. This implies that the two chondrules in individual compounds formed in the same environments before they became conjoined and the heterogeneous oxygen isotope compositions in some chondrules resulted from incomplete exchange of oxygen atoms between 16O-rich chondrule melts and 16O-poor nebular gas.  相似文献   

4.
Chondrules and matrix are the major components of chondritic meteorites and represent a significant evolutionary step in planet formation. The formation and evolution of chondrules and matrix and, in particular, the mechanics of chondrule formation remain the biggest unsolved challenge in meteoritics. A large number of studies of these major components not only helped to understand these in ever greater detail, but also produced a remarkably large body of data. Studying all available data has become known as ?big data? analyses and promises deep insights – in this case – to chondrule and matrix formation and relationships. Looking at all data may also allow one to better understand the mechanism of chondrule formation or, equally important, what information we might be missing to identify this process. A database of all available chondrule and matrix data further provides an overview and quick visualisation, which will not only help to solve actual problems, but also enable students and future researchers to quickly access and understand all we know about these components. We collected all available data on elemental bulk chondrule and matrix compositions in a database that we call ChondriteDB. The database also contains petrographic and petrologic information on chondrules. Currently, ChondriteDB contains about 2388 chondrule and 1064 matrix data from 70 different publications and 161 different chondrites. Future iterations of ChondriteDB will include isotope data and information on other chondrite components. Data quality is of critical importance. However, as we discuss, quality is not an objective category, but a subjective judgement. Quantifiable data acquisition categories are required that allow selecting the appropriate data from a database in the context of a given research problem. We provide a comprehensive overview on the contents of ChondriteDB. The database is available as an Excel file upon request from the senior author of this paper, or can be accessed through MetBase.  相似文献   

5.
In the Piancaldoli LL3 chondrite, we found a mm-sized clast containing ~100 chondrules 0.2–64 μm in apparent diameter (much smaller than any previously reported) that are all of the same textural type (radial pyroxene; FS1–17). This clast, like other type 3 chondrites, has a fine-grained Ferich opaque silicate matrix, sharply defined chondrules, abundant low-Ca clinopyroxene and minor troilite and Si- and Cr-bearing metallic Fe,Ni. However, the very high modal matrix abundance (63 ± 8 vol. %), unique characteristics of the chondrules, and absence of microscopically-observable olivine indicate that the clast is a new kind of type 3 chondrite. Most chondrules have FeO-rich edges, and chondrule size is inversely correlated with chondrule-core FeO concentration (the first reported correlation of chondrule size and composition). Chondrules acquired Fe by diffusion from Fe-rich matrix material during mild metamorphism, possibly before final consolidation of the rock. Microchondrules (those chondrules ? 100 μm in diameter) are also abundant in another new kind of type 3 chondrite clast in the Rio Negro L chondrite regolith breccia. In other type 3 chondrite groups, microchondrule abundance appears to be anticorrelated with mean chondrule size, viz. 0.02–0.04 vol. % in H and CO chondrites and ?0.006 vol. % in L, LL, and CV chondrites.Microchondrules probably formed by the same process that formed normal-sized droplet chondrules: melting of pre-existing dustballs. Because most compound chondrules in the clast and other type 3 chondrites formed by collisions between chondrules of the same textural type, we suggest that dust grains were mineralogically sorted in the nebula before aggregating into dustballs. The sizes of compound chondrules and chondrule craters, which resulted from collisions of similarly-sized chondrules while they were plastic, indicate that size-sorting (of dustballs) occurred before chondrule formation, probably by aerodynamic processes in the nebula. We predict that other kinds of type 3 chondrites exist which contain chondrule abundances, size-ranges and proportions of textural types different from known chondrite groups.  相似文献   

6.
The least equilibrated ordinary chrondrites contain chondrules which have experienced little change since the time of their formation in the early solar system. These chondrules are excellent indicators of the physical and chemical nature of the solar nebula. We separated 36 chondrules from the Chainpur (LL3.4) chondrite and analyzed each for 20 elements and petrographic properties. Sampling biases were minimized as far as possible.Chondrules seem to have formed through the melting of random mixtures of grains comprising a limited number of nebular components. The identity of these components can be deduced from chondrule compositions. The dominant components appear to be: 1) a mixture of metal and sulfide with composition similar to whole-rock metal and sulfide; 2) refractory (Ir-rich) metal; 3) refractory, olivine-rich silicates; 4) low-temperature, pyroxene-rich silicates, and, possibly, 5) a component containing the more volatile lithophiles.Most of the textural types of chondrules formed from the same set of precursor components. In some cases chondrules having different textures are almost identical in composition. A few, unusual chondrule types seem to mainly consist of uncommon nebular components, possibly indicating different modes of formation.Etching experiments confirm that chondrule rims are enriched in metal, troilite and moderately volatile elements relative to the bulk chondrules. However, a large fraction of the volatiles remains in the unetched interior.  相似文献   

7.
We have investigated the Na distributions in Semarkona Type II chondrules by electron microprobe, analyzing olivine and melt inclusions in it, mesostasis and bulk chondrule, to see whether they indicate interactions with an ambient gas during chondrule formation. Sodium concentrations of bulk chondrule liquids, melt inclusions and mesostases can be explained to a first approximation by fractional crystallization of olivine ± pyroxene. The most primitive olivine cores in each chondrule are mostly between Fa8 and Fa13, with 0.0022–0.0069 ± 0.0013 wt.% Na2O. Type IIA chondrule olivines have consistently higher Na contents than olivines in Type IIAB chondrules. We used the dependence of olivine–liquid Na partitioning on FeO in olivine as a measure of equilibration. Extreme olivine rim compositions are ~Fa35 and 0.03 wt.% Na2O and are close to being in equilibrium with the mesostasis glass. Olivine cores compared with the bulk chondrule compositions, particularly in IIA chondrules, show very high apparent DNa, indicating disequilibrium and suggesting that chondrule initial melts were more Na-rich than present chondrule bulk compositions. The apparent DNa values correlate with the Na concentrations of the olivine, but not with concentrations in the bulk melt. We use equilibrium DNa to find the Na content of the true parent liquid and estimate that Type IIA chondrules lost more than half their Na and recondensation was incomplete, whereas Type IIAB chondrules recovered most of theirs in their mesostases.Glass inclusions in olivine have lower Na than expected from fractionation of bulk composition liquids, and mesostases have higher Na than expected in calculated daughter liquids formed by fractional crystallization alone. These observations also require open system behavior of chondrules, specifically evaporation of Na before formation of melt inclusions followed by recondensation of Na in mesostases. Within this record of evaporation followed by recondensation, there is no indication of a stage with zero Na in the chondrules, which is predicted by models for shock wave cooling at canonical nebular pressures, suggesting high PT.The high Na concentrations in olivine and mesostases indicate very high PNa while chondrules were molten. This may be explained by local, very high particle densities where Type II chondrules formed. The high PT, PNa and number densities of chondrules implied suggest formation in debris clouds after protoplanetary collisions as an alternative to formation after passage of shock waves through large particle-rich clumps in the disk. Encounters of partially molten chondrules should have been frequent in these dense swarms. However, in many ordinary chondrites like Semarkona, “cluster chondrites”, compound chondrules are not abundant but instead chondrules aggregated into clusters. Chondrule melting, cooling and clustering in dense swarms contributed to rapid accretion, possibly after collision, by fallback on the grandparent body and by reaccretion as a new body downrange.  相似文献   

8.
We report bulk chemical compositions and physical properties for a suite of 94 objects, mostly chondrules, separated from the Mokoia CV3ox carbonaceous chondrite. We also describe mineralogical and petrologic information for a selected subset of the same suite of chondrules. The data are used to examine the range of chondrule bulk compositions, and to investigate the relationships between chondrule mineralogy, texture and bulk compositions, as well as oxygen isotopic properties that we reported previously. Most of the chondrules show minimal metamorphism, corresponding to petrologic subtype <3.2. In general, elemental fractionations observed in chondrule bulk compositions are reflected in the compositions of constituent minerals. For chondrules, mean bulk compositions and compositional ranges are very similar for large (>2 mg) and small (<2 mg) size fractions. Two of the objects studied are described as matrix-rich clasts. These have similar bulk compositions to the chondrule mean, and are potential chondrule precursors. One of these clasts has a similar bulk oxygen isotopic composition to Mokoia chondrules, but the other has an anomalously high value of Δ17O (+3.60‰).Chondrules are diverse in bulk chemical composition, with factor of 10 variations in most major element abundances that cannot be attributed to secondary processes. The chondrules examined show evidence for extensive secondary oxidation, and possible sulfidization, as expected for an oxidized CV chondrite, but minimal aqueous alteration. Some of the bulk chondrule compositional variation might be the result of chemical (e.g. volatilization or condensation) or physical (e.g. metal loss) processes during chondrule formation. However, we suggest that it is mainly the result of significant variations in the assembly of particles that constituted chondrule precursors. Precursor material likely included a refractory component, possibly inherited from disaggregated CAIs, an FeO-poor ferromagnesian component such as olivine or pyroxene, an oxidized ferromagnesian component, and a metal component. Bulk oxygen isotope ratios of chondrules can be explained if refractory and ferromagnesian precursor materials initially shared similar oxygen isotopic compositions of δ17O, δ18O around −50‰, and then significant exchange occurred between the chondrule and surrounding 16O-poor gas during melting.  相似文献   

9.
Non-spherical chondrules (arbitrarily defined as having aspect ratios ≥1.20) in CO3.0 chondrites comprise multi-lobate, distended, and highly irregular objects with rounded margins; they constitute ∼70% of the type-I (low-FeO) porphyritic chondrules in Y-81020, ∼75% of such chondrules in ALHA77307, and ∼60% of those in Colony. Although the proportion of non-spherical type-I chondrules in LL3.0 Semarkona is comparable (∼60%), multi-lobate OC porphyritic chondrules (with lobe heights equivalent to a significant fraction of the mean chondrule diameter) are rare. If the non-spherical type-I chondrules in CO chondrites had formed from totally molten droplets, calculations indicate that they would have collapsed into spheres within ∼10−3 s, too little time for their 20-μm-size olivine phenocrysts to have grown from the melt. These olivine grains must therefore be relicts from an earlier chondrule generation; the final heating episode experienced by the non-spherical chondrules involved only minor amounts of melting and crystallization. The immediate precursors of the individual non-spherical chondrules may have been irregularly shaped chondrule fragments whose fracture surfaces were rounded during melting. Because non-spherical chondrules and “circular” chondrules form a continuum in shape and have similar grain sizes, mineral and mesostasis compositions, and modal abundances of non-opaque phases, they must have formed by related processes. We conclude that a large majority of low-FeO chondrules in CO3 chondrites experienced a late, low-degree melting event. Previous studies have shown that essentially all type-II (high-FeO) porphyritic chondrules in Y-81020 formed by repeated episodes of low-degree melting. It thus appears that the type-I and type-II porphyritic chondrules in Y-81020 (and, presumably, all CO3 chondrites) experienced analogous formation histories. Because these two types constitute ∼95% of all CO chondrules, it is clear that chondrule recycling was the rule in the CO chondrule-formation region and that most melting events produced only low degrees of melting. The rarity of significantly non-spherical, multi-lobate chondrules in Semarkona may reflect more-intense heating of chondrule precursors in the ordinary-chondrite region of the solar nebula.  相似文献   

10.
We measured major, minor, and trace-element compositions for eleven Al-rich chondrules from unequilibrated ordinary chondrites to investigate the relationships between Al-rich chondrules, ferromagnesian chondrules, Ca-, Al-rich inclusions (CAIs), and amoeboid olivine aggregates (AOAs). Phase equilibrium considerations show that, for the most part, mineral assemblages in Al-rich chondrules are those expected from melts of the observed compositions. The diversity of mineral assemblages and Al-rich chondrule types arises mainly from the fact that the array of compositions spans both the spinel-saturated anorthite-forsterite reaction curve and a thermal divide defined by where the anorthite-forsterite join crosses the reaction curve. The reaction curve accounts for the two principal varieties of Al-rich chondrule, plagioclase-phyric and olivine-phyric, with or without aluminous spinel. The thermal divide influences the subsequent evolution of each variety. A third variety of Al-rich chondrule contains abundant sodium-rich glass; trace-element fractionation patterns suggest that these glassy Al-rich chondrules could have been derived from the other two by extensive alteration of plagioclase to nepheline followed by remelting. The bulk compositions of Al-rich chondrules (except sodium-rich ones) are intermediate in a volatility sense between ferromagnesian chondrules and type C CAIs. The combined trend of bulk compositions for CAIs, Al-rich chondrules, and ferromagnesian chondrules mirrors, but does not exactly match, the trend predicted from equilibrium condensation at PT ∼ 10-3 atm; the observed trend does not match the trend found for evaporation from a liquid of chondritic composition. We thus infer that the bulk compositions of the precursors to CAIs, Al-rich chondrules, were ferromagnesian chondrules were controlled primarily by vapor-solid reactions (condensation or sublimation) in the solar nebula. Some Al-rich chondrules are consistent with an origin by melting of a compound CAI-ferromagnesian chondrule hybrid; others cannot be so explained. Any hybrid model is restricted by the constraint that the CAI precursor consisted dominantly of pyroxene + plagioclase + spinel; melilite cannot have been a significant component. Amoeboid olivine aggregates also have the inferred mineralogical characteristics of Al-rich chondrule precursors—they are mixtures of olivine with plagioclase-spinel-pyroxene-rich CAIs—but the few measured bulk compositions are more olivine-rich than those of Al-rich chondrules.  相似文献   

11.
The sulfur isotopic compositions of putative primary troilite grains within 15 ferromagnesian chondrules (10 FeO-poor and 5 FeO-rich chondrules) in the least metamorphosed ordinary chondrites, Bishunpur and Semarkona, have been measured by ion microprobe. Some troilite grains are located inside metal spherules within chondrules. Since such an occurrence is unlikely to be formed by secondary sulfidization processes in the solar nebula or on parent bodies, those troilites are most likely primary, having survived chondrule-forming high-temperature events. If they are primary, they may be the residues of evaporation at high temperatures during chondrule formation and may have recorded mass-dependent isotopic fractionations. However, the supposed primary troilites measured in this study do not show any significant sulfur isotopic fractionations (<1 ‰/amu) relative to large troilite grains in matrix. Among other chondrule troilites that we measured, only one (BI-CH22) apparently has a small excess of heavy isotopes (2.7 ± 1.4 ‰/amu) consistent with isotopic fractionation during evaporation. All other grains have isotopic fractionations of <1 ‰/amu. Because sulfur is so volatile that evaporation during chondrule formation is probably inevitable, non-Rayleigh evaporation most likely explains the lack of isotopic fractionation in putative primary troilite inside chondrules. Evaporation through the surrounding silicate melt would have suppressed the isotopic fractionation after silicate dust grains melted. At lower temperatures below extensive melting of silicates, a heating rate of >104-106 K/h would be required to avoid a large degree of sulfur isotopic fractionation in the chondrule precursors. This heating rate may provide a new constraint on the chondrule formation processes.  相似文献   

12.
Fourteen siderophile and other non-lithophile elements determined in 31 Semarkona (LL3.0) chondrules by neutron activation analysis are severely fractionated relative to lithophile elements. Their chondrule/whole-rock abundance ratios vary by factors of up to 1000; the mean ratio is ~0.2. Non-refractory siderophile abundance patterns in Ni-rich chondrules are smooth functions of volatility and in Ni-poor chondrules patterns are more irregular. Refractory siderophile elements are often fractionated from Ni; they covary, confirming the presence of a refractory metal component. The chalcophile element Se correlates with Br and siderophile elements. Zinc is uniformly low and uncorrelated with other elements.Most metal and sulfide in chondrules was probably present in the solar nebula before chondrule formation; most siderophile and chalcophile elements were in these materials. Some Fe was also in silicates, as were minor amounts of Ni, Co, Au, Ge and possibly Se. The amount of metal formed by reduction during chondrule melting was minor. The common metal component in chondrules is similar to, and may be the same as the common component involved in the metal/silicate fractionation of the ordinary chondrite groups.Chondrules are depleted in metal chiefly because they sampled metal-poor precursor assemblages. Metal segregation during the molten period and subsequent loss was a minor process that may be responsible for most surface craters on chondrules.  相似文献   

13.
In section many low-FeO CR chondrules are surrounded by rings of metal; this metal-cladding seems to have formed during chondrule melting events as films of metal that wetted the surface. Electron microprobe studies show that in each ring the metal is very uniform in composition, consistent with efficient mixing during formation of the metal film. In contrast the mean Ni contents of 13 different rings vary by up to a factor of 2. There is no FeS associated with ring metal. Ring metal Co is positively correlated with Ni but the Co/Ni ratio seems to decrease with increasing Ni. We observed a weak negative correlation between ring metal Ni and the fayalite content of the host olivine. Coarse interior metal has higher Ni contents than that in the surrounding rings. At any specific chondrule location, smaller grains tend to have lower Ni contents than larger grains. These trends in Ni seem to reflect two processes: (1) The mean Ni content of metal (and easily reduced sulfides or oxides) in chondrule precursor materials seems to have decreased with the passage of time; on average, the metal in earlier-formed chondrules had higher Ni contents than the metal in later-formed chondrules. (2) Some oxidized Fe was reduced during chondrule formation leading to lower Ni contents in small grains compared to large grains; prior to reduction the Fe was in FeS or in FeO in accessible (fine-grained) sites. We suggest that the compositional evolution of nebular solids was responsible for the interchondrule variations whereas reduction of minor amounts of FeS or FeO was responsible for the size-related small variations in Ni content. We suggest that, during chondrule formation events, CR chondrules experienced relatively long thermal pulses that were responsible for the thorough loss of FeS and the common granoblastic texture observed in low-FeO chondrules. The preservation of the structures of internal rings shows, however, that even though high temperatures occurred in the secondary chondrule, temperatures in the centers of large (>20 μm) metal and silicate grains in the primary chondrule did not get high enough to cause appreciable melting.  相似文献   

14.
Mixing was an important process in the early solar nebula and is often used as an argument to explain the compositional scatter among chondrules—mm-sized, once molten silicate spherules in chondritic meteorites. If it is hypothesized that chondrules only acted as closed systems and the scatter in chondrule bulk chemical compositions is only the result of mixing heterogeneous precursor grains—the basic components of chondrules—, it is in turn possible to determine the sizes of the precursor grains using statistical calculations. In order to reproduce the observed compositional scatter in chondrules not more than ∼10 precursor grains should contribute to a single chondrule, each with a diameter of several 100 μm. This finding has important implications for the conditions of chondrule formation and replaces the so far widely accepted model that chondrules formed from fine-grained “dust-balls”. Chondrules rather formed from coarse-grained precursor aggregates with variable amounts of μm-fine matrix material. As a consequence, only chondrite matrix or interstellar material winnows as precursor material. Large grains of variable composition serving as precursor grains must have been formed prior to chondrule formation. Chondrules probably have not been their immediate precursors, as only 1-2 chondrule recycling steps would have homogenized bulk chondrule compositions. Chondrule recycling can therefore only have occurred to a limited extent. Chondrule formation needed at least three steps: (1) production of large and heterogeneous chondrule precursor grains, (2) agglomeration of large precursor grains and fine-grained precursors into aggregates, (3) formation of chondrules during transient heating events. Al-rich chondrules can in this context be explained by the admixture of CAIs to either chondrule precursors or a population of existing chondrules.  相似文献   

15.
16.
Major and minor element bulk compositions of 90 individual chondrules and 16 compound chondrule sets in unequilibrated (type 3) H-group chondrites were determined in polished thin sections by broad beam electron probe analysis and the chondrules were classified petrographically into six textural types (barred olivine, porphyritic olivine, porphyritic pyroxene, barred pyroxene, radiating pyroxene, fine-grained). Although analyses of individual chondrules scatter widely, the mean composition of each textural type (except barred pyroxene) is rather distinct, as verified by discriminant function analysis. Al2O3, TiO2 and Na3O are correlated in chondrules, but Al2O3 and CaO do not correlate. Compound chondrule sets were found to consist almost entirely of chondrules or partial chondrules of similar texture and composition.The data suggest that composition played a conspicuous role in producing the observed textures of chondrules, though other factors such as cooling rates and degrees of supercooling prior to nucleation were also important. If compound chondrules formed and joined when they were still molten or plastic, then the data suggest that chondrules of each textural type could have formed together in space or time. The correlation of Al2O3 and TiO2 with Na2O and not with CaO appears to rule out formation of chondrules by direct equilibrium condensation from the nebula. We conclude that the most reasonable model for formation of the majority of chondrules is that they originated from mixtures of differing fractions of high-, intermediate- and low-temperature nebular condensates that underwent melting in space. A small percentage of chondrules might have formed by impacts in meteorite parent-body regoliths.  相似文献   

17.
The iron-rich olivine end-member, fayalite, occurs in the matrix, chondrules, Ca-Al-rich inclusions (CAIs), silicate aggregates, and dark inclusions in the Kaba and Mokoia oxidized CV3 chondrites. In most occurrences, fayalite is associated with magnetite and troilite. To help constrain the origin of the fayalite (Fa98-100), we measured oxygen and silicon isotopic compositions and Mn-Cr systematics in fayalite from two petrographic settings of the Kaba meteorite. One setting consists of big fayalite laths embedded in the matrix and radiating from a core of fine-grained magnetite and sulfide, while the other setting consists of small fayalite-magnetite-sulfide assemblages within or at the surface of Type I barred or porphyritic olivine chondrules. Oxygen in the big fayalite laths and small chondrule fayalites falls on the terrestrial fractionation line, and is distinct from that in chondrule forsterites, which are enriched in 16O (Δ17O = ∼−4‰). Oxygen in the big fayalite laths may be isotopically heavier than that in chondrule fayalites. Silicon isotopes suggest that forsterite is ∼1‰/amu heavier than adjacent fayalite within Kaba chondrules. However, we were unable to confirm large silicon isotopic differences among fayalites reported previously. The Mn-Cr data for big Kaba fayalites give an initial 53Mn/55Mn ratio of (2.07 ± 0.17) × 10−6, consistent with literature results on Mokoia chondrule fayalites. The combined data suggest that fayalites in both petrographic settings formed at about the same time, ∼9.7 Ma after the formation of CAIs. Our data indicate that those fayalite-magnetite-troilite assemblages replacing metal inside and around chondrules formed by aqueous alteration on the meteorite parent body. The formation site and mechanism for the big fayalite laths is less clear, but the petrographic setting indicates that they did not form in situ. None of the models that have been suggested for formation of these fayalites is entirely satisfactory.  相似文献   

18.
Chondrules are the dominant component of chondritic meteorites and attest to high-temperature transient heating events within the protoplanetary disk. They provide valuable constraint on the disk environments in which they formed and potentially the evolution of primitive planetary materials in the disk. The oxygen isotopic composition of CR2 chondrite type-II chondrules was investigated. Our data show significant variation in the isotopic compositions of the chondrules with no petrographic or geochemical means to identify what chondrule will plot where on a three-isotope diagram. Although we cannot rule out that these chondrules may have come from another chondrite-forming region, we argue in context of type-I chondrules from CR2 chondrites that CR2 type-II chondrules record changes in solid and gas composition during formation due to the vaporization of icy bodies in localized regions of the inner disk.  相似文献   

19.
Type II porphyritic chondrules commonly contain several large (>40 μm) olivine phenocrysts; furnace-based cooling rates based on the assumption that these phenocrysts grew in a single-stage melting-cooling event yield chondrule cooling-rate estimates of 0.01-1 K s−1. Because other evidence indicates much higher cooling rates, we examined type II chondrules in the CO3.0 chondrites that have experienced only minimal parent-body alteration. We discovered three kinds of evidence indicating that only minor (4-10 μm) olivine growth occurred after the final melting event: (1) Nearly all (>90%) type II chondrules in CO3.0 chondrites contain low-FeO relict grains; overgrowths on these relicts are narrow, in the range of 2-12 μm. (2) Most type II chondrules contain some FeO-rich olivine grains with decurved surfaces and acute angles between faces indicating that the grains are fragments from an earlier generation of chondrules; the limited overgrowth thicknesses following the last melting event are too thin to disguise the shard-like nature of these grains. (3) Most type II chondrules contain many small (<20 μm) euhedral or subhedral phenocrysts with central compositions that are much more ferroan than the centers of the large phenocrysts; their small sizes document the small amount of growth that occurred after the final melting event. If overgrowth thicknesses were small (4-10 μm) after the final melting event, it follows that large fractions of coarse (>40 μm) high-FeO phenocrysts are relicts from earlier generations of chondrules, and that cooling rates after the last melting event were much more rapid than indicated by models based on a single melting event. These observations are thus inconsistent with the “classic” igneous model of formation of type II porphyritic chondrules by near-total melting of a precursor mix followed by olivine nucleation on a very limited number of nuclei (say, ≤10) and by growth to produce the large phenocrysts during a period of monotonic (and roughly linear) cooling. Our observations that recycled chondrule materials constitute a large component of the phenocrysts of type II chondrules also imply that this kind of chondrule formed relatively late during the chondrule-forming period.  相似文献   

20.
Chondrule formation appears to have been a major event in the early solar system, but chondrule properties do not allow us to distinguish between several possible formation mechanisms. The physical nature of the precursors, especially grain size, must affect the textures of the chondrules they yield when heated. We melted precursors of different grain sizes, including extremely fine-grained crystalline aggregates analogous to nebular condensates, to see whether objects resembling most natural chondrules can be crystallized. With one-minute heating and moderate cooling rates, the grain size of the charges depends directly on the grain size of the starting material, for temperatures up to very close to the liquidus temperature. A single rapid heating of condensate-like material thus produces very fine-grained chondrules, like dark-zoned chondrules, for a very wide range of peak temperatures. It is incapable of generating the observed textural distribution of chondrules, which are predominantly porphyritic. The simplest model for chondrules, a single heating of unmodified condensate material, therefore appears unrealistic. Coarse-grained chondrules might be formed from fine-grained precursors by extended heating with evaporation leading to coarsening, or by multiple reheating events, with higher temperatures in subsequent events. Otherwise an origin from annealed condensates, planetary rocks, or by condensation of liquid and crystals is required.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号