首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
伊犁河支流大西沟河水与地下水转化关系研究   总被引:1,自引:1,他引:0       下载免费PDF全文
开展河流和地下水转换关系研究对于区域水资源合理开发利用具有重要意义。文章以大西沟河水与地下水转换关系为目标,在分析地下水动力场的基础上,通过水化学类型、溶解性总固体(TDS)、氯离子(Cl-)等水化学以及环境同位素18O、D、T等指标作为示踪剂,分析大西沟河和地下水的转换关系和转化强度。结果表明:研究区河流和地下水化学类型主要为HCO3—Ca,水化学类型空间分布特征相似;TDS和Cl-浓度表现为先增加后下降,但地下水的变化幅度大于河水。通过对大西沟河水和地下水中的水化学和环境同位素指标对比分析,发现研究区河流与地下水之间补给排泄关系具有明显的分段性;从河流出山口到下游地区,河水和地下水之间发生了三次转化关系:在山前倾斜砾质平原区以河水入渗补给地下水为主,补给量占该段潜水径流量的56%;到了细土平原区出现地下水补给河水地段,补给源为承压水越流补给潜水后的混合水体,潜水和承压水补给比例占该段河水径流量的20.4%与58.4%;风成沙漠区河水沿途渗漏补给地下水直至河流断流。本次研究结果为建立研究区水循环演化模式和水资源合理开发利用提供了理论和技术支持。  相似文献   

2.
江苏南通地下水补给源、水化学特征及形成机理   总被引:8,自引:0,他引:8  
在地下水的大规模开采条件下,江苏沿海一带,特别是南通许多地区的地下水一度出现咸化趋势,对区域水资源及环境产生了极大的影响,已成为制约生态环境建设和经济社会发展的重要因素.为查明地下水的补给来源、水化学特征和矿化度增高的机理,对南通地区深浅层地下水开展了野外调查取样.通过对各种水化学参数的讨论分析,系统地研究了该区地下水...  相似文献   

3.
Groundwater resources in the North China Plain (NCP) are undergoing tremendous changes in response to the operation of groundwater exploitation reduction (GWER) project. To identify groundwater evolution in this complex context, hierarchical cluster analysis (HCA) and principal component analysis (PCA) were combined to interpret an integrated dataset of stable isotopes and chemical data from four sampling campaigns in a pilot area of groundwater control. We proposed a novel HCA approach integrating stable isotopes and chemical signals, which successfully partitioned the groundwater samples into the unconfined and the confined water samples. Stable isotopic evidence showed that the lateral inflow and the surface water may contribute more to groundwater recharge in this region than local modern precipitation. The unconfined water’s main hydrochemical types were Na type with mixed anions, and Na–Cl–SO4 type, while the confined water was mainly Na–Cl and Na–SO4 types. Geochemical processes mainly involved the dissolution/precipitation of halite, gypsum, Glauber's salt, feldspar, calcite and dolomite, as well as the cation exchange. PCA results showed that water–rock interaction (i.e., salinity-based and alkalinity-based processes) predominated the hydrochemical evolution, along with local nitrate contamination resulting from fertilizers and domestic sewage. The GWER project regulated the natural evolution of unconfined water chemistry, and significantly reduced the unconfined water’s salinity (mainly Na+, Mg2+, SO42?). This may be attributed to upward leakage from low-salinity confined water at some parts of the aquifer. Additionally, insignificant changes in the confined water’s salinity reflected that the impact of GWER on the confined aquifer was negligible. This study facilitates the groundwater classification effectively in the areas lack of geological data, and enhances the knowledge of groundwater chemical evolution in such a region where groundwater restoration is in progress, with important implications for groundwater sustainable management in similar basins worldwide.  相似文献   

4.
Groundwater systems in the San Luis Valley, Colorado, USA have been re-evaluated by an analysis of solute and isotopic data. Existing stream, spring, and groundwater samples have been augmented with 154 solute and isotopic samples. Based on geochemical stratification, three groundwater regimes have been identified within 1,200 m of the surface: unconfined, upper active confined, and lower active confined with maximum TDS concentrations of 35,000, 3,500 and 600 mg/L, respectively. The elevated TDS of northern valley unconfined and upper active confined systems result from mineral dissolution, ion exchange and methanogenesis of organic and evaporate lake sediments deposited in an ancient lake, herein designated as Lake Sipapu. Chemical evolutions along flow paths were modeled with NETPATH. Groundwater ages, and δ13C, δ2H and δ18O compositions and distributions, suggest that mountain front recharge is the principle recharge mechanism for the upper and lower confined aquifers with travel times in the northern valley of more than 20,000 and 30,000 14C years, respectively. Southern valley confined aquifer travel times are 5,000 14C years or less. The unconfined aquifer contains appreciable modern recharge water and the contribution of confined aquifer water to the unconfined aquifer does not exceed 20%.  相似文献   

5.

Over-exploited groundwater is expected to remain the predominant source of domestic water in suburban areas of Hanoi, Vietnam. In order to evaluate the effect on groundwater recharge, of decreasing surface-water bodies and land-use change caused by urbanization, the relevant groundwater systems and recharge pathways must be characterized in detail. To this end, water levels and water quality were monitored for 3 years regarding groundwater and adjacent surface-water bodies, at two typical suburban sites in Hanoi. Stable isotope (δ18O, δD of water) analysis and hydrochemical analysis showed that the water from both aquifers and aquitards, including the groundwater obtained from both the monitoring wells and the neighboring household tubewells, was largely derived from evaporation-affected surface-water bodies (e.g., ponds, irrigated farmlands) rather than from rivers. The water-level monitoring results suggested distinct local-scale flow systems for both a Holocene unconfined aquifer (HUA) and Pleistocene confined aquifer (PCA). That is, in the case of the HUA, lateral recharge through the aquifer from neighboring ponds and/or irrigated farmlands appeared to be dominant, rather than recharge by vertical rainwater infiltration. In the case of the PCA, recharge by the above-lying HUA, through areas where the aquitard separating the two aquifers was relatively thin or nonexistent, was suggested. As the decrease in the local surface-water bodies will likely reduce the groundwater recharge, maintaining and enhancing this recharge (through preservation of the surface-water bodies) is considered as essential for the sustainable use of groundwater in the area.

  相似文献   

6.
Stable isotopes (δ18O, δ2H and 13C) and radioactivity (3H, 14C) have been used in conjunction with chemical data to evaluate the processes generating the chemical composition, reconstruct the origin of the water and groundwater residence time. The Aleppo basin is comprised of two main limestone aquifers: the first one is unconfined of Paleogene age and the second is confined of Upper Cretaceous age. The chemical data indicate that the dissolution of minerals and evaporation are the main processes controlling groundwater mineralization. The groundwater from the two aquifers is characterized by distinctive stable isotope signatures. This difference in water isotopes is interpreted in terms of difference origin and recharge period. Fresh and brackish shallow groundwater were mostly recharged during the Holocene period. The presence of 3H in several groundwater samples of this aquifer gives evidence that groundwater recharge is going on. Brackish water of the deep confined aquifer has depleted stable isotope composition and very low 14C activity that indicates recharge during the late Pleistocene cold period.  相似文献   

7.
银川地区承压水水化学特征及控制因素   总被引:1,自引:1,他引:0       下载免费PDF全文
银川平原属中温带干旱区,蒸发强烈,潜水水质差,承压水是银川市地下水开采的主要水源。通过ArcMap空间分析、传统作图分析、氢氧同位素分析等方法,分析银川地区承压含水层水化学特征及各含水层水化学特征的差异,探讨了承压水水化学分布特征的控制因素。研究表明,潜水和承压水水化学分布特征在水平和垂直方向上均存在较大差异;第一和第二承压水水化学分布特征在水平方向上相似,在垂直方向上存在一定差异。水平方向上,两层承压水水化学特征存在一定分带性,而潜水无明显规律性。两层承压水在靠近西侧补给区溶解性总固体(TDS)较小,阴离子以HCO-3为主,阳离子以Mg2+和Ca2+为主,向东溶解性总固体逐渐增加,在银川断裂附近,阴离子变为以Cl-和SO2-4为主,阳离子以Na+为主。垂向上,由于银川断裂贯穿承压和潜水含水层,且潜水水位高于承压水位,第二承压水可能主要受到更深层地下水沿着断裂的混入作用,第一承压水可能同时受到更深层地下水和潜水的混入,使得在银川断裂附近,部分第二承压水TDS大于第一承压水,且具有更高含量的Na+和Cl-,及更低含量的Ca2+和HCO-3,也有部分第一承压水TDS大于第二承压水,该部分第一承压水中的个别水样TDS大于潜水。由此得出,银川断裂的发育及其对潜水及承压含水层的贯通作用是控制该区地下水水质的一个重要因素。如果承压水继续过量开采,承压水位持续下降,将进一步激发潜水和更深层地下水的混入,从而导致承压水质恶化。因此控制银川区承压水的过量开采,对于承压水资源的可持续利用至关重要。  相似文献   

8.
An investigation was conducted in Beijing to identify the groundwater evolution and recharge in the quaternary aquifers. Water samples were collected from precipitation, rivers, wells, and springs for hydrochemical and isotopic measurements. The recharge and the origin of groundwater and its residence time were further studied. The groundwater in the upper aquifer is characterized by Ca-Mg-HCO3 type in the upstream area and Na-HCO3 type in the downstream area of the groundwater flow field. The groundwater in the lower aquifer is mainly characterized by Ca-Mg-HCO3 type in the upstream area and Ca-Na-Mg-HCO3 and Na-Ca-Mg-HCO3 type in the downstream area. The δD and δ18O in precipitation are linearly correlated, which is similar to WMWL. The δD and δ18O values of river, well and spring water are within the same ranges as those found in the alluvial fan zone, and lay slightly above or below LMWL. The δD and δ18O values have a decreasing trend generally following the precipitation → surface water → shallow groundwater → spring water → deep groundwater direction. There is evidence of enrichment of heavy isotopes in groundwater due to evaporation. Tritium values of unconfined groundwater give evidence for ongoing recharge in modern times with mean residence times <50 a. It shows a clear renewal evolution along the groundwater flow paths and represents modern recharge locally from precipitation and surface water to the shallow aquifers (<150 m). In contrast, according to 14C ages in the confined aquifers and residence time of groundwater flow lines, the deep groundwater is approximately or older than 10 ka, and was recharged during a period when the climate was wetter and colder mainly from the piedmont surrounding the plain. The groundwater exploitation is considered to be “mined unsustainably” because more water is withdrawn than it is replenished.  相似文献   

9.
针对地下水资源过量开采而出现的绿洲水文生态问题,以贺兰山西麓具有典型特征的内蒙古腰坝绿洲为研究对象,分开采期、非开采期对地下水进行系统取样分析,综合运用描述性统计、相关性分析、离子比例系数和Piper三线图示法,全面系统地研究了地下水水化学的时空变异特征与演变规律。研究结果表明:①季节变化对潜水和承压水水化学类型空间变异性影响较小,潜水水文化学性质受外界因素干扰较大,承压水受外界因素干扰较少;②蒸发浓缩、阳离子交换和人为混合是控制研究区潜水水质演变的主要水文化学过程;③潜水子系统总溶解固体较高,水化学类型变化也较复杂,主要从HCO3·SO4.Cl-Na·Mg·Ca型向Cl·SO4·HCO3-Mg·Na、Cl·SO4-Na·Mg型演化。承压水水化学类型比较单一,主要以低矿化度的HCO3-Na·Mg·Ca型为主。  相似文献   

10.
The chemical and hydrodynamic characteristics of groundwater in deltaic regions are strongly influenced by the complex stratigraphy of these areas, caused by the continuously varying depositional environments associated with their recent hydrographic evolution. As a case study, the eastern sector of the Po River plain, northern Italy, has been investigated to understand the quality of the available groundwater resources. Based on the analysis of hydrochemical and isotopic data, the recharge characteristics, the groundwater residence time and the aquifer vulnerability are defined. The results show significant qualitative degradation of the unconfined aquifer due to the shallow depth to water, while in the underlying confined aquifer, a hydrochemical facies of Ca–HCO3 type prevails. The spatial variation and relationship between oxygen-18 and deuterium determine: firstly, hydraulic separation of the two hydrogeological units; secondly, direct infiltration of local precipitation to the unconfined aquifer; thirdly, the occurrence of waters originating in the Alps and locally from the Apennines, pervading the confined aquifer. The tritium results suggest local mixing between the superficial waters and the confined aquifer, occurring along the palaeo-river channels. This increases the pollution vulnerability of the confined hydrogeological unit within the plain, which is the only natural groundwater resource exploited for water supply.  相似文献   

11.
Stable isotopes (??2H, ??18O and ??13C) and radiocarbon (14C) have been used in conjunction with chemical data to evaluate recharge mechanisms and groundwater residence time, and to identify inter-aquifer mixing in the Djeffara multi-aquifer in semi-arid southeastern Tunisia. The southern part of this basin, the Djeffara of Medenine aquifer system, is comprised of two main aquifers of Triassic and Miocene sandstone. The Triassic aquifer presents two compartments; the first one (west of the Medenine fault system) is unconfined with a well-defined isotope fingerprint; the second compartment is deeper and confined. Multi-tracer results show groundwater of different origins, ages and salinities, and that tectonic features control groundwater flows. Fresh and brackish groundwater from the unconfined part of the Triassic aquifer was mostly recharged during the Holocene. The recharge rates of this aquifer, inferred by 14C ages, are variable and could reach 3.5?mm/year. Brackish water of the deep confined part of the Triassic aquifer has stable isotope composition and 14C content that indicates earlier recharge during late Pleistocene cold periods. Brackish to saline water of the Miocene aquifer presents variable isotope composition. Groundwater flowing through the Medenine fault system is mainly feeding the Miocene aquifer rather than the deep confined part of the Triassic aquifer.  相似文献   

12.
塔城盆地地下水氟分布特征及富集机理   总被引:2,自引:0,他引:2  
塔城盆地位于新疆维吾尔自治区西北部,干旱少雨,蒸发强烈。但相对于新疆其他盆地,塔城盆地地下水水质相对较好,溶解性总固体和F-含量相对较低。为解译这种差异及盆地内高氟地下水的成因,本文在对盆地地下水样品水化学组分系统分析的基础上,结合多种水文地质调查数据,利用数理统计、离子比及主成分分析等手段,研究高氟水的成因及其分布规律。结果表明:受气候以及地质等因素控制,研究区地下水氟浓度总体较低,高氟水主要分布于扇前洼地及盆地中部的低洼地带;受承压含水层的顶托补给,地下水氟浓度呈现出上高下低的垂向分带特征。研究区地下水径流途径短,水循环快,水岩相互作用时间较短,且山区地下水以深径流形式循环补给平原区深层承压含水层,再顶托补给潜水,避免了强烈的蒸发浓缩作用。山前洪积扇地下水氟富集主要受控于沉积地层中含氟矿物的风化溶解,而岩石风化、蒸发浓缩、阳离子交换、竞争吸附为平原区地下水氟浓度的主要影响因素。  相似文献   

13.
A detailed hydrogeological investigation was carried out in the Tabriz plain in Iran using conventional hydrogeological field investigations and hydrochemistry. The study was carried out because the aquifers are of particular importance as they are more or less the only source of water supply available to the rural population and for agricultural and industrial activities. Analytical and numerical methods were applied to the constant rate pumping test data from the Tabriz airport and the Tabriz Power Station well fields. Two types of aquifers of different water quality were identified in the study area: an unconfined aquifer that extends over the plain and confined aquifers that are found in the deeper layers of the multilayered sediment terraces of the Aji-Chay River course. Therefore, the central part of the Tabriz plain contains both unconfined and confined aquifers, while close to the highlands, there is only an unconfined aquifer. There was evidence of minor leakage in the confined aquifers when the numerical method was used for analysis. The groundwater in the area can be identified by three main geochemical facies: Na-Cl, Ca-HCO3, and mixed Ca-Mg-Cl-SO4. The processes responsible for the hydrochemical evolution in the area fall into five categories: dissolution of evaporate minerals, precipitation of carbonate minerals, evaporation, ion exchange, and anthropogenic activity.  相似文献   

14.
The hydrodynamic groundwater data and stable isotopes of water have been used jointly for better understanding of upward leakage and mixing processes in the Djerid aquifer system (southwestern Tunisia). The aquifer system is composed of the upper unconfined Plio-Quaternary (PQ) aquifer, the intermediate (semi-)confined Complex Terminal (CT) aquifer and the deeper confined Continental Intercalaire (CI) aquifer. A total of 41 groundwater samples from the CT and PQ aquifers were collected during June 2001. The stable isotope composition of waters establishes that the CT deep groundwater (depleted as compared to present Nefta local rainfall) is ancient water recharged during late Quaternary time. The relatively recent water in the shallow PQ aquifer is composed of mixed water resulting from upward leakage and sporadic meteoric recharge. In order to characterize the meteoric input signal for PQ in the study area, rainfall water samples were collected during 4 years (2000–2003) at the Nefta meteorological station. Weighted mean values of isotopic contents with respect to rainfall amounts have been computed. Despite the short collection period in the study area, results agree with those found in Beni Abbes (southwestern Algerian Sahara) by Fontes on 9 years of rainfall surveillance. Stable isotopic relationships provide clear evidence of shallow PQ aquifer replenishment by deep CT groundwater. The 18O/upward leakage rate allowed the identification of distinctive PQ waters related to CT aquifer configuration (confined in the western part of the study area, semi-permeable in the eastern part). These trends were confirmed by the relation 18O/TDS. The isotope balance model indicated a contribution of up to 75% of the deep CT groundwater to the upper PQ aquifer in the western study area, between Nefta and Hazoua.  相似文献   

15.
Water resources are a key factor, particularly for the planning of the sustainable regional development of agriculture, as well as for socio-economic development in general. A hydrochemical investigation was conducted in the Friuli Venezia Giulia aquifer systems to identify groundwater evolution, recharge and extent of pollution. Temperature, pH, electric conductivity, total dissolved solids, alkalinity, total hardness, SAR, Ca2+, Na+, K+, Mg2+, Cl, SO4 2−, NO3 , HCO3 , water quality and type, saturation indexes and the environmental stable isotope δ18O were determined in 149 sampling stations. The pattern of geochemical and oxygen stable isotope variations suggests that the sub-surface groundwater (from phreatic and shallow confined aquifers) is being recharged by modern precipitations and local river infiltrations. Four hydrogeological provinces have been recognised and mapped in the Friuli Venezia Giulia Plain having similar geochemical signatures. These provinces have different degrees of vulnerability to contamination. The deep confined groundwater samples are significantly less impacted by surface activities; and it appears that these important water resources have very low recharge rates and would, therefore, be severely impacted by overabstraction.  相似文献   

16.
The unconfined High Plains (Ogallala) aquifer is the largest aquifer in the USA and the primary water supply for the semiarid southern High Plains of Texas and New Mexico. Analyses of water and soils northeast of Amarillo, Texas, together with data from other regional studies, indicate that processes during recharge control the composition of unconfined groundwater in the northern half of the southern High Plains. Solute and isotopic data are consistent with a sequence of episodic precipitation, concentration of solutes in upland soils by evapotranspiration, runoff, and infiltration beneath playas and ditches (modified locally by return flow of wastewater and irrigation tailwater). Plausible reactions during recharge include oxidation of organic matter, dissolution and exsolution of CO2, dissolution of CaCO3, silicate weathering, and cation exchange. Si and 14C data suggest leakage from perched aquifers to the High Plains aquifer. Plausible mass-balance models for the High Plains aquifer include scenarios of flow with leakage but not reactions, flow with reactions but not leakage, and flow with neither reactions nor leakage. Mechanisms of recharge and chemical evolution delineated in this study agree with those noted for other aquifers in the south-central and southwestern USA. Electronic Publication  相似文献   

17.
Passive multi-level sampling using dialysis membrane diffusion cells is applied to the Chalk aquifer in order to estimate and monitor vertical contaminant distribution. This technique is associated with in situ profiles of field parameters which allow zones of groundwater flow to be established. Through three study cases (confined, semi-confined and unconfined aquifer conditions), the technique shows that vertical chemical heterogeneities are the particular result of flow zonation, or the renewal of water in the upper parts of the aquifer. The aquifer appears stratified or homogeneous according to depth depending on the chemical element being analysed, the sampling period (recharge period or not) and the hydrological situation (unconfined/confined zone). The high vertical resolution of this multi-level sampling also shows the influence of the Chalk lithology on hydrochemical variations, in particular for silica, iron and aluminium, in hardground and marly zones. By using these sampling techniques, the study emphasizes the importance of accurately measuring according to depth certain parameters such as temperature, electrical conductivity and the ratios of the major elements, in particular, Na/K, Mg/Ca and Sr/Ca. Interpretation of these measurements leads to an understanding of the local hydrodynamic and hydrochemical behaviour of an aquifer, and also allows geological heterogeneities to be located.  相似文献   

18.
A hydrochemical investigation was conducted in the Ejina Basin to identify the hydrochemical characteristics and the salinity of groundwater. The results indicate that groundwater in the area is brackish and are significantly zonation in salinity and water types from the recharge area to the discharge area. The ionic ration plot and saturation index (SI) calculation suggest that the silicate rock weathering and evaporation deposition are the dominant processes that determine the major ionic composition in the study area. Most of the stable isotope δ18O and δD compositions in the groundwater is a meteoric water feature, indicating that the groundwater mainly sources from meteoric water and most groundwater undergoes a long history of evaporation. Based on radioactive isotope tritium (3H) analysis, the groundwater ages were approximately estimated in different aquifers. The groundwater age ranges from less than 5 years, between 5 years and 50 years, and more than 50 years. Within 1 km of the river water influence zone, the groundwater recharges from recent Heihe river water and the groundwater age is about less than 5 years in shallow aquifer. From 1 km to 10 km of the river water influence zone, the groundwater sources from the mixture waters and the groundwater age is between 5 years and 50 years in shallow aquifer. The groundwater age is more than 50 years in deep confined aquifer.  相似文献   

19.
Groundwater is the main source of irrigation within south Al Madinah Al Munawarah region. It is also an important source of drinking water in many areas including Madinah city. The wells installed in the aquifer of the study area (south Madinah city) are not currently regulated by the local authorities although they are a key component of water supply. The aquifers in the study area range from unconfined to semi-confined and confined. The main aim of this study is to assess the groundwater in the region for drinking and agricultural uses. For this purpose, hydrochemical analyses of major, minor and trace constituents and nutrients were performed on 29 groundwater samples from the aquifer located about 20 km south of Madinah. The recharge rate of the aquifer of the study area was estimated to be 6.58 % of the annual precipitation using the chloride mass-balance method. Chloride was positively correlated with major ions, which suggests that agricultural activities have some effect on groundwater chemistry through leaching of readily soluble salts from the soil zone. Groundwater of the study area is characterized by dominance of Na over Ca. Chloride was found to be the most dominant anion and replaced by HCO3, thus reflecting geochemical evolution in the study area. The groundwater of the study area is not safe for drinking but can be safely used for salt-tolerant crops.  相似文献   

20.
3H, δ13C and hydrochemical data were used to estimate the corrected groundwater age derived from conventional 14C age of dissolved inorganic carbon (DIC). The Middle-Upper Devonian aquifer system from the Baltic upland recharge area in eastern Lithuania towards the discharge area on the Baltic Sea coast in the west was considered. The concentration of total dissolved solids (TDS) in groundwater changes from 300 to 24,000  mg/L and increases downgradient towards the coast. The other major constituents have the same trend as the TDS. The hydrochemical facies of groundwater vary from an alkali-earth carbonates facies at the eastern upland area to an alkali-earth carbonate-sulfate and chloride facies at transit and discharge areas. Meteoric water percolating through the Quaternary and Devonian aquifers regulate the initial 14C activities of groundwater involving two main members of DIC: soil CO2 with modern 14C activity uptake and dissolution of 14C-free aquifer carbonates. Other sources of DIC are less common. 14C activity of DIC in the groundwater ranged from 60 to 108 pMC at the shallow depths. With an increase of the aquifers depth the dolomitization of aqueous solution and leakage of the “old” groundwater from lower aquifers take place, traced by lower activities (7–30 pMC).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号