首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
甘肃阳山金矿床含砷黄铁矿及毒砂的XPS研究   总被引:9,自引:4,他引:5  
杨荣生  陈衍景  谢景林 《岩石学报》2009,25(11):2791-2800
阳山金矿是西秦岭地区新发现的超大型金矿.载金矿物中元素的赋存状态是认识成矿机理、评价矿床采选冶过程对环境影响的重要依据.作者运用XPS技术测定了载金矿物含砷黄铁矿和毒砂新鲜断裂面的As3d、Fe2p及S2p的存在形式和相对原子百分含量.结果表明,在含砷黄铁矿表面,超过50%的As以As~(-1)形式存在,约18%~20%的As以As~(3+)形式存在,约30%的As以As~(5+)形式存在.在毒砂表面,超过60%的As以As~(1-)形式存在,约30%的As~(3+)形式存在,其余10%的As主要以As~(3+)形式存在.分析证明As、Fe、S等元素在含砷黄铁矿和毒砂中主要以As`(1-)、Fe~(2+)、S~(1-)形式存在外,As元素可能还以As~(3+)形式存在于含砷黄铁矿及毒砂结构中.  相似文献   

2.
氧化亚铁硫杆菌与毒砂相互作用的阶段性及其机理研究   总被引:2,自引:0,他引:2  
设计了毒砂的生物氧化和化学氧化两组对比实验,并对反应35d的溶液化学、固相产物成分和矿物表面元素化合态变化进行了分析,以说明氧化亚铁硫杆菌(A.ferrooxidans)与毒砂的相互作用机理。研究发现,毒砂的生物氧化过程随A.ferrooxidans菌生长规律分为三个阶段:(1)反应前7d,生物氧化作用还很弱,以自然氧化反应为主;(2)反应8~21d,生物氧化反应开始发生,细菌进入迟缓生长期;(3)反应22~35d,细菌处于对数生长期,生物氧化作用强烈。由离子浓度变化规律反映,前两个阶段生物氧化速率低于化学氧化,第三阶段起生物氧化速率高于化学氧化。细菌生长受溶液累积的As抑制,A.ferrooxidans菌能促进As和Fe形成砷酸铁沉淀,以降低As的抑制作用。毒砂表面高价态元素的比例随细菌生长和溶液Fe离子浓度的升高而增大,生物氧化第三阶段毒砂表面高价态元素的比例高于化学氧化。氧化过程中毒砂表面覆盖中间氧化产物S^0和As2S3沉积层,对比化学氧化,Aferrooxidans菌能不断把Fe^2+氧化成Fe^3+,促进毒砂表面中间产物氧化,并间接氧化毒砂。  相似文献   

3.
在初始pH=12.3的碱性条件下,毒砂经过不同时间(0.5 h、2 h、4 h、6 h、8 h)处理后,通过SEM、XPS和前线轨道理论对其表面反应机理进行探讨。结果发现,毒砂表面Fe原子活性最强,最易从表面氧化而出。As元素与Fe迁移较同步,而S元素不同步。随时间增加,毒砂表面氧化程度增大,Fe原子析出最多。推测其表面反应过程:在碱性条件下,毒砂表面上的Fe原子首先被氧化析出为铁离子,在铁离子和氧气的作用下,As被氧化成为As(Ⅲ),吸附在结构疏松的氢氧化铁中,S被氧化为硫酸根,与钙离子结合形成石膏。最终氧化产物因溶解性和结晶性不同而不同程度地附着在毒砂表面。  相似文献   

4.
毒砂是常见的含砷硫化物矿物。在金属硫化物矿山环境中,含毒砂矿石和尾矿的风化会导致严重的重金属污染,在其风化过程中,微生物能够显著促进毒砂的氧化分解。本文实验研究了Acidithiobacillus ferrooxidans氧化分解毒砂矿物的现象,利用X射线衍射和扫描电子显微镜,分析了毒砂微生物氧化作用形成的次生矿物类型,发现毒砂表面存在As含量明显不同的2类次生产物,观察到黄钾铁矾、臭葱石、自然硫和施威特曼石等矿物;借助光电子能谱仪重点分析了微生物作用前后毒砂晶面的表面化学组成,基本查明了Fe、As和S三种元素的价态变化,初步探讨了毒砂表面次生矿物成因和As的化学态转化。  相似文献   

5.
电感耦合等离子体发射光谱法直接测定黄铜矿中多元素   总被引:12,自引:12,他引:12  
应用电感耦合等离子体原子发射光谱法直接测定黄铜矿中Cu、Fe、Cd、Co、In、Mn、Ni、Pb和Zn9种元素。试样经HCl-HNO3溶解,不需要化学分离,用干扰系数校正法消除黄铜矿中主量元素Cu和Fe对其它微量元素的干扰,以国家一级标准物质GBW 07268检验方法的准确度,结果与标准值相符,相对误差除Ni元素外,其它均小于5.00%,精密度(RSD,n=8)为2.55%~7.62%。  相似文献   

6.
ICP—AES法分析辉锑矿   总被引:1,自引:0,他引:1  
曾惠芳 《岩矿测试》1990,9(2):93-99
本文针对辉锑矿成分复杂、主元素Sb易水解、部分元素易挥发,酸不溶元素的存在以及元素之间的干扰等问题,拟定了酸溶和碱熔分解试样的分析流程。在酸溶系统中结合TBP萃淋树脂和巯基棉分离富集分组,ICP-AES法测定Fe、Ca、Mg、Cu、Mn、Pb、Zn、Co、Ni、Au、Ag、In、Tl、Cd、Bi、Ga、Mo、Se、Te、As等20个元素。碱熔系统不分离主元素,用校正因素校正元素间光谱干扰并采用内标法ICP-AES测定Al、Ti、V、Ba、Sr、Sn、Sc、Cr、Be、Si和Sb等11个元素。试样验证表明,方法可行。  相似文献   

7.
藏南查拉普金矿床载金矿物特征与金的赋存状态   总被引:1,自引:0,他引:1  
黄铁矿和毒砂是卡林型和造山型金矿床重要的载金矿物。文章通过电子探针(EPMA)分析研究了藏南查拉普金矿床不同类型黄铁矿和毒砂中Au、As、S、Fe等元素的含量变化和分布规律,发现不同阶段的黄铁矿具有不同的结构特征和元素组成特点。沉积成岩期黄铁矿(Py1)主要呈草莓状、胶状,常构成环带状黄铁矿的核心,其中金的含量最高,显示了金在沉积成岩期的大量富集。热液期早阶段黄铁矿(Py2)主要呈自形-半自形的立方体,与Py1元素(S、Fe、As)组成相近,显示了一定的继承演化关系。热液期主阶段黄铁矿(Py3)与毒砂共生,多呈自形-半自形的五角十二面体、立方体,常包裹早期的黄铁矿形成环带结构。Py3中As的含量明显升高,其增加量近似等于S的减少量,说明As主要进入黄铁矿晶格替代了S的位置。各个阶段的黄铁矿和毒砂中Au的分布在EPMA微束的分辨率下均显示是不均匀的,Au在Py1和大部分Py2中主要以纳米级自然金(Au0)的形式存在;而在Py3中主要以(Au+)的形式存在,少部分以纳米级自然金(Au0)形式存在。Py1的结构及元素组成与典型卡林型金矿和造山型金矿沉积成岩期黄铁矿的特点相似,而Py3的大量发育则符合卡林型金矿的特征。  相似文献   

8.
亚铁氰化钾提高原子荧光法测定砷锑铋的抗干扰能力   总被引:1,自引:1,他引:1  
本文提出抗坏血酸-K_4[Fe(CN)_6]-硫脲体系,氢化物原子荧光法测定地质样品中痕量As、Sb和Bi。用K_4[Fe(CN)_6]消除干扰元素,可大大提高共存元素允许量。方法检出限(μg/ml)As 0.10,Sb 0.04,Bi 0.05;RSD均小于6%。 1 仪器与分析条件 XDY-1型原子荧光光度计(北京地质仪器厂生产)。输入功率As 20~35W、Sb 20~30W、Bi 30~40W,反射功率均调至最小,氩载气流量1L/min,负高压300~350V,炉温为900℃。7g/L KBH_4加入量是5ml。  相似文献   

9.
采用电子探针和扫描电镜分析,通过对贵州苗龙卡林型金-锑矿床矿石中不同成矿阶段载金矿物的Au、As、S、Fe和Sb等元素含量及其分布规律的详细研究,确定了含砷环带黄铁矿和毒砂是最重要的载金矿物。成岩期黄铁矿S、Fe含量与理论值接近,成矿期早阶段黄铁矿和主阶段S1亚阶段环带黄铁矿核心S含量与理论值接近,Fe含量具弱亏损的特点;环带黄铁矿外环S、Fe具有弱亏损的特点。沉积成岩期黄铁矿为草莓状,不含As和Sb,金含量低,平均为59×10-6;热液成矿期早阶段黄铁矿颗粒较粗(≥100μm),其As、Sb和Au含量较低,As、Au平均分别为0.205%和275×10-6;热液成矿期主阶段S1亚阶段环带黄铁矿粒度较细(50μm,10~20μm为主),外环As和Au含量高,外环As含量为0.1961%~7.897%,平均为1.4668%;Au含量为40×10-6~905×10-6,平均为429×10-6;Sb含量为0.01%~0.035%,平均为0.0233%。S2亚阶段毒砂具有富硫亏砷等低温热液毒砂特征,Au含量为230×10-6~1400×10-6,平均为643×10-6;Sb含量为0.019%~0.50%,平均为0.087%。晚阶段辉锑矿Au含量较低,平均为237×10-6。Au含量从成岩沉积期一成矿早阶段一成矿主阶段一晚阶段呈低或不含→低→高→低的特点分布。金可能以类质同象形式(固溶体形式)存在于毒砂和黄铁矿晶格中。  相似文献   

10.
新疆齐求Ⅰ金矿床毒砂找矿矿物学研究   总被引:2,自引:0,他引:2  
胡大干 《矿物学报》1991,11(1):70-77
所研究的毒砂有两个成矿阶段。早期成矿阶段结晶的毒砂不含金,晶体形态为菱形短柱状以及由此组成的双晶;晚期成矿 毒砂富含, 长柱状,毒砂成分中Fe/(S As)>0.5,As/Sb>1000,显微硬度值低于1000kg/mm^2是其含金的标型特征之一。毒砂皆属电子心型半导体,其热电系数与金矿化之间的关系目前尚不十分清楚,但是在同一粒级中,存在着热电系数愈大,含矿性愈好的趋势。  相似文献   

11.
Six epizonal gold deposits in the 30-km-long Yangshan gold belt, Gansu Province are estimated to contain more than 300 t of gold at an average grade of 4.76 g/t and thus define one of China's largest gold resources. Detailed paragenetic studies have recognized five stages of sulfide mineral precipitation in the deposits of the belt. Syngenetic/diagenetic pyrite (Py0) has a framboidal or colloform texture and is disseminated in the metasedimentary host rocks. Early hydrothermal pyrite (Py1) in quartz veins is disseminated in metasedimentary rocks and dikes and also occurs as semi-massive pyrite aggregates or bedding-parallel pyrite bands in phyllite. The main ore stage pyrite (Py2) commonly overgrows Py1 and is typically associated with main ore stage arsenopyrite (Apy2). Late ore stage pyrite (Py3), arsenopyrite (Apy3), and stibnite occur in quartz ± calcite veins or are disseminated in country rocks. Post-ore stage pyrite (Py4) occurs in quartz ± calcite veins that cut all earlier formed mineralization. Electron probe microanalyses and laser ablation-inductively coupled plasma mass spectrometry analyses reveal that different generations of sulfides have characteristic of major and trace element patterns, which can be used as a proxy for the distinct hydrothermal events. Syngenetic/diagenetic pyrite has high concentrations of As, Au, Bi, Co, Cu, Mn, Ni, Pb, Sb, and Zn. The Py0 also retains a sedimentary Co/Ni ratio, which is distinct from hydrothermal ore-related pyrite. Early hydrothermal Py1 has high contents of Ag, As, Au, Bi, Cu, Fe, Sb, and V, and it reflects elevated levels of these elements in the earliest mineralizing metamorphic fluids. The main ore stage Py2 has a very high content of As (median value of 2.96 wt%) and Au (median value of 47.5 ppm) and slightly elevated Cu, but relatively low values for other trace elements. Arsenic in the main ore stage Py2 occurs in solid solution. Late ore stage Py3, formed coevally with stibnite, contains relatively high As (median value of 1.44 wt%), Au, Fe, Mn, Mo, Sb, and Zn and low Bi, Co, Ni, and Pb. The main ore stage Apy2, compared to late ore stage arsenopyrite, is relatively enriched in As, whereas the later Apy3 has high concentrations of S, Fe, and Sb, which is consistent with element patterns in associated main and late ore stage pyrite generations. Compared with pyrite from other stages, the post-ore stage Py4 has relatively low concentrations of Fe and S, whereas As remains elevated (2.05~3.20 wt%), which could be interpreted by the substitution of As? for S in the pyrite structure. These results suggest that syngenetic/diagenetic pyrite is the main metal source for the Yangshan gold deposits where such pyrite was metamorphosed at depth below presently exposed levels. The ore-forming elements were concentrated into the hydrothermal fluids during metamorphic devolatilization, and subsequently, during extensive fluid–rock interaction at shallower levels, these elements were precipitated via widespread sulfidation during the main ore stage.  相似文献   

12.
We have used ex situ atomic force microscopy (AFM), scanning tunneling microscopy and spectroscopy (STM/STS) and X-ray photoelectron spectroscopy (XPS) to study the surfaces of natural arsenopyrite samples that were electrochemically polarized in 1 M HCl, or leached in acidic solutions containing ferric iron salts, and then reacted with aqueous gold (III) chloride at ambient temperatures. For arsenopyrite oxidized on a positive-going potential sweep, progressively increasing amounts of surface Fe(III)-O and As-O species, and of S/Fe and S/As ratios in a non-stoichiometric sulfidic layer were found. The products formed in the sweep to a potential of 0.6 V (Ag/AgCl) of the passivity region are shaped in about 100 nm protrusions of two sorts, which are arranged in micrometer-size separate areas, while they are largely mixed at higher, “transpassive” potentials. The quantities of surface alteration substances notably decrease after leaching in ferric chloride and ferric sulfate acidic solutions. Passivation of arsenopyrite was suggested to associate with the disordered, metal-deficient surface layer having moderate excess of sulfur rather than with the products of arsenopyrite oxidation. Exposure of arsenopyrite to 10−5-10−3 M (pH 2) solutions results in the deposition of 8-50 nm gold particles; only a small fraction of the gold is present as Au(I)-S species. The electrochemical oxidation at 0.6 V or ageing of arsenopyrite in air promotes the subsequent gold deposition; in contrast, the amount of Au deposited on arsenopyrite that was treated by leaching in ferric chloride and sulfate solutions was about 10 times smaller than with polished arsenopyrite samples. It has been concluded that reducing agents formed as intermediates of arsenopyrite decomposition facilitate the Au0 cementation although other factors related to the surface state of the arsenopyrite play a role as well. A decrease in the tunneling current magnitudes with decreasing the Au0 particle size has been revealed using STS. This effect along with the increase by 0.2-0.5 eV in the XPS Au 4f binding energies were tentatively ascribed to retarding the electron transitions by emerging electrostatic charge on gold nanoparticles (Coulomb blockade). Possible mechanisms for the effects, and their potential role in the deposition and hydrometallurgy of “invisible” gold are discussed.  相似文献   

13.
A waste rock pile with initial high sulfide (10–20 wt.%) and low carbonate content (1–2 wt.%) located at Dlouhá Ves in the Czech Republic has been investigated in two profiles (excavation and outcrop) using powder X-ray diffraction, electron microprobe analysis, bulk composition analysis and Mössbauer spectroscopy. The mobility of arsenic and other contaminants was evaluated by leaching experiments. The primary source of the arsenic was arsenopyrite, which was significantly oxidized in both profiles. The principal As-bearing phase at the excavation profile was goethite, located at the top of the profile, and minerals of the jarosite group which were found down to its base. Melanterite, rich in copper and zinc, was found in a sulfide-rich, lower part of the profile together with anglesite. At the outcrop profile, minerals of the jarosite–beudantite group, scorodite and kaňkite prevail and no Fe(II)-minerals were found. The paste pH was lower at the excavation profile (minimum about 1.9) than at the outcrop profile (minimum of about 2.8). Processes in the pile are affected by the pyrite/arsenopyrite ratio, where high pyrite content decreases the As/S ratio and results in the formation of jarosite group minerals and low pH conditions. Where arsenopyrite predominates, sulphides are coated by scorodite and other Fe–As phases like schwertmannite, which limit their further oxidation.  相似文献   

14.
采用AGMP-1阴离子交换树脂,分别以7mol/L HCl、2mol/L HCl、0.5mol/L HNO3作为淋洗剂,可有效分离Cu、Fe、Zn。介绍了方法的基本原理、化学分离过程及混合标准溶液与地质标样的分离结果。结果表明,Cu、Fe、Zn回收率均接近100%,标准溶液在离子交换分离前后同位素组成一致,可以满足多接收器等离子体质谱对Cu、Fe、Zn同位素高精度分析的要求。  相似文献   

15.
Microorganisms and higher plants produce biogenic ligands, such as siderophores, to mobilize Fe that otherwise would be unavailable. In this paper, we study the stability of arsenopyrite (FeAsS), one of the most important natural sources of arsenic on Earth, in the presence of desferrioxamine (DFO-B), a common siderophore ligand, at pH 5. Arsenopyrite specimens from mines in Panasqueira, Portugal (100-149 μm) that contained incrustations of Pb, corresponding to elemental Pb as determined by scanning electron microscopy-electron diffraction spectroscopy (SEM-EDX), were used for this study. Batch dissolution experiments of arsenopyrite (1 g L−1) in the presence of 200 μM DFO-B at initial pH (pH0) 5 were conducted for 110 h. In the presence of DFO-B, release of Fe, As, and Pb showed positive trends with time; less dependency was observed for the release of Fe, As, and Pb in the presence of only water under similar experimental conditions. Detected concentrations of soluble Fe, As, and Pb in suspensions containing only water were found to be ca. 0.09 ± 0.004, 0.15 ± 0.003, and 0.01 ± 0.01 ppm, respectively. In contrast, concentrations of soluble Fe, As, and Pb in suspensions containing DFO-B were found to be 0.4 ± 0.006, 0.27 ± 0.009, and 0.14 ± 0.005 ppm, respectively. Notably, the effectiveness of DFO-B for releasing Pb was ca. 10 times higher than that for releasing Fe. These results cannot be accounted for by thermodynamic considerations, namely, by size-to-charge ratio considerations of metal complexation by DFO-B. As determined by SEM-EDX, elemental sample enrichment analysis supports the idea that the Fe-S subunit bond energy is limiting for Fe release. Likely, the mechanism(s) of dissolution for Pb incrustations is independent and occurs concurrently to that for Fe and As. Our results show that dissolution of arsenopyrite leads to precipitation of elemental sulfur, and is consistent with a non-enzymatic mineral dissolution pathway. Finally, speciation analyses for As indicate variability in the As(III)/As(V) ratio with time, regardless of the presence of DFO-B or water. At reaction times <30 h, As(V) concentrations were found to be 50-70%, regardless of the presence of DFO-B. These results are interpreted to indicate that transformations of As are not imposed by ligand-mediated mechanisms. Experiments were also conducted to study the dissolution behavior of galena (PbS) in the presence of 200 μM at pH0 5. Results show that, unlike arsenopyrite, the dissolution behavior of galena shows coupled increases in pH with decreases in metal solubility at t > 80 h. Oxidative dissolution mechanisms conveying sulfur oxidation bring about the production of {H+}. However, dissolution data trends for arsenopyrite and galena indicate {H+} consumption. It is plausible that the formation of Pb species is dependent on {H+} and {OH}, namely, stable surface hydroxyl complexes of the form (pH50 5.8) and for pH values 5.8 or above.  相似文献   

16.
Arsenopyrite (FeAsS) and enargite (Cu3AsS4) fractured in a nitrogen atmosphere were characterised after acidic (pH 1.8), oxidative dissolution in both the presence and absence of the acidophilic microorganism Leptospirillum ferrooxidans. Dissolution was monitored through analysis of the coexisting aqueous solution using inductively coupled plasma atomic emission spectroscopy and coupled ion chromatography-inductively coupled plasma mass spectrometry, and chemical changes at the mineral surface observed using X-ray photoelectron spectroscopy and environmental scanning electron microscopy (ESEM). Biologically mediated oxidation of arsenopyrite and enargite (2.5 g in 25 ml) was seen to proceed to a greater extent than abiotic oxidation, although arsenopyrite oxidation was significantly greater than enargite oxidation. These dissolution reactions were associated with the release of ∼917 and ∼180 ppm of arsenic into solution. The formation of Fe(III)-oxyhydroxides, ferric sulphate and arsenate was observed for arsenopyrite, thiosulphate and an unknown arsenic oxide for enargite. ESEM revealed an extensive coating of an extracellular polymeric substance associated with the L. ferrooxidans cells on the arsenopyrite surface and bacterial leach pits suggest a direct biological oxidation mechanism, although a combination of indirect and direct bioleaching cannot be ruled out. Although the relative oxidation rates of enargite were greater in the presence of L. ferrooxidans, cells were not in contact with the surface suggesting an indirect biological oxidation mechanism. Cells of L. ferrooxidans appear able to withstand several hundreds of ppm of As(III) and As(V).  相似文献   

17.
位于右江盆地南部的滇东南底圩金矿床是近年来新发现的一处金矿床,为理清其成因,对不同类型矿石和赋矿围岩进行了主、微量元素及硫化物的硫同位素分析。结果表明,相较于赋矿围岩,矿石中明显富集Au、As、Sb、Hg、Tl、S、K、C元素,应为热液带入;而Si、Mg、Fe、Zr和Th在矿石和围岩中变化不大,Fe主要来源于赋矿围岩。对矿床中的主要金属硫化物黄铁矿和毒砂进行的矿物学和硫同位素分析表明,载金矿物主要为含砷黄铁矿和毒砂,金可能主要以Au+的形式赋存在含砷黄铁矿和毒砂之中;含金硫化物具有较高的硫同位素组成(5.93‰~11.99‰),表明成矿所需的S主要为地壳来源。结合前人对于右江盆地南部相似金矿的研究,认为印支期造山作用使沉积物脱水形成的变质流体交代玄武岩,容矿岩石的硫化物化作用是底圩金矿床形成最重要的成矿作用之一。  相似文献   

18.
铅锌矿床地质样品的Ge同位素预处理方法研究   总被引:1,自引:0,他引:1       下载免费PDF全文
目前Ge同位素研究主要局限于地球有机质(煤等)、火成岩及陨石样品,作为Ge重要储库之一的铅锌矿床,其Ge同位素的研究涉及较少。铅锌矿床样品中Ge的化学分离及提纯是Ge同位素研究的基础。本文详细考察了陨石样品中Ge同位素预处理方法(分离和提纯)对铅锌矿石样品的适用性。阴离子条件实验说明,目前普遍采用的离子交换树脂单柱法虽然对铅锌矿样品中Fe、Se等元素的剔除效果理想,但无法有效剔除其中的Zn,当Zn/Ge比值大于3时,样品必须经过阳离子交换树脂柱作进一步处理剔除Zn。通过对闪锌矿标准样品、锌矿石标准样品的条件实验以及实际闪锌矿样品对条件结果的验证显示,当闪锌矿的称样量为0.15 g左右时,仅需将前人对玄武岩等样品Ge同位素处理方法中阴离子树脂洗脱酸(1.4 mol/L硝酸)的用量6 mL调整为10 mL,而阳离子树脂洗脱方法保持不变,此方法即满足闪锌矿样品Ge同位素的化学分离和提纯要求。样品经过本文推荐的阴阳离子交换树脂双柱法处理后,主要干扰元素(Fe、Zn、Se、Ni)及基质元素的剔除率接近100%,Ge的回收率优于99%。而前人对玄武岩等样品的Ge同位素处理方法中,主要干扰元素(Fe、Zn、Se、Ni)及基质元素的剔除效果亦较好,但Ge的回收率仅为97.3%,比本文推荐方法的Ge回收率要差。利用MC-ICP-MS对Ge化学分离和提纯后的富乐铅锌矿床闪锌矿样品的检验结果显示,测试过程中未见同质异位素以及可能的多原子离子影响,样品中Ge同位素符合质量分馏定律,经过调整后的阴阳离子交换树脂双柱法满足闪锌矿样品的Ge同位素测试要求。  相似文献   

19.
Microorganisms play an important role in As mobilization into groundwater by directly influencing As speciation or indirectly inducing solubilisation from As-bearing phases, such as Fe, Mn and Al oxides. Iron oxide dissolution could also be induced by siderophores, small-molecule compounds produced by microorganisms to favour Fe uptake. Well waters exceeding the potable water limit of 10 μg As L−1 (0.133 μM) have been widely reported in geothermal areas. Mechanisms responsible for these high As concentrations have not yet been thoroughly elucidated and the complexity of As mobilization in volcanic aquifers is still open to multiple interpretations. The present study was based on batch release experiments aimed at verifying and quantifying the effect of siderophores on As mobilization from volcanic rocks (lava, tuff, peperino and fallout deposit) at different pH and ligand concentration. In the experiments the siderophore trihydroxamate desferroxamine B (Dfob) was used and its effect on As release from volcanic rocks was manifest after the first days. The most favourable pH for As release was pH 6 while concentrations above 250 μM Dfob considerably enhanced As and Fe concentrations in solution. The As release from rocks was between 2.0–10% at pH 6 and 2.4–8.8% at pH 8. The As/Fe ratio in solution changed with time suggesting different release mechanisms and higher mobility of As compared to Fe during the first phase of the experiment. The presence of siderophore increased Fe dissolution rates up to 10 orders of magnitude. The As release correlated with Al, Mn, Fe, Si, V, Ga and Sb and the release of all these elements increased with increasing Dfob concentration. In alkaline environments also Cu, Zn and Pb were mobilized. The presence of siderophores represents a possible trigger for As mobilization from iron binding minerals to the water phase, with interesting implications for groundwater quality, plant uptake and bacterial communities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号