首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 156 毫秒
1.
In this work, we present results of the hydrogeochemical and isotopic studies on groundwater samples from the El Ma El Abiod Sandstone aquifer, in Tébessa, Algeria. Chemical and environmental isotope data are presented and discussed in order to identify the geochemical processes and their relation with groundwater quality as well as to get an insight into the hydrochemical evaluation, in space and time, of groundwater and of the origin of dissolved species. A combined hydrogeologic and isotopic investigation have been carried out using chemical and isotopic data to deduce a hydrochemical evaluation of the aquifer system based on the ionic constituents, water types, hydrochemical facies, and factors controlling groundwater quality. All of the investigated groundwaters are categorized into two chemical types: low mineralized water type and relatively high mineralized water type. Interpretation of chemical data, based on thermodynamic calculations and geochemical reaction models of selected water groups constructed using PHREEQC, suggest that the chemical evolution of groundwater is primarily controlled by water–rock interactions, involving (1) acidic weathering of aluminosilicates, (2) dissolution of secondary carbonate minerals, and (3) cation exchange of Na+ for Ca2+. However, the original composition of groundwater may have been modified by further secondary processes such as mixing of chemically different water masses. The combined use of SI and mass-balance modeling has shown to be a useful approach in interpreting groundwater hydrochemistry in an area where large uncertainties exist in the understanding of the groundwater flow system. Interpretation of 18O and 2H, suggest that the recharge of the investigated groundwaters may result from different mechanisms.  相似文献   

2.
The studied area is in the south of Algeria. Chemical data are used to determine the status of water quality in the Albian sandstone aquifer of Ain oussera, as well as to clarify the hydrological regime in the study area, to identify spatial and temporal variations of water quality and sources of contamination (natural and anthropogenic). Waters in sandstone are dominated by a magnesium chloride type and sodium chloride type. Interpretation of chemical data with thermodynamic calculation suggests that the chemical evolution of groundwater is primarily controlled by water–rock interactions. Piezometric map suggests that water is moving from the south toward north. The agricultural irrigation effluent and domestic effluents have largely contributed to contamination of groundwater.  相似文献   

3.
The Central West Bank aquifer (CWB) is one of the most important resources of fresh groundwater of Palestine. The geology of the area consists mainly of karstic and permeable limestones and dolomites interbedded with argillaceous beds of late Albian–Turonian age. Exploitation of the CWB aquifer, combined with lack of information required to understand the groundwater pattern, represents a challenge for reservoir management. The present work reports hydrogeochemistry, microbiology and environmental isotope data from spring water samples, which were utilized to understand recharge mechanisms, geochemical evolution and renewability of groundwater in CWB aquifer. Besides the major chemical compositions, ionic ratios were used to delineate mineral-solution reactions and weathering processes. Interpretation of chemical data suggests that the chemical evolution of groundwater is primarily controlled by (1) water–rock interactions, involving dissolution of carbonate minerals (calcite and dolomite), and (2) cation exchange processes. The measured equation of the local meteoric water line is δD?=?5.8 δ18O?+?9.9. Stable isotopes show that precipitation is the source of recharge to the groundwater system. The evaporation line has a linear increasing trend from south to north direction in the study area. All analyzed spring waters are suitable for irrigation, but not for drinking purposes. The results from this study can serve as a basis for decision-makers and stakeholders, with the intention to increase the understanding of sustainable management of the CWBs.  相似文献   

4.
El Shalal-Kema area is located east of Aswan town and Nile River. The Quaternary sediments (unconsolidated material of sands, gravels, and clays intercalation) represent the main aquifer in the studied area. Its water is under unconfined condition, and the water table is shallow (vary from 7.5 to 16.3 m). The concerned aquifer is recharged mainly from Aswan Dam Lake, from the excess irrigation water and from septic tanks, where the area is not served by sewage system. The direction of the groundwater movement is generally from south to north. The transmissivity values of the Quaternary aquifer (from three pumping tests) are relatively high (vary from 1,996 to 3,029 m2/day). The exploitation of groundwater is carried out where there is continuous withdrawal for industrial and domestic uses with a total average quantity of groundwater of 71,304 m3 per day (25.67 million m3 per year). The hydrochemical characteristics of the Quaternary aquifer is studied based on the chemical analysis of 29 groundwater and four surface water samples collected from different sites. The chemical composition of the groundwater is dominated by calcium Ca2+ from the cations and bicarbonate (HCO 3 ? ) from the anions, and the order of cation abundance is Ca2+ > Na+ > Mg2+ > K+ and HCO 3 ? > SO 4 2? > Cl? among the anions. The groundwater types are normal chloride water, normal sulfate water, and normal carbonate water. The hypothetical salt combination revealed the presence of different salts arranged in terms of their predominant as Ca(HCO3)2, Mg(HCO3)2, NaCl, Na2SO4, MgSO4, KCL, NaHCO3, MgCl2, CaSO4, and K2SO4. The analytical measurements to the NO2 and NH3 reveal that their values decrease in summer and increase in winter due to the stoppage of pumping which leads to the increase of the wastewater quantities that reach the groundwater. The chemical and microbiological analyses show that the aquifer in this area is contaminated with fecal and disease-causing bacteria. The main cause of this contamination is the outflow from the septic tanks; therefore, the construction of sewage network is a vital solution. Chlorination is important to disinfect the groundwater at the tanks before its distribution to the houses.  相似文献   

5.
Chemical and isotopic data in atmospheric precipitation, surface water, and groundwater in arid Rasafeh area, northeast Syria, are used to clarify the status of groundwater quality, the interaction of water components, groundwater dating, and vulnerability to anthropogenic contamination. Interpretation of chemical data with thermodynamic calculation reveals that the dissolution of evaporate mineral is the main factor of high salinity. The δ18O and δ2H relationships indicate that the groundwater is fed by mixing water from Euphrates River and precipitation and the isotope balance equation were used to estimate the contribution of the Euphrates River to the aquifers recharge. High tritium content, together with high 14C activity in the majority of groundwater samples, indicate shorter residence times and consequently potentially greater recharge. The presence of high nitrate concentration associated with high tritium concentration in both shallow and deep aquifer units indicates the presence of high permeability, so that groundwater is highly susceptible to anthropogenic contamination. Nitrate seems to derive exclusively from the application of N fertilizers. The high nitrate values are characteristic of the areas with intensive agricultural activity, indicating the importance of irrigated return flow on the groundwater.  相似文献   

6.
Groundwater in Farashband plain, Southern Iran, is the main source of water for domestic and agricultural uses. This study was carried out to assess the overall water quality and identify major variables affecting the groundwater quality in Farashband plain. The hydrochemical study was undertaken by randomly collecting 84 groundwater samples from observation wells located in 13 different stations covering the entire plain in order to assess the quality of the groundwater through analysis of major ions. The water samples were analyzed for various physicochemical attributes. Groundwater is slightly alkaline and largely varies in chemical composition; e.g., electrical conductivity (EC) ranges from 2314 to 12,678 μS/cm. All the samples have total dissolved solid values above the desirable limit and belong to a very hard type. The abundance of the major ions is as follows: Na+ > Ca2+ > Ma2+ > K+ and Cl? > SO4 2– > HCO3 ?. Interpretation of analytical data shows three major hydrochemical facies (Ca–Cl, Na–Cl, and mixed Ca–Mg–Cl) in the study area. Salinity, total dissolved solids, total hardness, and sodium percentage (Na%) indicate that most of the groundwater samples are not suitable for irrigation as well as for domestic purposes and far from drinking water standard. A comparison of groundwater quality in relation to drinking water standards showed that most of the water samples are not suitable for drinking purposes. Based on the US salinity diagram, most of samples belong to high salinity and low to very high sodium type.  相似文献   

7.
《Applied Geochemistry》2005,20(10):1831-1847
The groundwater contribution into Green Lake and Black Lake (Vescovo Lakes Group), two cover collapse sinkholes in Pontina Plain (Central Italy), was estimated using water chemistry and a 222Rn budget. These data can constrain the interactions between sinkholes and deep seated fluid circulation, with a special focus on the possibility of the bedrock karst aquifer feeding the lake. The Rn budget accounted for all quantifiable surface and subsurface input and output fluxes including the flux across the sediment–water interface. The total value of groundwater discharge into Green Lake and Black Lake (∼540 ± 160 L s−1) obtained from the Rn budget is lower than, but comparable with historical data on the springs group discharge estimated in the same period of the year (800 ± 90 L s−1). Besides being an indirect test for the reliability of the Rn-budget “tool”, it confirms that both Green and Black Lake are effectively springs and not simply “water filled” sinkholes. New data on the water chemistry and the groundwater fluxes into the sinkhole area of Vescovo Lakes allows the assessment of the mechanism responsible for sinkhole formation in Pontina Plain and suggests the necessity of monitoring the changes of physical and chemical parameters of groundwater below the plain in order to mitigate the associated risk.  相似文献   

8.
The El Jadida landfill is one among many uncontrolled dumping sites in Morocco with no bottom liner. About 150 tons/day of solid wastes from mixed urban and industrial origins are placed directly on the ground. At the site of this landfill, the groundwaters circulate deeply (10–15 m) in the Cenomanian rock (calcareous–marl), which is characterised by an important permeability from cracks. The soil is sand–clay characterized by a weak coefficient of retention.The phreatic water ascends to the bottom of three quarries, which are located within the landfill. These circumstances, along with the lack of a leachate collection system, worsen the risks for a potential deterioration of the aquifer.To evaluate groundwater pollution due to this urban landfill, piezometric level and geochemical analyses have been monitored since 1999 on 60 wells. The landfill leachate has been collected from the three quarries that are located within the landfill. The average results of geochemical analyses show an important polluant charge vehiculed by landfill leachate (chloride = 5680 mg l−1, chemical oxygen demand = 1000 mg l−1, iron = 23 000 μg l−1). They show also an important qualitative degradation of the groundwater, especially in the parts situated in the down gradient area and in direct proximity to the landfill. In these polluted zones, we have observed the following values: higher than 4.5 mS cm−1 in electric conductivity, 1620 and 1000 mg l−1 respectively in chlorides and sulfate (), 15–25 μg l−1 in cadmium, and 60–100 μg l−1 in chromium. These concentrations widely exceed the standard values for potable water.Several determining factors in the evolution of groundwater contamination have been highlighted, such as (1) depth of the water table, (2) permeability of soil and unsaturated zone, (3) effective infiltration, (4) humidity and (5) absence of a system for leachate drainage. So, to reduce the pollution risks of the groundwater, it is necessary to set a system of collection, drainage and treatment of landfill leachates and to emplace an impermeable surface at the site of landfill, in order to limit the infiltration of leachate.  相似文献   

9.
A total of 194 groundwater samples were collected from wells in hard rock aquifers of the Medak district, South India, to assess the distribution of fluoride in groundwater and to determine whether this chemical constituent was likely to be causing adverse health effects on groundwater user in the region. The study revealed that the fluoride concentration in groundwater ranged between 0.2 and 7.4 mg/L with an average concentration of 2.7 mg/L. About 57% of groundwater tested has fluoride concentrations more than the maximum permissible limit of 1.5 mg/L. The highest concentrations of fluoride were measured in groundwater in the north-eastern part of the Medak region especially in the Siddipeta, Chinnakodur, Nanganoor and Dubhaka regions. The areas are underlain by granites which contain fluoride-bearing minerals like apatite and biotite. Due to water–rock interactions, the fluoride has become enriched in groundwater due to the weathering and leaching of fluoride-bearing minerals. The pH and bicarbonate concentrations of the groundwater are varied from 6.6 to 8.8 and 18 to 527 mg/L, respectively. High fluoride concentration in the groundwater of the study area is observed when pH and the bicarbonate concentration are high. Data plotted in Gibbs diagram show that all groundwater samples fall under rock weathering dominance group with a trend towards the evaporation dominance category. An assessment of the chemical composition of groundwater reveals that most of the groundwater samples have compositions of Ca2+–Mg2+–Cl? > Ca2+–Na+–HCO3 ? > Ca2+–HCO3 ? > Na+–HCO3 ?. This suggests that the characteristics of the groundwater flow regime, long residence time and the extent of groundwater interaction with rocks are the major factors that influence the concentration of fluoride. It is advised not to utilize the groundwater for drinking purpose in the areas delineated, and they should depend on alternate safe source.  相似文献   

10.
Groundwater recharge and evolution in the Quaternary aquifer beneath the Dunhuang Basin was investigated using chemical indicators, stable isotopes, and radiocarbon data to provide guidance for regional water management. The quality of groundwater and surface water is generally good with low salinity and it is unpolluted. The dissolution of halite and sylvite from fine-grained sediments controls concentrations of Na+ and K+ in the groundwater, but Na+/Cl molar ratios >1 in all samples are also indicative of weathering of feldspar contributing to excess Na+. The dissolution of carbonate minerals yields Ca2+ to the groundwater, thereby exerting a strong influence on groundwater salinity. The δ18O and δ2H values in unconfined groundwater are enriched along the groundwater flow path from SW to NE. In contrast, confined groundwater was depleted in heavy isotopes, with mean values of −10.4‰ δ18O and −74.4‰ δ2H. Compared with the precipitation values, all of the groundwater samples were strongly depleted in heavy isotopes, indicating that modern direct recharge to the groundwater aquifers in the plains area is quite limited. The unconfined water is generally young with radiocarbon values of 64.9–79.6 pmc. In the northern basin, radiocarbon content in the confined groundwater is less than 15 pmc and an uncorrected age of ∼15 ka, indicates that this groundwater was recharged during a humid climatic phases of the late Pleistocence or early Holocene. The results have important implications for inter-basin water allocation programmes and groundwater management in the Dunhuang Basin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号