首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, we consider algorithms for modeling complex processes in porous media that include fluid and structure interactions. Numerous field applications would benefit from a better understanding and integration of porous flow and solid deformation. Important applications in environmental and petroleum engineering include carbon sequestration, surface subsidence, pore collapse, cavity generation, hydraulic fracturing, thermal fracturing, wellbore collapse, sand production, fault activation, and waste disposal, while similar issues arise in biosciences and chemical sciences as well. Here, we consider solving iteratively the coupling of flow and mechanics. We employ mixed finite element method for flow and a continuous Galerkin method for elasticity. For single-phase flow, we demonstrate the convergence and convergence rates for two widely used schemes, the undrained split and the fixed stress split. We discuss the extension of the fixed stress iterative coupling scheme to an equation of state compositional flow model coupled with elasticity and a single-phase poroelasticity model on general hexahedral grids. Computational results are presented.  相似文献   

2.
We consider a non-linear extension of Biot’s model for poromechanics, wherein both the fluid flow and mechanical deformation are allowed to be non-linear. Specifically, we study the case when the volumetric stress and the fluid density are non-linear functions satisfying certain assumptions. We perform an implicit discretization in time (backward Euler) and propose two iterative schemes for solving the non-linear problems appearing within each time step: a splitting algorithm extending the undrained split and fixed stress methods to non-linear problems, and a monolithic L-scheme. The convergence of both schemes are shown rigorously. Illustrative numerical examples are presented to confirm the applicability of the schemes and validate the theoretical results.  相似文献   

3.

In this work, we measure the performance of the fixed stress split algorithm for the immiscible water-oil flow coupled with linear poromechanics. The two-phase flow equations are solved on general hexahedral elements using the multipoint flux mixed finite element method whereas the poromechanics equations are discretized using the conforming Galerkin method. We introduce a rigorous calculation of the update in poroelastic properties during the iterative solution of the coupled system equations. The effects of the coupling parameter on the performance of the fixed stress algorithm is demonstrated in two field studies: the Frio oil reservoir and the Cranfield injection site.

  相似文献   

4.
In this paper a finite volume (FV) numerical method is implemented to solve a Biot consolidation model with discontinuous coefficients. Our studies show that the FV scheme leads to a locally mass conservative approach which removes pressure oscillations especially along the interface between materials with different properties and yields higher accuracy for the flow and mechanics parameters. Then this numerical discretization is utilized to investigate different sequential strategies with various degrees of coupling including: iteratively, explicitly and loosely coupled methods. A comprehensive study is performed on the stability, accuracy and rate of convergence of all of these sequential methods. In the iterative and explicit solutions four splits of drained, undrained, fixed-stress and fixed-strain are studied. In loosely coupled methods three techniques of the local error method, the pore pressure method, and constant step size are considered and results are compared with other types of coupling methods. It is shown that the fixed-stress method is the best operator split in comparison with other sequential methods because of its unconditional stability, accuracy and the rate of convergence. Among loosely coupled schemes, the pore pressure and local error methods which are, respectively, based on variation of pressure and displacement, show consistency with the physics of the problem. In these methods with low number of total mechanical iterations, errors within acceptance range can be achieved. As in the pore pressure method mechanics time step increases more uniformly, this method would be less costly in comparison with the local error method. These results are likely to be useful in decision making regarding choice of solution schemes. Moreover, the stability of the FV method in multilayered media is verified using a numerical example.  相似文献   

5.
In this paper, we consider numerical algorithms for modeling of the time‐dependent coupling between the fluid flow and deformation in elastic porous media. Here, we employ a four‐field formulation which uses the total stress, displacement, flux, and pressure as its primary variables and satisfies Darcy's law and linear elasticity in mixed weak form. We present four different iteratively coupled methods, known as drained, undrained, fixed‐strain, and fixed‐stress splits, in which the diffusion operator is separated from the elasticity operator and the two subproblems are solved in a staggered way while ensuring convergence of the solution at each time step. A‐priori convergence results for each iterative coupling which differs from those found when using a traditional two‐field or three‐field formulation are presented. We also present some numerical results to support the convergence estimates and to show the accuracy and efficiency of the algorithms. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

6.
In this paper, we study solving iteratively the coupling of flow and mechanics. We demonstrate the stability and convergence of two widely used schemes: the undrained split method and the fixed stress split method. To our knowledge, this is the first time that such results have been rigorously obtained and published in the scientific literature. In addition, we propose a new stress split method, with faster convergence rate than known schemes. These results are specially important today due to the interest in hydraulic fracturing (Dean and Schmidt SPE J. 14:707–714, 2009; Ji et al. SPE J. 14:423–430, 2009; Samier and De Gennaro 2007; Settari and Maurits SPE J. 3:219–226, 1998), in oil and gas shale reservoirs.  相似文献   

7.
In this work, we construct a new methodology for enhancing the predictive accuracy of sequential methods for coupling flow and geomechanics while preserving low computational cost. The new computational approach is developed within the framework of the fixed-stress split algorithm procedure in conjunction with data assimilation based on the ensemble Kalman filter (EnKF). In this context, we identify the high-fidelity model with the two-way formulation where additional source term appears in the flow equation containing the time derivative of total mean stress. The iterative scheme is then interlaced with data assimilation steps, which also incorporate the modeling error inherent to the EnKF framework. Such a procedure gives rise to an “enhanced one-way formulation,” exhibiting substantial improvement in accuracy compared with the classical one-way method. The governing equations are discretized by mixed finite elements, and numerical simulation of a 2D slab problem between injection and production wells illustrate the tremendous achievement of the method proposed herein.  相似文献   

8.
Fluid injection–induced tensile opening is modeled using an extended finite volume method (XFVM). An embedded fracture strategy is used for the flow problem, that is, the fractures are discretized using finite volume segments without resolving the grid around them. Further, the discontinuities across fractures are modeled using special basis functions. The fracture openings due to enhanced fluid pressure and the associated shear slip due to traction free boundary condition on the fracture segments are both modeled using these special discontinuity basis functions. Mass transfer between fractures and matrix is modeled using the pressure difference. The enhancement of fracture storativity due to tensile opening leads to stronger coupling between flow and mechanics. An iterative scheme relying on the fixed-stress approach for fractures, which conserves the stress dependent terms over each iteration of the flow problem, has been introduced. Tensile opening has been simulated for single fractures embedded in two- and three-dimensional matrices. The convergence criterion for sequentially implicit fixed-stress scheme for fractures embedded in elastic media is established and has been validated numerically. Further, for 2D simulations, the effect of the matrix permeability for fracture propagation due to tensile opening has been studied.  相似文献   

9.
在地下流动系统问题的研究中,热-水动力-力学(THM)耦合过程是研究的热点问题。在地下多相非等温数值模拟软件TOUGH2的框架内,基于Biot固结理论和摩尔-库仑破坏判定准则,建立了THM耦合模型;采用积分有限差和有限元联合的空间离散方法,开发了THM模拟器TOUGH2Biot。该模拟器中热和水动力过程是全耦合,力学过程是部分耦合。通过与解析解的对比,验证了其正确性。基于鄂尔多斯盆地CCS示范工程,采用TOUGH2Biot研究了CO2注入地层后的THM响应。结果显示CO2的注入引起流体压力急剧增加,地层有效应力减小,地表隆起,隆起大小在几十个厘米,同时孔渗增加,利于CO2注入引起的压力上升向外消散。CO2注入最有可能导致剪切破坏的位置位于最大速率注入点上部盖层,其次为靠近地表的位置。  相似文献   

10.
A simple method called anisotropic transformed stress (ATS) method is proposed to develop failure criteria and constitutive models for anisotropic soils. In this method, stress components in different directions are modified differently in order to reflect the effect of anisotropy. It includes two steps of mapping of stress. First, a modified stress tensor is introduced, which is a symmetric multiplication of stress tensor and fabric tensor. In the modified stress space, anisotropic soils can be treated to be isotropic. Second, a TS tensor is derived from the modified stress tensor for the convenience of developing anisotropic constitutive models to account for the effect of intermediate principal stress. By replacing the ordinary stress tensor with the TS tensor directly, the unified hardening model is extended to model the anisotropic deformation of soils. Anisotropic Lade's criterion is adopted for shear yield and shear failure in the model. The form of the original model formulations remains unchanged, and the model parameters are independent of the loading direction. Good agreement between the experimental results and predictions of the anisotropic unified hardening model is observed. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
A new parallel solution technique is developed for the fully implicit three‐dimensional two‐phase flow model. An expandedcell‐centered finite difference scheme which allows for a full permeability tensor is employed for the spatial discretization, and backwardEuler is used for the time discretization. The discrete systems are solved using a novel inexact Newton method that reuses the Krylov information generated by the GMRES linear iterative solver. Fast nonlinear convergence can be achieved by composing inexact Newton steps with quasi‐Newton steps restricted to the underlying Krylov subspace. Furthermore, robustness and efficiency are achieved with a line‐search backtracking globalization strategy for the nonlinear systems and a preconditioner for each coupled linear system to be solved. This inexact Newton method also makes use of forcing terms suggested by Eisenstat and Walker which prevent oversolving of the Jacobian systems. The preconditioner is a new two‐stage method which involves a decoupling strategy plus the separate solutions of both nonwetting‐phase pressure and saturation equations. Numerical results show that these nonlinear and linear solvers are very effective.  相似文献   

12.
提出了一种计算土体渗流-应力耦合场的状态方程法。按平面应变问题,将描述渗流-应力耦合的平面固结方程进行空间离散,并用状态方程表示了有限元控制方程。利用牛顿-柯特斯公式,导出了当前时间步节点位移向量与前一时间步位移向量之间关系的递推公式。算例表明:状态方程法解决土体渗流-应力耦合问题与传统差分法相比的优势在于用较少的机时即可得到较为精确的解。  相似文献   

13.
A new anisotropic poroelastic damage model is proposed for saturated brittle porous materials. The model is formulated in the framework of the continuum damage mechanics. A second‐rank symmetric tensor is used to characterize material damage due to oriented microcracks. The classic Biot poroelastic theory is then extended to include poroelastic damage coupling. Both the deterioration of elastic properties and poroelastic coefficients is taken into account. A suitable procedure for determination of model parameters from standard laboratory tests is presented. The validity of the model is tested through comparison between numerical predictions and experimental data in various loading conditions. The overall performance of the model is evaluated. The choice of relevant effective stress for the microcrack propagation criterion in saturated cohesive geomaterials is discussed. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

14.
The pressure variations during the production of petroleum reservoir induce stress changes in and around the reservoir. Such changes of the stress state can induce marked deformation of geological structures for stress sensitive reservoirs as chalk or unconsolidated sand reservoirs. The compaction of those reservoirs during depletion affects the pressure field and so the reservoir productivity. Therefore, the evaluation of the geomechanical effects requires to solve in a coupling way the geomechanical problem and the reservoir multiphase fluid flow problem. In this paper, we formulate the coupled geomechanical‐reservoir problem as a non‐linear fixed point problem and improve the resolution of the coupling problem by comparing in terms of robustness and convergence different algorithms. We study two accelerated algorithms which are much more robust and faster than the conventional staggered algorithm and we conclude that they should be used for the iterative resolution of coupled reservoir‐geomechanical problem. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

15.
We present an a priori stability and convergence analysis of a new mixed discontinuous Galerkin scheme applied to the instationary Darcy problem. The analysis accounts for a spatially and temporally varying permeability tensor in all estimates. The proposed method is stabilized using penalty terms in the primary and the flux unknowns.  相似文献   

16.
Determination of well locations and their operational settings (controls) such as injection/production rates in heterogeneous subsurface reservoirs poses a challenging optimization problem that has a significant impact on the recovery performance and economic value of subsurface energy resources. The well placement optimization is often formulated as an integer-programming problem that is typically carried out assuming known well control settings. Similarly, identification of the optimal well settings is usually formulated and solved as a control problem in which the well locations are fixed. Solving each of the two problems individually without accounting for the coupling between them leads to suboptimal solutions. Here, we propose to solve the coupled well placement and control optimization problems for improved production performance. We present an alternating iterative solution of the decoupled well placement and control subproblems where each subproblem (e.g., well locations) is resolved after updating the decision variables of the other subproblem (e.g., solving for the control settings) from previous step. This approach allows for application of well-established methods in the literature to solve each subproblem individually. We show that significant improvements can be achieved when the well placement problem is solved by allowing for variable and optimized well controls. We introduce a well-distance constraint into the well placement objective function to avoid solutions containing well clusters in a small region. In addition, we present an efficient gradient-based method for solving the well control optimization problem. We illustrate the effectiveness of the proposed algorithms using several numerical experiments, including the three-dimensional PUNQ reservoir and the top layer of the SPE10 benchmark model.  相似文献   

17.
In this paper, we describe a single-relaxation-time (SRT) lattice Boltzmann formulation, which can be effectively applied to anisotropic advection-dispersion equations (AADE). The formulation can be applied to space and time variable anisotropic hydrodynamic dispersion tensor. The approach utilizes diffusion velocity lattice Boltzmann formulation which in the case of AADE can represent anisotropic diagonal and off-diagonal elements of the dispersion matrix by the coupling of advective and diffusive fluxes in equilibrium function. With this approach, AADE can be applied to the SRT lattice Boltzmann formulation using the same equilibrium function and without any changes to collision step nor in the application of boundary conditions. The approach shows good stability even for highly anisotropic dispersion tensor and is tested on selected illustrative examples which demonstrate the accuracy and applicability of the proposed method.  相似文献   

18.
We consider an iterative scheme for solving a coupled geomechanics and flow problem in a fractured poroelastic medium. The fractures are treated as possibly non-planar interfaces. Our iterative scheme is an adaptation due to the presence of fractures of a classical fixed stress-splitting scheme. We prove that the iterative scheme is a contraction in an appropriate norm. Moreover, the solution converges to the unique weak solution of the coupled problem.  相似文献   

19.
We present a new nonlinear monotone finite volume method for diffusion equation and its application to two-phase flow model. We consider full anisotropic discontinuous diffusion or permeability tensors on conformal polyhedral meshes. The approximation of the diffusive flux uses the nonlinear two-point stencil which provides the conventional seven-point stencil for the discrete diffusion operator on cubic meshes. We show that the quality of the discrete flux in a reservoir simulator has great effect on the front behavior and the water breakthrough time. We compare two two-point flux approximations (TPFA), the proposed nonlinear TPFA and the conventional linear TPFA, and multipoint flux approximation (MPFA). The new nonlinear scheme has a number of important advantages over the traditional linear discretizations. Compared to the linear TPFA, the nonlinear TPFA demonstrates low sensitivity to grid distortions and provides appropriate approximation in case of full anisotropic permeability tensor. For nonorthogonal grids or full anisotropic permeability tensors, the conventional linear TPFA provides no approximation, while the nonlinear flux is still first-order accurate. The computational work for the new method is higher than the one for the conventional TPFA, yet it is rather competitive. Compared to MPFA, the new scheme provides sparser algebraic systems and thus is less computational expensive. Moreover, it is monotone which means that the discrete solution preserves the nonnegativity of the differential solution.  相似文献   

20.
次塑性模型及饱和砂土动力弹塑性响应分析   总被引:1,自引:1,他引:0  
提出了一个新的次塑性模型并用试验作了初步验证,建议用异步交叉迭代显式差分有限元求解固液耦合动力弹塑性问题。利用次塑性模型以及动力固结有限元计算程序,对一简单饱和砂土地基的动力弹塑性响应进行了分析,取得了合理的结果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号