首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 80 毫秒
1.
A two-body interatomic potential model for GeO2 polymorphs has been determined to simulate the structure change of them by semi-empirical procedure, total lattice energy minimization of GeO2 polymorphs. Based on this potential, two polymorphs of GeO2; α-quartz-type and rutile-type, have been reproduced using the molecular dynamics (MD) simulation techniques. Crystal structures, bulk moduli, volume thermal expansion coefficients and enthalpies of these polymorphs of GeO2 were simulated. In spite of the simple form of the potential, these simulated structural values, bulk moduli and thermal expansivities are in excellent agreement with the reliable experimental data in respect to both polymorphs. Using this potential, MD simulation was further used to study the structural changes of GeO2 under high pressure. We have investigated the pressure-induced amorphization. As reported in previous experimental studies, quartz-type GeO2 undergoes pressure-induced crystalline-to-amorphous transformation at room temperature, the same as other quartz compounds; SiO2, AlPO4. Under hydrostatic compression, in this study, α-quartz-type GeO2 transformed to a denser amorphous state at 7.4 GPa with change of the packing of oxygen ions and increase of germanium coordination. At higher pressure still, rutile-type GeO2 transformed to a new phase of CaCl2-type structure as a post-rutile candidate. Received: 29 July 1996 / Revised, accepted: 30 April 1997  相似文献   

2.
The shear viscosity of 66 liquids in the systems CaO-Al2O3-SiO2 (CAS) and MgO-Al2O3-SiO2 (MAS) have been measured in the ranges 1-104 Pa s and 108-1012 Pa s. Liquids belong to series, nominally at 50, 67, and 75 mol.% SiO2, with atomic M2+/(M2++2Al) typically in the range 0.60 to 0.40 for each isopleth. In the system CAS at 1600°C, viscosity passes through a maximum at all silica contents. The maxima are clearly centered in the peraluminous field, but the exact composition at which viscosity is a maximum is poorly defined. Similar features are observed at 900°C. In contrast, data for the system MAS at 1600°C show that viscosity decreases with decreasing Mg/(Mg + 2Al) at all silica contents, but that a maximum in viscosity must occur in the field where Mg/2Al >1. On the other hand, the viscosity at 850°C increases with decreasing Mg/(Mg + 2Al) and shows no sign of reaching a maximum, even for the most peraluminous composition studied. The data from both systems at 1600°C have been analysed assuming that shear viscosity is proportional to average bond strength and considering the equilibrium:
Al[4]-(Mg,Ca)0.5⇔(Mg,Ca)0.5-NBO+AlXS  相似文献   

3.
The unit-cell dimensions and crystal structure of sillimanite at various pressures up to 5.29 GPa have been refined from single-crystal X-ray diffraction data. As pressure increases, a and b decrease linearly, whereas c decreases nonlinearly with a slightly positive curvature. The axial compression ratios at room pressure are βabc=1.22:1.63:1.00. Sillimanite exhibits the least compressibility along c, but the least thermal expansivity along a (Skinner et al. 1961; Winter and Ghose 1979). The bulk modulus of sillimanite is 171(1) GPa with K′=4 (3), larger than that of andalusite (151 GPa), but smaller than that of kyanite (193 GPa). The bulk moduli of the [Al1O6], [Al2O4], and [SiO4] polyhedra are 162(8), 269(33), and 367(89) GPa, respectively. Comparison of high-pressure data for Al2SiO5 polymorphs reveals that the [SiO4] tetrahedra are the most rigid units in all these polymorphic structures, whereas the [AlO6] octahedra are most compressible. Furthermore, [AlO6] octahedral compressibilities decrease from kyanite to sillimanite, to andalusite, the same order as their bulk moduli, suggesting that [AlO6] octahedra control the compression of the Al2SiO5 polymorphs. The compression of the [Al1O6] octahedron in sillimanite is anisotropic with the longest Al1-OD bond shortening by ~1.9% between room pressure and 5.29 GPa and the shortest Al1-OB bond by only 0.3%. The compression anisotropy of sillimanite is primarily a consequence of its topological anisotropy, coupled with the compression anisotropy of the Al-O bonds within the [Al1O6] octahedron.  相似文献   

4.
In order to clarify the structural configurations observed in Diss in the Ca-rich region of the Di-En join (in which TEM observations show neither exsolution microstructures nor evidence of spinodal decomposition) single crystals large enough for X-ray diffraction analyses, with composition (Ca0.66Mg0.34)MgSi2O6, have been equilibrated close to the solvus atT=1350° C for 317 h, and quenched at room temperature. The refinement in C2/c space group shows that in the M2 site Ca and Mg are fully ordered in two split positions (M2occ: 0.66 Ca; M2occ: 0.34 Mg). Since the average structure shows a relevant elongation of anisotropic thermal ellipsoids of the O2 and O3 oxygen atoms, the refinement has been carried out according to a split model for O2 and O3 atoms: Ca appears 8-coordinated (as in diopside) and Mg shows a sixfold coordination similar to that of high-pigeonite. This coordination for Mg is significantly different from the fourfold coordination (Zn-like in Zn-cpx) proposed previously and it is a more probable coordination for Mg from a crystalchemical point of view. The same results were obtained refining a Di80En20 cpx, equilibrated atT=1230° C, according to the same O-split model. The data support the coexistence of a Di-like configuration for Ca and of a highPig-like configuration for Mg away from the solvus also. AtT very near toT solidus the different configurations, observed at room temperature in the quenched samples, should converge and Ca and Mg should retain a single disordered configuration in the M2 site.  相似文献   

5.
Infrared (IR) and Raman spectroscopic methods are important complementary techniques in structural studies of aluminosilicate glasses. Both techniques are sensitive to small-scale (<15 Å) structural features that amount to units of several SiO4 tetrahedra. Application of IR spectroscopy has, however, been limited by the more complex nature of the IR spectrum compared with the Raman spectrum, particularly at higher frequencies (1200–800 cm?1) where strong antisymmetric Si-O and Si-O-Si absorptions predominate in the former. At lower frequencies, IR spectra contain bands that have substantial contributions from ‘cage-like’ motions of cations in their oxygen co-ordination polyhedra. In aluminosilicates these bands can provide information on the structural environment of Al that is not obtainable directly from Raman studies. A middle frequency envelope centred near 700 cm?1 is indicative of network-substituted AlO4 polyhedra in glasses with Al/(Al+Si)>0·25 and a band at 520–620cm?1 is shown to be associated with AlO6 polyhedra in both crystals and glasses. The IR spectra of melilite and melilite-analogue glasses and crystals show various degrees of band localization that correlate with the extent of Al, Si tetrahedral site ordering. An important conclusion is that differences in Al, Si ordering may lead to very different vibrational spectra in crystals and glasses of otherwise gross chemical similarity.  相似文献   

6.
Four crystals of synthetic wadsleyite, -(Mg,Fe)2SiO4, were mounted together in one diamond-anvil cell for the determination of unit-cell parameters as a function of pressure. The Fe/(Fe+Mg) are 0.00, 0.08, 0.16, and 0.25 (the most iron-rich stable composition). Unit-cell refinements were made at 12 pressures up to 4.5 GPa. No phase transitions were observed and all crystals remained dimensionally orthorhombic. Of the three axes, c is the most compressible (0.000239(3) GPa-1), whereas compressibilities of a and b are both about 30% less. The Fe content has no systematic effect on volume or linear compressibilities. Bulk moduli, based on a Birch-Murnaghan equation of state (K assumed to be 4.00) are 160(3), 169(3), 164(2), and 165(3) GPa for the four crystals in order of increasing Fe. Substitution of Fe for Mg, therefore, does not appear to have a systematic effect on bulk modulus. Other factors, especially Fe3+/Fe2+ and other deviations from the strict Mg2SiO4-Fe2SiO4 binary, may have a greater influence on compressibility.  相似文献   

7.
We have experimentally determined the solidus position of model lherzolite in the system CaO-MgO-Al2O3-SiO2-CO2 (CMAS.CO2) from 3 to 7 GPa by locating isobaric invariant points where liquid coexists with olivine, orthopyroxene, clinopyroxene, garnet and carbonate. The intersection of two subsolidus reactions at the solidus involving carbonate generates two invariant points, I1A and I2A, which mark the transition from CO2-bearing to dolomite-bearing and dolomite-bearing to magnesite-bearing lherzolite respectively. In CMAS.CO2, we find I1A at 2.6 GPa/1230 °C and I2A at 4.8 GPa/1320 °C. The variation of all phase compositions along the solidus has also been determined. In the pressure range investigated, solidus melts are carbonatitic with SiO2 contents of <6 wt%, CO2 contents of ˜45 wt%, and Ca/(Ca+Mg) ratios that range from 0.59 (3 GPa) to 0.45 (7 GPa); compositionally they resemble natural magnesiocarbonatites. Volcanic magnesiocarbonatites may well be an example of the eruption of such melts directly from their mantle source region as evidenced by their diatremic style of activity and lack of associated silicate magmas. Our data in the CMAS.CO2 system show that in a carbonate-bearing mantle, solidus and near-solidus melts will be CO2-rich and silica poor. The widespread evidence for the presence of CO2 in both the oceanic and continental upper mantle implies that such low degree SiO2-poor carbonatitic melts are common in the mantle, despite the rarity of carbonatites themselves at the Earth's surface. Received: 9 April 1997 / Accepted: 25 November 1997  相似文献   

8.
We present structural information obtained on spinel and alumina at high temperature (298-2400 K) using in-situ XANES at the Mg and Al K-edges. For spinel, [4](Alx,Mg1−x)[6](Al2−x,Mgx)O4, with increasing temperature, a substitution of Mg by Al and Al by Mg in their respective sites is observed. This substitution corresponds to an inversion of the Mg and Al sites. There is a significant change in the Al K-edge spectra between crystal and liquid, which can be attributed to a change of the [6]Al normally observed in corundum at room temperature, to a mixture of [6]Al-[4]Al in the liquid state. This conclusion is in good agreement with previous 27Al NMR experiments. Furthermore, both experiments at the Al and Mg K-edges are in good agreement with XANES calculation made using FDMNES code.  相似文献   

9.
The crystal structure of perovskite-type MgSiO3 has been studied up to 96 kbar, using a miniature diamondanvil pressure cell and by means of single-crystal four-circle diffractometry. The observed unit cell compression gives a bulk modulus of K o=2.47 Mbar, assuming Ko=4. The unit cell compression is controlled mainly by the tilting of SiO6 octahedra. The effect of pressure is to change Mg polyhedron towards 8-fold coordination rather than 12-fold coordination. The polyhedral bulk moduli of SiO6 and MgO8 are 3.8 Mbar and 1.9 Mbar, respectively.  相似文献   

10.
 Discrete, well-ordered, single-phase crystals (the Hanic phase) form when powders the bulk composition of Ca5Al6MgSiO17 are allowed to react in the absence of a melt. If, on the other hand, either the powders or crystals of Ca5Al6MgSiO17 are molten and then cooled, complex intergrowths form. These intergrowths consist of modules having the composition and structure of Ca3Al4MgO10 and gehlenite (Ca2Al2SiO7), forming a polysomatic series in which the modules occur in varied proportions. High-resolution transmission electron microscope (HRTEM) images reveal the details of these intergrowths. Mass balance is achieved by the formation of this polysomatic series together with Mg-substituted mayenite (Ca12−xMgxAl14O33). The tetrahedral sheets in gehlenite have close structural similarities to those of Ca5Al6O14. Based on our HRTEM images, we hypothesize chemical substitutions between gehlenite and Ca5Al6O14, resulting in gehlenite-like modules that are depleted in Si and correspondingly enriched in Al and Ca. Received: 2 August 2000 / Accepted: 18 January 2001  相似文献   

11.
Molecular dynamics (MD) computer simulations of liquid water held in one-dimensional nano-confinement by two parallel, electrostatically neutral but hydrophilic surfaces of brucite, Mg(OH)2, provide greatly increased, atomistically detailed understanding of surface-related effects on the spatial variation in the structural ordering, hydrogen bond (H-bond) organization, and local density of H2O molecules at this important model hydroxide surface. NVT-ensemble MD simulations (i.e., at constant number of atoms, volume and temperature) were performed for a series of model systems consisting of 3 to 30 Å-thick water layers (containing 35 to 360 H2O molecules) confined between two 19 Å-thick brucite substrate layers. The results show that the hydrophilic substrate significantly influences the near-surface water structure, with both H-bond donation to the surface oxygen atoms and H-bond acceptance from the surface hydrogen atoms in the first surface layer of H2O molecules playing key roles. Profiles of oxygen and hydrogen atomic density and H2O dipole orientation show significant deviation from the corresponding structural properties of bulk water to distances as large as 15 Å (∼5 molecular water layers) from the surface, with the local structural environment varying significantly with the distance from the surface. The water molecules in the first layer at about 2.45 Å from the surface have a two-dimensional hexagonal arrangement parallel to brucite layers, reflecting the brucite surface structure, have total nearest neighbor coordinations of 5 or 6, and are significantly limited in their position and orientation. The greatest degree of the tetrahedral (ice-like) ordering occurs at about 4 Å from the surface. The translational and orientational ordering of H2O molecules in layers further from the surface become progressively more similar to those of bulk liquid water. A quantitative statistical analysis of the MD-generated instantaneous molecular configurations in terms of local density, molecular orientation, nearest neighbor coordination, and the structural details of the H-bonding network shows that the local structure of interfacial water at the brucite surface results from a combination of “hard wall” (geometric and confinement) effects, highly directional H-bonding, and thermal motion. This structure does not resemble that of bulk water at ambient conditions or at elevated or reduced temperature, but shares some similarities with that of water under higher pressure.  相似文献   

12.
Summary. ?Ca-tourmaline has been synthesized hydrothermally in the presence of Ca(OH)2 and CaCl2-bearing solutions of different concentration at T = 300–700 °C at a constant fluid pressure of 200 MPa in the system CaO-MgO-Al2O3-SiO2-B2O3-H2O-HCl. Synthesis of tourmaline was possible at 400 °C, but only above 500 °C considerable amounts of tourmaline formed. Electron microprobe analysis and X-ray powder data indicate that the synthetic tourmalines are essentially solid solutions between oxy-uvite, CaMg3- Al6(Si6O18)(BO3)3(OH)3O, and oxy-Mg-foitite, □(MgAl2)Al6(Si6O18)(BO3)3(OH)3O. The amount of Ca ranges from 0.36 to 0.88 Ca pfu and increases with synthesis temperature as well as with bulk Ca-concentration in the starting mixture. No hydroxy-uvite, CaMg3(MgAl5)(Si6O18)(BO3)3(OH)3(OH), could be synthesized. All tourmalines have < 3 Mg and > 6 Al pfu. The Al/(Al + Mg)-ratio decreases from 0.80 to 0.70 with increasing Ca content. Al is coupled with Mg and Ca via the substitutions Al2□Mg−2Ca−1 and AlMg−1H−1. No single phase tourmaline could be synthesized. Anorthite ( + quartz in most runs) has been found coexisting with tourmaline. Other phases are chlorite, tremolite, enstatite or cordierite. Between solid and fluid, Ca is strongly fractionated into tourmaline ( + anorthite). The concentration ratio D = Ca(fluid)/Ca(tur) increases from 0.20 at 500 °C up to 0.31 at 700 °C. For the assemblage turmaline + anorthite + quartz + chlorite or tremolite or cordierite, the relationship between Ca content in tourmaline and in fluid with temperature can be described by the equation (whereby T = temperature in °C, Ca(tur) = amount of Ca on the X-site in tourmaline, Ca( fluid) = concentration of Ca2+ in the fluid in mol/l). The investigations may serve as a first guideline to evaluate the possibility to use tourmaline as an indicator for the fluid composition.
Zusammenfassung. ?Synthese von Ca-Turmelin im System CaO-MgO-Al 2 O 3 -SiO 2 -B 2 O 3 -H 2 O-HCl Im System CaO-MgO-Al2O3-SiO2-B2O3-H2O-HCl wurde Ca-Turmalin hydrothermal aus Ca(OH)2 and CaCl2-haltigen L?sungen bei T = 300–700 °C und einem konstanten Fluiddruck von 200 MPa synthetisiert. Die Synthese von Turmalin war m?glich ab 400 °C, aber nur oberhalb von 500 °C bildeten sich deutliche Mengen an Turmalin. Elektronenstrahl-Mikrosondenanalysen und R?ntgenpulveraufnahmen zeigen, da? Mischkristalle der Reihe Oxy-Uvit, CaMg3Al6(Si6O18)(BO3)3(OH)3O, und Oxy-Mg-Foitit, □(MgAl2)Al6(Si6O18)(BO3)3(OH)3O gebildet wurden. Der Anteil an Ca variiert zwischen 0.36 und 0.88 Ca pfu und nimmt mit zunehmender Synthesetemperatur und zunehmender Ca-Konzentration im System zu. Hydroxy-Uvit, CaMg3(MgAl5) (Si6O18)(BO3)3(OH)3(OH), konnte nicht synthetisiert werden. Alle Turmaline haben < 3 Mg und > 6 Al pfu. Dabei nimmt das Al/(Al + Mg)- Verh?ltnis mit zunehmendem Ca-Gehalt von 0.80 auf 0.70 ab. Al ist gekoppelt mit Mg und Ca über die Substitutionen Al2□Mg−2Ca−1 und AlMg−1H−1. Einphasiger Turmalin konnte nicht synthetisiert werden. Anorthit (+ Quarz in den meisten F?llen) koexistiert mit Turmalin. Andere Phasen sind Chlorit, Tremolit, Enstatit oder Cordierit. Ca zeigt eine deutliche Fraktionierung in den Festk?rpern Turmalin (+ Anorthit). Das Konzentrationsverh?ltnis D = Ca(fluid)/Ca(tur) nimmt von 0.20 bei 500 °C auf 0.31 bei 700 °C zu. Für die Paragenese Turmalin + Anorthit + Quarz mit Chlorit oder Tremolit oder Cordierit gilt folgende Beziehung zwischen Ca-Gehalt in Turmalin und Fluid und der Temperatur: (wobei T = Temperatur in °C, Ca(tur) = Anteil an Ca auf der X-Position in Turmalin, Ca(fluid) = Konzentration von Ca2+ im Fluid in mol/l). Die Untersuchungen dienen zur ersten Absch?tzung, ob Turmalin als Fluidindikator petrologisch nutzbar ist.


Received July 24, 1998;/revised version accepted October 21, 1999  相似文献   

13.
The available experimental data on garnet-bearing-assemblages for synthetic chemical systems (MAS, FMAS, CMAS) have been used to calibrate consistent models for the Al-solubility in orthopyroxene coexisting with garnet, on the basis of equilibrium reaction Py(opx) ? Py(gt). The alternative reaction En(opx)+MgTs(opx) ? Py(gt) is discarded as it yields larger a-posteriori uncertainties. To provide a reliable equation, directly applicable to natural garnet lherzolites, each successive synthetic-system calibration is tested against Mori and Green's (1978) natural-system reequilibration data. For the MAS system, an ideal solution model with constant ΔH°, ΔV° and ΔS° based on 12-oxygen structural formulae for aluminous pyroxenes yields the best fit (GPa, K), $${\text{25,134 + 9,941 }}P - 23.177{\text{ }}T{\text{ + }}RT{\text{ ln (}}X_{{\text{Al}}}^{TB'} {\text{) = 0}}$$ . The MAS synthetic-system calibration can be directly applied to the FMAS system by adding an empirical correction term (20,835 [X Fe gt ]2) independent of either pressure and temperature. However, this correction term is not important because of the limited Fe content of mantle peridotites. When calcium is added to the MAS system, the equilibrium constant is calculated as: $$K_{{\text{CMAS}}} = {{[(1 - X_{{\text{Ca}}}^{M2} )^2 (X_{{\text{Al}}}^{TB'} )]} \mathord{\left/ {\vphantom {{[(1 - X_{{\text{Ca}}}^{M2} )^2 (X_{{\text{Al}}}^{TB'} )]} {[(1 - X_{{\text{Ca}}}^X )^3 (X_{{\text{Al}}}^Y )^2 ]}}} \right. \kern-\nulldelimiterspace} {[(1 - X_{{\text{Ca}}}^X )^3 (X_{{\text{Al}}}^Y )^2 ]}}$$ where M2 and TB′ are pyroxene sites and X and Y are garnet sites. Up to 5 GPa, X Ca X ~ and the CMAS experimental data agree well with the MAS model, but for Yamada and Takahashi's (1983) higher pressure experiments (up to 10 GPa), this no longer holds. Indeed, the garnet solid solution does not behave ideally and an asymmetric regular solution model is needed for application to the deepest natural samples available (>7GPa). Calibration based on new high pressure data yields, $$\begin{gathered} \Delta G_{{\text{CMAS}}}^{XS} = (X_{{\text{Ca}}}^X )(1 - X_{{\text{Ca}}}^X )(0.147 - X_{{\text{Ca}}}^X ) \hfill \\ {\text{ }} \cdot {\text{(6,440,535 - 1,490,654 }}P{\text{)}} \hfill \\ \end{gathered}$$ . According to tests of the inferred solution model, the CFMAS system is a good analogue of natural systems in the pressure, temperature and composition ranges covered by the natural-system reequilibration data (up to 1,500° C and 4 GPa). Simultaneous application of this thermobarometer and of the two-pyroxene mutual solubility thermometer (Bertrand and Mercier 1985) to the phases of the garnet-peridotite xenoliths from Thaba Putsoa, Lesotho, yields a refined paleogeotherm for southern Africa strongly contrasting with previous results. The “granular” nodules yield a thermal gradient of about 8 K/km characteristic of a lithospheric-type environment, whereas the “sheared” ones show a lower gradient of about 1 K/km. This is a typical geotherm expected for a steady thermal state with an inflexion point at the depth of about 160 km corresponding to the lithosphere/asthenosphere boundary.  相似文献   

14.
Atomistic computer simulation methods have been used to model the nature of nonstoichiometry and impurity defects in the bulk and at the (101?4) surface of dolomite (MgCa(CO3)2). Calcium and Mg in the bulk and at the surface have been replaced with divalent Ni, Co, Zn, Fe, Mn, and Cd. The results of these calculations indicate that in the bulk, these impurities will prefer to substitute at the Ca site rather than the Mg site. Ca excess in dolomite is most likely incorporated as basal stacking faults; this nonstoichiometry can influence the site distribution of impurities. The calculated surface segregation energies suggest that of all the impurities studied, only Cd will show a strong preference for the (101?4) surface of dolomite.  相似文献   

15.
16.
Interdiffusion coefficients of Al + Al vs. Mg + Si in the gehlenite–åkermanite system of melilite were determined by coupled annealing of synthesized end-member single crystals. The observed diffusion coefficients for a couple-annealed sample vary for about 2 orders of magnitude, showing strong dependence on the gehlenite–åkermanite composition: diffusion coefficient observed at 1350 °C, for example, is 3 × 10?13 cm2 s?1 at 5 mol% åkermanite composition (Ak5), increases to 2 × 10?11 cm2 s?1 at Ak80, and then decreases to 1 × 10?12 cm2 s?1 at Ak95. The diffusion coefficient–temperature relation indicates high activation energy of diffusion of about 420 kJ mol?1 for gehlenite-rich melilite. The observed diffusion coefficient–composition relation may be explained by a combination of (1) the diffusion coefficient–melting temperature relation (Flynn's rule) and (2) the feasibility of local charge compensation, which can possibly be maintained more easily in the intermediate chemical composition. The high activation energy value for gehlenitic melilite appears to correspond to the complex diffusion mechanism. The observed highly variable diffusion coefficients suggest that gehlenite–åkermanite zoning in the melilite crystals in Ca, Al-rich inclusions in the carbonaceous meteorites may provide a sensitive indicator for the thermal history of the inclusions.  相似文献   

17.
Abstract Chemical analysis (including H2, F2, FeO, Fe2O3) of a Mg-vesuvianite from Georgetown, Calif., USA, yields a formula, Ca18.92Mg1.88Fe3+0.40Al10.97Si17.81- O69.0.1(OH)8.84F0.14, in good agreement on a cation basis with the analysis reported by Pabst (1936). X-ray and electron diffraction reveal sharp reflections violating the space group P4/nnc as consistent with domains having space groups P4/n and P4nc. Refinement of the average crystal structure in space group P4/nnc is consistent with occupancy of the A site with Al, of the half-occupied B site by 0.8 Mg and 0.2 Fe, of the half-occupied C site by Ca, of the Ca (1,2,3) sites by Ca, and the OH and O(10) sites by OH and O. We infer an idealized formula for Mg-vesuvianite to be Ca19Mg(MgAl7)Al4Si18O69(OH)9, which is related to Fe3+-vesuvianite by the substitutions Mg + OH = Fe3++ O in the B and O(10) sites and Fe3+= Al in the AlFe site. Thermodynamic calculations using this formula for Mg-vesuvianite are consistent with the phase equilibria of Hochella, Liou, Keskinen & Kim (1982) but inconsistent with those of Olesch (1978). Further work is needed in determining the composition and entropy of synthetic vs natural vesuvianite before quantitative phase equilibria can be dependably generated. A qualitative analysis of reactions in the system CaO-MgO-Al2O3-SiO2-H2O-CO2 shows that assemblages with Mg-vesuvianite are stable to high T in the absence of quartz and require water-rich conditions (XH2O > 0.8). In the presence of wollastonite, Mg-vesuvianite requires very water-rich conditions (XH2O > 0.97).  相似文献   

18.
The effect of composition on the relaxed adiabatic bulk modulus (K0) of a range of alkali- and alkaline earth-titanosilicate [X 2 n/n+ TiSiO5 (X=Li, Na, K, Rb, Cs, Ca, Sr, Ba)] melts has been investigated. The relaxed bulk moduli of these melts have been measured using ultrasonic interferometric methods at frequencies of 3, 5 and 7 MHz in the temperature range of 950 to 1600°C (0.02 Pa s < s < 5 Pa s). The bulk moduli of these melts decrease with increasing cation size from Li to Cs and Ca to Ba, and with increasing temperature. The bulk moduli of the Li-, Na-, Ca- and Ba-bearing metasilicate melts decrease with the addition of both TiO2 and SiO2 whereas those of the K-, Rb- and Cs-bearing melts increase. Linear fits to the bulk modulus versus volume fraction of TiO2 do not converge to a common compressibility of the TiO2 component, indicating that the structural role of TiO2 in these melts is dependent on the identity of the cation. This proposition is supported by a number of other property data for these and related melt compositions including heat capacity and density, as well as structural inferences from X-ray absorption spectroscopy (XANES). The compositional dependence of the compressibility of the TiO2 component in these melts explains the difficulty incurred in previous attempts to incorporate TiO2 in calculation schemes for melt compressibility. The empirical relationship KV-4/3 for isostructural materials has been used to evaluate the compressibility-related structural changes occurring in these melts. The alkali metasilicate and disilicate melts are isostructural, independent of the cation. The addition of Ti to the metasilicate composition (i.e. X2TiSiO5), however, results in a series of melts which are not isostructural. The alkaline-earth metasilicate and disilicate compositions are not isostructural, but the addition of Ti to the metasilicate compositions (i.e. XTiSiO5) would appear, on the basis of modulus-volume systematics, to result in the melts becoming isostructural with respect to compressibility.  相似文献   

19.
A central interatomic potential model is presented for compounds in the binary system MgO-SiO2. The potential, of a simple form which consists of a Coulombic term, a Born repulsive term, and a Van der Walls term for oxygen-oxygen interactions, is designed to predict the properties of magnesium silicates containing Si in octahedral and tetrahedral coordination. This is achieved by fitting simultaneously to forsterite and MgSiO3 ilmenite crystal structure data, and fixing the partial ionic charges using elastic data for forsterite. The potential is found to transfer successfully to γ-Mg2SiO4 and MgSiO3 perovskite. The potential results in local structural errors around the bridging oxygen ions in clinoenstatite and β-Mg2SiO4. The predicted structure for MgSiO3 garnet is similar to the experimentally measured structure of the MnSiO3 analogue. Calculated elastic constants average to K=2.41 Mbar and μ=1.44 Mbar for the bulk and shear moduli of MgSiO3 perovskite, and K=1.87 Mbar and μ=1.10 Mbar for the bulk and shear moduli of MgSiO3 garnet.  相似文献   

20.
Six polymorphs of MgSiO3 have been studied using molecular dynamic (MD) simulation techniques, based on the empirical potential (MAMOK), which is composed of terms to describe pairwise additive Coulomb, van der Waals attraction, and repulsive interactions. Crystal structures, bulk moduli, volume thermal expansivities, and enthalpies were simulated for the known MgSiO3 polymorphs; orthoenstatite, clinoenstatite, protoenstatite, garnet, ilmenite, and perovskite. The simulated values compare very well with the available experimental data, and the results are quite satisfactory in view of the diversity of the crystal structures of the six polymorphs, the wide range of simulated properties, and the simplicity of the MAMOK potential. MD simulation was further successfully used to study the possibile existence of a post-protoenstatite phase at high temperature, and a C2/c phase at high pressure, both phases being suggested or inferred previously from experimental works.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号