首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
对西准噶尔洪古勒楞蛇绿混杂岩带进行了较系统的岩石学、地球化学和年代学方面的研究,认为其主体由超镁铁质杂岩、堆晶岩类、镁铁质岩墙、基性熔岩和深海沉积组成。岩石地球化学数据表明其具轻稀土富集、重稀土相对亏损的右倾分布模式特征,富集Ta,Yb等元素,相对富集Ba,U,Sr等元素,亏损Nb,Hf,Ti等元素,Nb具负异常,一定程度上反映其为地幔源区含岛弧火山岩组分,岩石化学数据显示该蛇绿岩形成构造环境为弧后盆地。堆晶辉长岩的LA-ICP-MS锆石U-Pb年龄为(497.2±4.2)Ma(MSWD=1.4,n=10),证实该蛇绿岩形成于晚寒武世。  相似文献   

2.
玛依勒蛇绿岩出露于玛依勒蛇绿混杂岩带中,该带位于西准噶尔造山带西南缘,是区内规模较大的一条蛇绿混杂岩带,蛇绿岩中镁铁-超镁铁质岩研究对探讨古亚洲洋古生代构造演化具有重要意义。本文选取玛依勒蛇绿岩中的镁铁-超镁铁质岩进行系统的岩石学、地球化学和年代学研究。结果表明,玛依勒蛇绿混杂岩中超镁铁质岩以富集Al_2O_3、CaO为特征,TiO_2含量与俯冲带之上地幔橄榄岩中含量相当,稀土配分曲线为轻稀土富集型,微量元素受蚀变作用影响,呈现出两种不同的曲线特征。镁铁质岩石可分为两组:I组镁铁质岩具有高MgO、低Al_2O_3,LREE轻微富集,富集大离子亲石元素,亏损Nb、Ta的特征,形成于消减带相关的岛弧环境;Ⅱ组镁铁质岩具有富碱、TiO_2,且呈LREE显著富集的右倾稀土配分曲线特征,富集大离子亲石元素,Nb、Ta正异常特征,代表了洋盆中海山或洋岛的残片。I组镁铁质岩中两个辉长岩岩块的LA-ICP-MS锆石UPb年龄分别为512.1±7.2Ma(MSWD=0.014)和531±12Ma(MSWD=0.17),与巴尔鲁克蛇绿岩、唐巴勒蛇绿岩中镁铁质岩岩块获得的锆石U-Pb年龄相吻合,且这三条蛇绿岩都具有SSZ型蛇绿岩的地球化学特征,可能为不同环境下同一洋盆的演化产物。  相似文献   

3.
西藏永珠—纳木湖蛇绿岩地球化学特征及其构造环境初探   总被引:13,自引:6,他引:13  
西藏永珠—纳木湖蛇绿岩中的变质橄榄岩从超镁铁质岩到镁铁质岩均表现出高镁,其玄武岩、辉长岩的TiO2含量较低,表现出非大洋中脊玄武岩和洋岛玄武岩的特征。微量元素、大离子亲石元素相对富集,玄武岩的Nb、Ta亏损,显示其在产出时受到俯冲作用的影响,具有岛弧玄武岩的特点,但Th的高度富集和无Zr、Hf负异常说明它又不同于岛弧玄武岩。稀土元素含量较低,在球粒陨石标准化稀土分布模式图上玄武岩为平坦型,无Eu异常,显示其具有原生岩浆成分的特点;辉长岩的稀土配分模式也为平坦型,但有Eu正异常。通过与典型地区作对比和应用构造环境判别图解,判定出该区蛇绿岩的形成环境为弧后盆地。  相似文献   

4.
西秦岭同仁隆务峡蛇绿岩矿物成分特征及构造环境   总被引:6,自引:0,他引:6  
同仁隆务峡蛇绿岩大地构造位置位于西秦岭造山带与中祁连带结合部,其组成为:地幔橄榄岩(纯橄岩、蛇纹石化纯橄岩)、超镁铁质堆晶单元(单辉橄榄岩、橄榄辉石岩)、镁铁质堆晶单元(含橄榄石辉长岩、辉长岩等)及少量辉绿岩,各单元均以断层接触,弱蚀变.镜下研究发现其岩浆结晶序列为橄榄石-单斜辉石-(斜方辉石)-斜长石,与典型的SSZ型(Supra-Subduction Zone type)蛇绿岩结晶序列吻合.对各单元矿物电子探针研究发现:橄榄石成分多为贵橄榄石,单斜辉石则多为普通辉石和透辉石,在利用其成分进行构造环境判别中,本区蛇绿岩形成于与挤压背景密切相关的环境.该蛇绿岩表现出轻稀土元素略富集、重稀土元素平坦的稀土元素配分形式,与MORB有较大差异.微量元素特征为相对富集大离子亲石元素Ba、Rb、K,而强烈亏损Nb、P,这恰与俯冲带组分特点吻合;同时高场强元素构造判别图解佐证了前述构造环境的判定.研究区的蛇绿岩应形成于成熟度较高的岛弧环境中.  相似文献   

5.
为探讨新疆北天山古生代大地构造格架及其演化,对吐哈盆地南缘古生代天窗新发现的大草滩北镁铁-超镁铁岩进行了地球化学和U-Pb定年研究。结果表明,该镁铁质-超镁铁质岩石由玄武岩、辉长岩、辉橄岩、辉石岩和蛇纹石化超基性岩组成。其轻稀土富集、重稀土相对亏损,有较弱的同化混染作用,玄武岩具有岛弧火山岩和洋中脊火山岩双重特性,可能与康古尔蛇绿岩一样产于弧后盆地环境的蛇绿岩(SSZ型)。本次研究获得的辉长岩的LA-ICP-MS锆石~(206)Pb/U~(238)年龄为416.5±4 Ma,为晚志留世,说明古亚洲洋初始主碰撞持续到志留纪晚期。  相似文献   

6.
黄山东、香山及土墩岩体均为多阶段侵入的杂岩体,岩体与围岩为侵入接触关系,显示热侵位特征。岩石组成单元主要为超镁铁质橄榄岩和镁铁质辉长岩。岩石化学组成以拉斑玄武岩系列为主,存在部分钙碱性系列和碱性系列。稀土元素具平坦的分配型式或轻稀土略富集的分配型式。锆石Hf同位素指示岩石来源于亏损型地幔源区。黄山东、香山及土墩镁铁-超镁铁岩不是俯冲洋壳的残余或者岛弧环境的阿拉斯加型岩体,而是来源于亏损型地幔源区的岩浆底侵形成。  相似文献   

7.
内蒙古北山地区小黄山蛇绿岩地质特征   总被引:14,自引:1,他引:13  
小黄山蛇绿岩产出于塔里木陆块东北缘,北山造山带东端,主要由全蛇纹石化橄榄岩、辉橄岩、辉石岩、辉长岩、辉绿岩及基性火山岩等组成.其中,蛇纹石化橄榄岩属变质橄榄岩,辉石岩、辉长岩为堆晶杂岩,其物质组成和空间展布反映出该蛇绿岩具有构造蛇绿混杂岩的一般特征.基性火山岩具弱亏损的稀土特征,同时微量元素显示岛弧拉斑玄武岩的特点,综合特征反映来源于富集型地幔源区,具有岛弧拉斑玄武岩与N-MORB型的双重特点.依据本区蛇绿岩的产出规模、岩石组合及地球化学特征分析,为弧后扩张时的产物,形成时代为晚寒武-早奥陶世.后期至少经历了4期以上构造变形变质作用的叠加改造,于晚泥盆世运移至地表.  相似文献   

8.
在北祁连造山带冷龙岭地区新发现一条蛇绿岩带,该蛇绿岩从下向上由地幔橄榄岩、辉长辉绿岩、玄武岩、硅质岩组成。岩石地球化学特征表明,玄武岩可分类高Ti和低Ti两类,其中高Ti玄武岩具有LREE富集的稀土配分型式,富集K、Rb、Ba、Th、Nb、Ta等不相容元素,呈现隆起型(驼峰式)分布型式,显示了典型的洋岛火山岩地球化学特征,为板内岩浆作用的产物。低Ti玄武岩具有LREE亏损,类似N-MORB的稀土配分模式,同时又具有相对于N-MORB富集的大离子亲石元素,亏损Nb、Ta等高场强元素的岛弧火山岩的地球化学特征,代表了弧后盆地环境岩石组合。蛇绿岩岩石组合和岩石地球化学特征显示该蛇绿岩套形成于弧后盆地环境,是早奥陶世北祁连洋的残留。  相似文献   

9.
云海铜镍矿位于觉罗塔格构造带西段,成矿岩体为多期次侵入的杂岩体,岩体分异演化充分,镁铁质和超镁铁质岩石均有发育,主要岩石类型为角闪辉石岩、橄榄苏长岩、辉长岩、闪长岩。主量元素化学组成表明,该杂岩体属拉斑玄武岩系列,岩石具同源演化特征,显示高铁、高镁、低钛、低铝特征,富集大离子亲石元素Rb,Ba,亏损Nb,Ta,轻稀土富集。岩浆源区有部分熔融而交代的岩石圈地幔,岩浆在上升过程中受到地壳物质混染,发生橄榄石、斜方辉石、斜长石的分离结晶。岩体形成于早二叠世,为构造活动和地幔柱双重作用下的产物。  相似文献   

10.
鄂西黄陵背斜南部元古宙庙湾蛇绿岩的发现及其构造意义   总被引:2,自引:1,他引:1  
对鄂西黄陵背斜南部宜昌太平溪、邓村一带崆岭岩群中的元古宙庙湾岩组强烈变形变质超镁铁—镁铁质岩的研究表明,镁铁质岩主要为似层状细粒斜长角闪岩,变辉长岩岩体、岩脉及辉绿岩岩脉,超镁铁质岩则主要为蛇纹石化纯橄榄岩、方辉橄榄岩,呈构造岩片、岩块分布于斜长角闪岩之中。细粒斜长角闪岩TiO2=1.14%~1.48%,稀土元素配分型式为略亏损—平坦型,无明显的Eu异常,(La/Yb)N=0.87~1.12,La/Nb、Ce/Zr、Zr/Nb、Zr/Y、Ti/Y平均值分别为1.04、0.15、18.78、2.53、290.51,Nb/Th平均为9.88,显示为大洋中脊构造环境形成的N-MORB型拉斑玄武岩;变辉长岩具典型的堆晶结构特征,稀土元素配分型式为平坦型,具明显的Eu正异常;蛇纹石化纯橄榄岩的稀土元素配分型式具中稀土元素略亏损的U形特征,显示为LREE略富集的地幔岩。上述特征表明,黄陵背斜南部崆岭岩群中的元古宙庙湾岩组实际上是一套混杂堆积的古大洋蛇绿岩残片。元古宙庙湾蛇绿岩的发现为华南扬子克拉通存在中元古代洋盆和哥伦比亚超大陆聚合、裂解构造事件提供了重要的证据。  相似文献   

11.
The Kekekete mafic-ultramafic rocks are exposed in the Kekesha-Kekekete-Dawate area,which are in the eastern part of the East Kunlun Orogenic Belt.It outcrops as tectonic slices intruding tectonically in the Paleoproterozoic Baishahe Group and the Paleozoic Nachitai Group.The Kekekete mafic and ultramafic rocks is located near the central fault in East Kunlun and lithologically mainly consists of serpentinite,augite peridotite,and gabbro.The LA-ICP-MS zircon U-Pb age of the gabbro is 501±7 Ma,indicating that Kekekete mafic-ultramafic rocks formed in the Middle Cambrian.This rock assemblage is relatively poor in SiO2 and(Na2 O+K2 O) but rich in MgO and SFeO.The chondrite-normalized REE patterns of the gabbro dip slightly to the right;the primitive mantle and MORBnormalized spidergrams of trace elements show enrichment of large-ion lithophile elements(Cs,Rb,Ba,etc.) and no differentiation of high field strength elements.The general dominance of E-MORB features and the geochemical characteristics of OIB suggest that the Kekekete mafic-ultramafic rocks formed in an initial oceanic basin with slightly enriched mantle being featured by varying degrees of mixing of N-MORB depleted mantle and a similar-OIB-type source.From a comprehensive study of the previous data,the author believes that the tectonic history of the East Kunlun region was controlled by a geodynamic system of rifting and extension in the late stages of the Neoproterozoic to early stages of the Early Paleozoic and this formed the paleo-oceanic basin or rift system now represented by the ophiolites along the central fault in East Kunlun,the Kekekete mafic-ultramafic rocks and Delisitan ophiolite.  相似文献   

12.
The>2000 km Indus-Yarlung Tsangpo suture zone(IYSZ)is composed of the Neo-tethys oceanic remnants,flysch units and related continental rocks,which has been regarded as the boundary between the Eurasian and Indian terranes.Among the ophiolitic complexes,the Purang ophiolite is the biggest massif in the IYSZ,and many studies have been conducted on this ophiolite.However,previous studies have mainly focused on harzburgite,clinopyroxenite and dunite.Field observations show that mafic dykes were emplaced within the Purang ophiolite.However,petrogenetic evolutions of those mafic dykes are poorly understood.In this study,we present new LA-ICP-MS zircon U-Pb dating results,whole-rock geochemistry and Sr-Nd-Hf isotope analyses for microgabbro,gabbro and dolerite dykes from the Purang ophiolite of the southwestern IYSZ,respectively.Three samples yielded zircon U-Pb ages of144.2±2.1 Ma.127.9±2.3 Ma and 126.5±0.42 Ma,suggesting two different phases of magmatic activities distinctly.Whole-rock geochemical results suggest that the gabbro samples show alkaline features marked by enrichments of light rare earth elements(LREE)and large-ion lithophile elements(LILE),as well as Nb-Ta elements,suggesting an oceanic island basalt-like(OIB-like)geochemical affinity.However,the dolerite and microgabbro samples demonstrate sub-alkaline characteristics with normal mid-oceanic ridge basalt-like(N-MORB-like)geochemical features.Three distinct mafic dykes show significant Rb element depletion.The geochemical data and Sr-Nd-Hf isotopic features suggest that the microgabbro and gabbro rocks were derived from a depleted mantle that had been metasomatized by partial melts of sediments and enriched slab-derived fluids.The dolerite was also originated from a depleted mantle marked by significantly depleted Sr-Nd-Hf compositions,which was not influenced by enriched slab-derived fluids and sediments contamination during subsequent evolution.The isotope and geochemical data and tectonic diagrams suggest a tectonic transition from a within-plate to a midoceanic ridge basalt-like(MORB-like)setting during the period from ca.144 Ma to 127 Ma.Combined with regional background and this study,we propose that these mafic dykes were formed in an oceanic back-arc basin setting.Additionally,integrated with previous studies,we suggest that the geodynamic evolution of the southwestern and central parts of the Neo-Tethys oceanic basin is comparable in Early Cretaceous.  相似文献   

13.
《Chemical Geology》2003,193(1-2):137-154
The composition of Kuerti mafic rocks in the Altay Mountains in northwest China ranges from highly geochemically depleted, with very low La, Ta and Nb and high εNd(t) values, to slightly enriched, arc lava-like composition. They display flat to light rare earth element (REE)-depleted patterns and have variable depletions in high field-strength elements (HFSE). These mafic rocks were most probably derived from a variably depleted mantle source containing a subduction component beneath an ancient intra-oceanic backarc basin. Together with the slightly older arc volcanic rocks in the Altay region, the Kuerti mafic rocks display generally positive correlations of their key elemental ratios (e.g., Th/Nb, La/Yb and Th/Yb). These indicate that the more mid-ocean ridge basalt (MORB) component was contained in these magmas, the less arc component was present in their mantle source. Therefore, we propose a two-stage melting evolution model to interpret the compositional evolution of the Kuerti mafic rocks and associated arc volcanic rocks. First, arc basaltic melts were extracted from the hydrated arc mantle wedge beneath Kuerti, leaving behind a mantle source that is variably depleted in incompatible trace elements. Then, mafic rocks were erupted during seafloor spreading in the Kuerti backarc basin from the upwelling asthenospheric mantle. The variably depleted mantle source produced mafic rocks with composition ranging from arc lava-like to more geochemically depleted than MORB. The recognition of Kuerti mafic rocks as backarc basin basalts (BABB) is consistent with the proposed tectonic model that an active backarc basin–island arc system along the paleo-Asian ocean margin was formed in the Altay region during Devonian–Early Carboniferous. New data further indicate that the final orogenic event in the Altay Mountains, i.e. the collision of the north and south continental plates in the region, most probably took place in Late Carboniferous and Permian.  相似文献   

14.
The Hegenshan ophiolite in Inner Mongolia is a remnant of oceanic lithosphere of probable Devonian age. The ophiolite consists of several blocks composed chiefly of serpentinized ultramafic rocks with lesser amounts of troctolite and gabbro, and sparse lavas and dikes. The ultramafic rocks consist chiefly of depleted harzburgite and minor dunite and are interpreted as mantle tectonites. In the Hegenshan block dunite is relatively abundant and is typically associated with podiform chromitite. Both the chromite ore and the residual chromites in this body are relatively aluminous with average Cr numbers of 44–54. A few small chromite bodies and some of the residual chromites have much higher Cr numbers (72–76). Several blocks have well-layered cumulate sequences of gabbro and troctolite. Sheeted dikes are absent but small mafic dikes are common in some of the ultramafic sections. Most of the mafic dikes have flat chondrite-normalized REE patterns and are strongly depleted in incompatible elements, similar to depleted tholeiites from immature island arcs. The basaltic lavas of the Hegenshan ophiolite have two distinctly different chemical signatures—one similar to the mafic dikes and one similar to ocean island basalts. The entire complex was probably formed within an island arc–marginal basin system that was later accreted to the southern margin of the Siberian Altaids.  相似文献   

15.
班- 怒带东段丁青蛇绿岩中镁铁质岩石年代学及构造背景   总被引:1,自引:0,他引:1  
丁青蛇绿岩位于班公湖-怒江缝合带东段,分为东、西两个蛇绿岩体,丁青西蛇绿岩体缺乏基性岩年代学研究。对丁青西地质填图显示,蛇绿岩主要由方辉橄榄岩、纯橄榄岩、辉绿岩、玄武岩及辉长岩组成。其中玄武岩、辉长岩及辉绿岩出露在宗白区域,玄武岩和辉绿岩与下侏罗统沉积岩呈构造接触,辉长岩呈岩脉侵入到下侏罗统沉积岩中。岩石地球化学研究表明,玄武岩和辉长岩同属于碱性基性岩石,其中玄武岩具有典型洋岛玄武岩的稀土和微量元素特征,可能形成于与地幔柱有关的洋岛环境。在玄武质凝灰岩中挑选出的锆石测年,获得U-Pb年龄为198.7±3.8Ma,属早侏罗世。辉长岩的稀土和微量元素含量低于典型洋岛玄武岩,但其REE和微量元素具有OIB的特征,与典型OIB相比,辉长岩的HREE发生了一定程度富集。辉长岩锆石的U-Pb年龄为164.3±2.6Ma,认为辉长岩在形成过程中受到了软流圈地幔和岩石圈下部LVZ中富集熔体的共同作用,其形成于大陆边缘裂谷环境;辉绿岩成分属于拉斑系列岩石,其REE和微量元素曲线显示辉绿岩同时具有N-MORB和E-MORB的特征。辉绿岩锆石U-Pb年龄为114.2±1.3Ma,其形成晚于玄武岩。结合区域地质,认为辉绿岩形成于受地幔柱影响的弧后扩张脊环境。本研究提供了丁青西蛇绿岩新的年代学和岩石学证据,为探讨丁青蛇绿岩的形成和演化历史提供了新的证据。  相似文献   

16.
The Xuhe mafic rocks, located in Ziyang county of Shaanxi Province, are dominated by diabase-porphyrite, gabbro–diabase, diabase, and pyroxene diorite. Primitive mantle-normalized multi-element patterns show that, the Xuhe mafic rocks are enriched in large ion lithophile elements(LITE), such as Ba and Pb, depleted in K and Sr for basic rocks, and are depleted in Sr, P and Ti for pyroxene diorite. Chondrite-normalized REE patterns display LREE enrichment(LaN/YbN = 9.34–13.99) and have normalized patterns for trace element and REE similar to that of typical OIB. Detailed SIMS zircon U–Pb dating yields emplacement ages of 438.4 ± 3.1 Ma for Xuhe mafic rocks. The relatively low Mg O(basic rock: 3.11–7.21 wt%; pyroxene diorite: 0.89–1.21 wt%) and Mg#(0.20–0.49) for Xuhe mafic rocks suggest that they were possibly originated from an extremely evolved magma. The rising parental mafic magmas underwent pyroxene and plagioclase fractionation. Crustal contamination of pyroxene diorite before emplacement occurred at a higher crustal level compared to other lithology in Xuhe mafic rocks. The degree of partial melt was low(5%–10%) and in garnetspinel transition facies. Sr-Nd isotope of pyroxene diorite and enrichment mantle characteristics for Xuhe mafic rocks suggest that mafic rocks in the North Daba Mountains were derived from a mixture of HIMU, EMII and small amount of EMI components. Furthermore, this study discusses mantle geodynamic significance of Xuhe mafic rocks in the Silurian, which indicates subduction and uplift of magma caused back-arc extension.  相似文献   

17.
辉长岩大多为地幔岩石部分熔融的产物,辉绿岩脉及碱性正长岩的形成通常与伸展构造有关,本文对海南岛万宁辉长岩及辉绿岩脉和分界洲正长岩进行了系统的年代学和岩石地球化学研究,并以此来讨论其构造意义。LA-ICP-MS锆石U-Pb定年结果表明,万宁辉长岩及辉绿岩脉形成约在240 Ma,分界洲正长岩形成约在231 Ma,主量元素特征表明万宁辉长岩和辉绿岩分别属碱性系列和亚碱性系列,分界洲正长岩属于典型的碱性岩浆岩。万宁辉长岩及辉绿岩脉的稀土元素具有轻稀土富集的特点(LREE/HREE=7.22~8.50和8.11~11.10),微量元素具有岛弧型火山岩的特征,富集大离子亲石元素K、Rb、Ba、Th,贫高场强元素Nb、Ta和Zr、Hf;分界洲正长岩的微量元素特征显示出与A型花岗岩类似的特征。海南岛三叠纪中基性岩如分界洲正长岩和万宁辉长岩及辉绿岩脉形成的构造背景为陆内伸展环境,指示海南岛在240~230 Ma处于印支造山运动的应力松弛阶段。  相似文献   

18.
位于北山中带的月牙山-洗肠井蛇绿岩带是北山地区出露最好的蛇绿岩带之一,枕状玄武岩和堆晶辉长岩表现出轻稀土元素亏损-平坦的分配模式,(La/Yb)N=0.47~1.62,类似N-MORB;而相对于N-MORB则又富集大离子亲石元素,亏损Nb、Ta等高场强元素,与典型岛弧火山岩相似;即基性岩类同时具有类似岛弧火山岩和洋中脊...  相似文献   

19.
The Pulan-Xiangquanhe ophiolite in the western Yarlung Tsangpo suture zone of Tibet is investigated for its geochemistry,geochronology,and tectonic implications in detail.Sensitive high resolution ion micro-probe zircon U-Pb dating reveals that diabases in the ophiolite from the three locations of Xugugab,Mapam Yum Co and La'nga Co are dated at 122.3±2.5 Ma,118.8±1.8 Ma and 120.5±1.9 Ma,respectively.These early Cretaceous mafic rocks have Na_2O+K_2O,rare earth element patterns,trace elemental spider diag...  相似文献   

20.
The Iraqi Zagros Orogenic Belt includes two separate ophiolite belts, which extend along a northwest-southeast trend near the Iranian border. The outer belt shows ophiolite sequences and originated in the oceanic ridge or supra-subduction zone. The inner belt includes the Mawat complex, which is parallel to the outer belt and is separated by the Biston Avoraman block. The Mawat complex with zoning structures includes sedimentary rocks with mafic interbedded lava and tuff, and thick mafic and ultramafic rocks. This complex does not show a typical ophiolite sequences such as those in Penjween and Bulfat. The Mawat complex shows evidence of dynamic deformation during the Late Cretaceous. Geochemical data suggest that basic rocks have high MgO and are significantly depleted in LREE relative to HREE. In addition they show positive ? Nd values (+5 to+8) and low 87Sr/86Sr ratios. The occurrence of some OIB type rocks, high Mg basaltic rocks and some intermediate compositions between these two indicate the evolution of the Mawat complex from primary and depleted source mantle. The absence of a typical ophiolite sequence and the presence of good compatibility of the source magma with magma extracted from the mantle plume suggests that a mantle plume from the D″ layer is more consistent as the source of this complex than the oceanic ridge or supra-subduction zone settings. Based on our proposed model the Mawat basin represents an extensional basin formed during the Late Paleozoic to younger along the Arabian passive margin oriented parallel to the Neo-Tethys oceanic ridge or spreading center. The Mawat extensional basin formed without creation of new oceanic basement. During the extension, huge volumes of mafic lava were intruded into this basin. This basin was squeezed between the Arabian Plate and Biston Avoraman block during the Late Cretaceous.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号