首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sekaninaite (XFe > 0.5)-bearing paralava and clinker are the products of ancient combustion metamorphism in the western part of the Kuznetsk coal basin, Siberia. The combustion metamorphic rocks typically occur as clinker beds and breccias consisting of vitrified sandstone–siltstone clinker fragments cemented by paralava, resulting from hanging-wall collapse above burning coal seams and quenching. Sekaninaite–Fe-cordierite (XFe = 95–45) is associated with tridymite, fayalite, magnetite, ± clinoferrosilite and ±mullite in paralava and with tridymite and mullite in clinker. Unmelted grains of detrital quartz occur in both rocks (<3 vol% in paralavas and up to 30 vol% in some clinkers). Compositionally variable siliceous, K-rich peraluminous glass is <30% in paralavas and up to 85% in clinkers. The paralavas resulted from extensive fusion of sandstone–siltstone (clinker), and sideritic/Fe-hydroxide material contained within them, with the proportion of clastic sediments ≫ ferruginous component. Calculated dry liquidus temperatures of the paralavas are 1,120–1,050°C and 920–1,050°C for clinkers, with calculated viscosities at liquidus temperatures of 101.6–7.0 and 107.0–9.8 Pa s, respectively. Dry liquidus temperatures of glass compositions range between 920 and 1,120°C (paralava) and 920–960°C (clinker), and viscosities at these temperatures are 109.7–5.5 and 108.8–9.7 Pa s, respectively. Compared with worldwide occurrences of cordierite–sekaninaite in pyrometamorphic rocks, sekaninaite occurs in rocks with XFe (mol% FeO/(FeO + MgO)) > 0.8; sekaninaite and Fe-cordierite occur in rocks with XFe 0.6–0.8, and cordierite (XFe < 0.5) is restricted to rocks with XFe < 0.6. The crystal-chemical formula of an anhydrous sekaninaite based on the refined structure is | \textK0.02 |(\textFe1.542 + \textMg0.40 \textMn0.06 )\Upsigma 2.00M [(\textAl1.98 \textFe0.022 + \textSi1.00 )\Upsigma 3.00T1 (\textSi3.94 \textAl2.04 \textFe0.022 + )\Upsigma 6.00T2 \textO18 ]. \left| {{\text{K}}_{0.02} } \right|({\text{Fe}}_{1.54}^{2 + } {\text{Mg}}_{0.40} {\text{Mn}}_{0.06} )_{\Upsigma 2.00}^{M} [({\text{Al}}_{1.98} {\text{Fe}}_{0.02}^{2 + } {\text{Si}}_{1.00} )_{\Upsigma 3.00}^{T1} ({\text{Si}}_{3.94} {\text{Al}}_{2.04} {\text{Fe}}_{0.02}^{2 + } )_{\Upsigma 6.00}^{T2} {\text{O}}_{18} ].  相似文献   

2.
The Adamsfield Ultramafic Complex is one of a dozen Tasmanian ultramafic-mafic and ophiolite complexes emplaced during Cambrian time in the Tasman Geosyncline.The Adamsfield complex is composed of partlyserpentinized dunites, olivine orthopyroxenites and orthopyroxenites. Rocks are commonly layered and alternately rich in olivines (Fo93–84) and orthopy roxenes (En94–87). Spinels are a minor but widely disseminated phase. Orthopyroxenes and spinels are poor in Al2O3 and TiO2. Clinopyroxenes are rare, plagioclase or garnet have not been found.Nominal equilibration temperatures calculated from coexisting mineral assemblages range from quasi-magmatic values (1200±100 °C) for little-deformed rocks down to subsolidus values (950 °C) for deformed and reacted assemblages. Olivine kink band orientations imply that deformation also took place at lower temperatures (<800 °C) but mineral compositions apparently failed to react further.Adamsfield mineral assemblages probably crystallized originally at low pressures from highly magnesian, titania-poor tholeiitic or andesitic magmas. Fine-grained igneous rocks from the Tasmanian ultramafic-mafic and ophiolite complexes include highmagnesia andesites of appropriate compositions and comprise a distinctive compositional group termed the Low-titania Ophiolite Association, poor in TiO2 (<0.5 wt%), P2O5 (<0.1 wt%) and Zr, and rich in MgO, Ni, and Cr.  相似文献   

3.
The exsolutious of diopside and magnetite occur as intergrowth and orient within olivine from the mantle dunite, Luobusa ophiolite, Tibet. The dunite is very fresh with a mineral assemblage of olivine (〉95%) + chromite (1%-4%) + diopside (〈1%). Two types of olivine are found in thin sections: one (Fo = 94) is coarse-grained, elongated with development of kink bands, wavy extinction and irregular margins; and the other (Fo = 96) is fine-grained and poly-angied. Some of the olivine grains contain minor Ca, Cr and Ni. Besides the exsolutions in olivine, three micron-size inclusions are also discovered. Analyzed through energy dispersive system (EDS) with unitary analytical method, the average compositions of the inclusions are: Na20, 3.12%-3.84%; MgO, 19.51%-23.79%; Al2O3, 9.33%-11.31%; SiO2, 44.89%-46.29%; CaO, 11.46%-12.90%; Cr2O3, 0.74%-2.29%; FeO, 4.26%- 5.27%, which is quite similar to those of amphibole. Diopside is anhedral f'dling between olivines, or as micro-inclusions oriented in olivines. Chromite appears euhedral distributed between olivines, sometimes with apparent compositional zone. From core to rim of the chromite, Fe content increases and Cr decreases; and A! and Mg drop greatly on the rim. There is always incomplete magnetite zone around the chromite. Compared with the nodular chromite in the same section, the euhedral chromite has higher Fe3O4 and lower MgCr2O4 and MgAI2O4 end member contents, which means it formed under higher oxygen fugacity environment. With a geothermometer estimation, the equilibrium crystalline temperature is 820℃-960℃ for olivine and nodular chromite, 630℃-770℃ for olivine and euhedral chromite, and 350℃-550℃ for olivine and exsoluted magnetite, showing that the exsolutions occurred late at low temperature. Thus we propose that previously depleted mantle harzburgite reacted with the melt containing Na, Al and Ca, and produced an olivine solid solution added with Na^+, Al^3+, Ca^2+, Fe^3+, Cr^3+. With temperature d  相似文献   

4.
The formation of phosphoran olivine by crystallization from a melt was investigated experimentally using a one atmosphere furnace, using San Carlos olivine [(Mg,Fe)2SiO4] mixed with either iron phosphide (FeP) or magnesium pyrophosphate (Mg2P2O7). Both dynamic crystallization and isothermal experiments produced phosphoran olivine as zoned single crystals and as overgrowths surrounding normal, phosphorus-free olivine grains. The crystallization pathways that form phosphoran olivine were traced and confirm that it is a metastable phase that can crystallize from a phosphorus-rich melt over timescales of hours to days. Removal of the P and equilibration of the olivine however requires weeks to months in the presence of silicate melt. Phosphoran olivine with up to 27 wt% P2O5 was generated and up to 69% of the Si tetrahedral sites were replaced by P. The substitution of Si by P into olivine was confirmed as 4VIM+2 + 2IVSi+4 ↔ 3VIM+2 + 2IVP+5 + VI[]. Phosphoran olivine compositions that vary from (Mg,Fe)2SiO4 to (Mg,Fe)1.65[]0.35Si0.3P0.7O4 have been produced in these experiments.Phosphoran pyroxene was also generated in a few experiments and forms when phosphoran olivine reacts with either tridymite or melt. It has compositions compatible with protopyroxene, orthopyroxene, pigeonite and sub-calcic augite, and can contain up to 31.5 wt% P2O5. Like phosphoran olivine, it is also a metastable phase. Phosphorus replaces Si in pyroxene by the following substitution methods: 8IVSi+4 ↔ 3IVSi+4 + 4IVP+5 + IV[] with Al entering the structure by the exchange 2IVSi+4 ↔ IVAl+3 + IVP+5. Phosphoran pyroxene compositions vary from (Mg,Fe)8Si8O24 to (Mg,Fe)8Si3P4[]O24.  相似文献   

5.
The diffusion of Ni and Co was measured at atmospheric pressure in synthetic monocrystalline forsterite (Mg2SiO4) from 1,200 to 1,500 °C at the oxygen fugacity of air, along [100], with the activities of SiO2 and MgO defined by either forsterite + periclase (fo + per buffer) or forsterite + protoenstatite (fo + en buffer). Diffusion profiles were measured by three methods: laser-ablation inductively-coupled-plasma mass-spectrometry, nano-scale secondary ion mass spectrometry and electron microprobe, with good agreement between the methods. For both Ni and Co, the diffusion rates in protoenstatite-buffered experiments are an order of magnitude faster than in the periclase-buffered experiments at a given temperature. The diffusion coefficients D M (M = Ni or Co) for the combined data set can be fitted to the equation:
$$\log \,D_{\text{M}} \,\left( {{\text{in}}\,{\text{m}}^{2} \,{\text{s}}^{ - 1} } \right) = - 6.77( \pm 0.33) + \Delta E_{\text{a}} (M)/RT + 2/3\log a_{{SiO_{2} }}$$
with Ea(Ni) = ? 284.3 kJ mol?1 and Ea(Co) = ? 275.9 kJ mol?1, with an uncertainty of ±10.2 kJ mol?1. This equation fits the data (24 experiments) to ±0.1 in log D M. The dependence of diffusion on \(a_{{{\text{SiO}}_{2} }}\) is in agreement with a point-defect model in which Mg-site vacancies are charge-balanced by Si interstitials. Comparative experiments with San Carlos olivine of composition Mg1.8Fe0.2SiO4 at 1,300 °C give a slightly small dependence on \(a_{{{\text{SiO}}_{2} }}\), with D \(\propto\) (\(a_{{{\text{SiO}}_{2} }}^{0.5}\)), presumably because the Mg-site vacancies increase with incorporation of Fe3+ in the Fe-bearing olivines. However, the dependence on fO2 is small, with D \(\propto\) (fO2)0.12±0.12. These results show the necessity of constraining the chemical potentials of all the stoichiometric components of a phase when designing diffusion experiments. Similarly, the chemical potentials of the major-element components must be taken into account when applying experimental data to natural minerals to constrain the rates of geological processes. For example, the diffusion of divalent elements in olivine from low SiO2 magmas, such as kimberlites or carbonatites, will be an order of magnitude slower than in olivine from high SiO2 magmas, such as tholeiitic basalts, at equal temperatures and fO2.
  相似文献   

6.
The 13.1-Moz high-sulfidation epithermal gold deposit of Lagunas Norte, Alto Chicama District, northern Peru, is hosted in weakly metamorphosed quartzites of the Upper Jurassic to Lower Cretaceous Chimú Formation and in overlying Miocene volcanic rocks of dacitic to rhyolitic composition. The Dafne and Josefa diatremes crosscut the quartzites and are interpreted to be sources of the pyroclastic volcanic rocks. Hydrothermal activity was centered on the diatremes and four hydrothermal stages have been defined, three of which introduced Au ± Ag mineralization. The first hydrothermal stage is restricted to the quartzites of the Chimú Formation and is characterized by silice parda, a tan-colored aggregate of quartz-auriferous pyrite–rutile ± digenite infilling fractures and faults, partially replacing silty beds and forming cement of small hydraulic breccia bodies. The δ34S values for pyrite (1.7–2.2?‰) and digenite (2.1?‰) indicate a magmatic source for the sulfur. The second hydrothermal stage resulted in the emplacement of diatremes and the related volcanic rocks. The Dafne diatreme features a relatively impermeable core dominated by milled slate from the Chicama Formation, whereas the Josefa diatreme only contains Chimú Formation quartzite clasts. The third hydrothermal stage introduced the bulk of the mineralization and affected the volcanic rocks, the diatremes, and the Chimú Formation. In the volcanic rocks, classic high-sulfidation epithermal alteration zonation exhibiting vuggy quartz surrounded by a quartz–alunite and a quartz–alunite–kaolinite zone is observed. Company data suggest that gold is present in solid solution or micro inclusions in pyrite. In the quartzite, the alteration is subtle and is manifested by the presence of pyrophyllite or kaolinite in the silty beds, the former resulting from relatively high silica activities in the fluid. In the quartzite, gold mineralization is hosted in a fracture network filled with coarse alunite, auriferous pyrite, and enargite. Alteration and mineralization in the breccias were controlled by permeability, which depends on the type and composition of the matrix, cement, and clast abundance. Coarse alunite from the main mineralization stage in textural equilibrium with pyrite and enargite has δ34S values of 24.8–29.4?‰ and $ {\delta^{18 }}{{\mathrm{O}}_{{\mathrm{S}{{\mathrm{O}}_4}}}} $ values of 6.8–13.9?‰, consistent with H2S as the dominant sulfur species in the mostly magmatic fluid and constraining the fluid composition to low pH (0–2) and logfO2 of ?28 to ?30. Alunite–pyrite sulfur isotope thermometry records temperatures of 190–260 °C; the highest temperatures corresponding to samples from near the diatremes. Alunite of the third hydrothermal stage has been dated by 40Ar/39Ar at 17.0?±?0.22 Ma. The fourth hydrothermal stage introduced only modest amounts of gold and is characterized by the presence of massive alunite–pyrite in fractures, whereas barite, drusy quartz, and native sulfur were deposited in the volcanic rocks. The $ {\delta^{18 }}{{\mathrm{O}}_{{\mathrm{S}{{\mathrm{O}}_4}}}} $ values of stage IV alunite vary between 11.5 and 11.7?‰ and indicate that the fluid was magmatic, an interpretation also supported by the isotopic composition of barite (δ34S?=?27.1 to 33.8?‰ and $ {\delta^{18 }}{{\mathrm{O}}_{{\mathrm{S}{{\mathrm{O}}_4}}}} $ ?=?8.1 to 12.7?‰). The Δ34Spy–alu isotope thermometry records temperatures of 210 to 280 °C with the highest values concentrated around the Josefa diatreme. The Lagunas Norte deposit was oxidized to a depth of about 80 m below the current surface making exploitation by heap leach methods viable.  相似文献   

7.
A unique clinopyroxene (En19Fs78Wo3), clinoeulite, space group P21/c, $${\text{(Fe}}_{{\text{1}}{\text{.48}}} {\text{Mg}}_{{\text{0}}{\text{.37}}} {\text{Mn}}_{{\text{0}}{\text{.08}}}^{{\text{2 + }}} {\text{Ca}}_{{\text{0}}{\text{.05}}} {\text{Al}}_{{\text{0}}{\text{.01}}} {\text{)}}_{{\text{1}}{\text{.99}}} {\text{ [Si}}_{{\text{2}}{\text{.01}}} {\text{O6],}}$$ contains sharp exsolution lamellae of ferroaugite (En17Fs43Wo40) from which the former presence of a ferropigeonite near En17Fs70Wo13 can be calculated. This two-pyroxene intergrowth is the main component of a eulysite containing also magnetite, olivine (Fo9Fa86Te5), quartz, oligoclase-K feldspar inter-growth, and retrograde cummingtonite with about 76 % grunerite end member. The occurrence of this most unusual rock type in the center of the Vredefort structure is attributed to a period of high-temperature metamorphism (at least 800 °–850 °C) which was followed by hot deformation of the rock during the Vredefort event thus probably preventing the common formation of orthopyroxene through pigeonite exsolution and inversion upon cooling. After this tectonic deformation, the rock recrystallized within the low-temperature stability range of clinoeulite to yield fine annealing textures. Late-stage equilibria at temperatures well below 500 °C include the complete unmixing of a former high-temperature anorthoclase, a Mg/Fe redistribution in the clinoeulite and olivine and, with the introduction of water, the partial formation of cummingtonite through reaction of clinoeulite, olivine, and quartz. During weathering the olivine was transformed to a nearly opaque, anhydrous ferrisilicate which, except for the change of Fe2+ to Fe3+ and the oxygen introduction, largely retained its original chemistry.  相似文献   

8.
Galgenbergite-(Ce) from the type locality, the railroad tunnel Galgenberg between Leoben and St. Michael, Styria, Austria, was investigated. There it occurs in small fissures of an albite-chlorite schist as very thin tabular crystals building rosette-shaped aggregates associated with siderite, ancylite-(Ce), pyrite and calcite. Electron microprobe analyses gave CaO 9.49, Ce2O3 28.95, La2O3 11.70, Nd2O3 11.86, Pr2O3 3.48, CO2 30.00, H2O 3.07, total 98.55 wt.%. CO2 and H2O calculated by stoichiometry. The empirical formula (based on Ca + REE ∑3.0) is $ \mathrm{C}{{\mathrm{a}}_{1.00 }}{{\left( {\mathrm{C}{{\mathrm{e}}_{1.04 }}\mathrm{L}{{\mathrm{a}}_{0.42 }}\mathrm{N}{{\mathrm{d}}_{0.42 }}\mathrm{P}{{\mathrm{r}}_{0.12 }}} \right)}_{2.00 }}{{\left( {\mathrm{C}{{\mathrm{O}}_3}} \right)}_4}\cdot {{\mathrm{H}}_2}\mathrm{O} $ , and the simplified formula is $ \mathrm{CaC}{{\mathrm{e}}_2}{{\left( {\mathrm{C}{{\mathrm{O}}_3}} \right)}_4}\cdot {{\mathrm{H}}_2}\mathrm{O} $ . According to X-ray single crystal diffraction galgenbergite-(Ce) is triclinic, space group $ P\overline{1},a=6.3916(5) $ , b?=?6.4005(4), c?=?12.3898(9) Å, α?=?100.884(4), β?=?96.525(4), γ?=?100.492(4)°, V?=?483.64(6) Å3, Z?=?2. The eight strongest lines in the powder X-ray diffraction pattern are [d calc in Å/(I)/hkl]: 5.052/(100)/011; 3.011/(70)/0-22; 3.006/(66)/004; 5.899/(59)/-101; 3.900/(51)/1-12; 3.125/(46)/-201; 2.526/(42)/022; 4.694/(38)/-102. The infrared absorption spectrum reveals H2O (OH-stretching mode at 3,489 cm?1, HOH bending mode at 1,607 cm?1) and indicates the presence of distinctly non-equivalent CO3-groups by double and quadruple peaks of their ν1, ν2, ν3 and ν4 modes. The crystal structure of galgenbergite-(Ce) was refined with X-ray single crystal data to R1?=?0.019 for 2,448 unique reflections (I?>?2σ(I)) and 193 parameters. The three cation sites of the structure Ca(1), Ce(2) and Ce(3) have a modest mixed site occupation by Ca and small amount of REE (Ce, La, Pr, Nd) and vice versa. The structure is based on double layers parallel to (001), which are composed of Ca(1)Ce(2)(CO3)2 single layers with an ordered chessboard like arrangement of Ca and Ce, and with a roof tile-like stacking of the CO3 groups. Perpendicular to (001) the double layers are connected to a triclinic framework structure with good cleavage parallel to (001) by a differently organized and more open part of the structure formed by Ce(3)(CO3)2(H2O). Based on the topology of the CaCe(CO3)2 single layer in galgenbergite-(Ce), structural relationships to rutherfordine, to aragonite and ancylite type minerals, and to lanthanite are outlined.  相似文献   

9.
The exchage equilibrium has been used to measure activity-composition relations along the olivine join FeSi0.5O2−MgSi0.5O2 at 1400 K and 1 atm pressure. Equilibrium Fe−Mg partitioning between the two phases was determined by reversing the compositions of olivine coexisting with oxide and matallic iron over the composition range Fo23 to Fo92. A detailed study of the thermodynamic properties of the oxide phase has recently been made by Srečec et al. and we have confirmed their results in the composition range of interest. Application of the oxide data to the exchange equilibrium enables the properties of olivine to be determined. Within experimental uncertainly (Fe, Mg)Si0.5O2 olivine can, at 1400 K, be treated as a symmetric solution with W Fe-Mg o1 of 3.7±0.8 kJ/mol. The data permit the presence of only very slight asymmetry in the series. The data do not support recent assertions that olivine is highly non-ideal (W≈10 kJ/mol) under these conditions.  相似文献   

10.
Zoning of phosphorus in igneous olivine   总被引:2,自引:2,他引:0  
We describe P zoning in olivines from terrestrial basalts, andesites, dacites, and komatiites and from a martian meteorite. P2O5 contents of olivines vary from below the detection limit (≤0.01 wt%) to 0.2–0.4 wt% over a few microns, with no correlated variations in Fo content. Zoning patterns include P-rich crystal cores with skeletal, hopper, or euhedral shapes; oscillatory zoning; structures suggesting replacement of P-rich zones by P-poor olivine; and sector zoning. Melt inclusions in olivines are usually located near P-rich regions but in direct contact with low-P olivine. Crystallization experiments on basaltic compositions at constant cooling rates (15–30°C/h) reproduce many of these features. We infer that P-rich zones in experimental and natural olivines reflect incorporation of P in excess of equilibrium partitioning during rapid growth, and zoning patterns primarily record crystal-growth-rate variations. Occurrences of high-P phenocryst cores may reflect pulses of rapid crystal growth following delayed nucleation due to undercooling. Most cases of oscillatory zoning in P likely reflect internal factors whereby oscillating growth rates occur without external forcings, but some P zoning in natural olivines may reflect external forcings (e.g., magma mixing events, eruption) that result in variable crystal growth rates and/or P contents in the magma. In experimental and some natural olivines, Al, Cr, and P concentrations are roughly linearly and positively correlated, suggesting coupled substitutions, but in natural phenocrysts, Cr zoning is usually less intense than P zoning, and Al zoning weak to absent. We propose that olivines grow from basic and ultrabasic magmas with correlated zoning in P, Cr, and Al superimposed on normal zoning in Fe/Mg; rapidly diffusing divalent cations homogenize during residence in hot magma; Al and Cr only partially homogenize; and delicate P zoning is preserved because P diffuses very slowly. This interpretation is consistent with the fact that zoning is largely preserved not only in P but also in Al, Cr, and divalent cations in olivines with short residence times at high temperature (e.g., experimentally grown olivines, komatiitic olivines, groundmass olivines, and the rims of olivine phenocrysts grown during eruption). P zoning is widespread in magmatic olivine, revealing details of crystal growth and intra-crystal stratigraphy in what otherwise appear to be relatively featureless crystals. Since it is preserved in early-formed olivines with prolonged residence times in magmas at high temperatures, P zoning has promise as an archive of information about an otherwise largely inaccessible stage of a magma’s history. Study of such features should be a valuable supplement to routine petrographic investigations of basic and ultrabasic rocks, especially because these features can be observed with standard electron microprobe techniques.  相似文献   

11.
Most of the Al3+ entering the pyroxenes does so by substituting for tetrahedral Si4+. This creates a charge imbalance that requires the simultaneous entry of Cr3+, Ti4+, Fe3+ or Al3+ into octahedral sites. Cr3+, because of its high crystal field stabilisation energy (CFSE), is the most important of these elements to enter the early-formed pyrosenes but it is replaced by Ti4+ later in fractionation when the Cr3+ content of the melt becomes depleted. The dependence of Cr3+ and Ti4+ on charge balance controls their partition between coexisting pyroxenes and olivines. Ca-rich pyroxene which contains more Al3+ than Ca-poor pyroxene also has more Ti4+ and Cr3+ whereas olivine, which contains negligible Al3+, has low Cr3+ and Ti4+. The Al3+ content of pyroxenes is influenced by changes in P, T, \(a_{{\text{SiO}}_{\text{2}} }\) and \(a_{{\text{Al}}_{\text{2}} {\text{O}}_{\text{3}} }\) of the magma and by the nature of the ion providing charge balance in the octahedral site. Of these \(a_{{\text{SiO}}_{\text{2}} }\) is dominant and variations in the Al3+ content of the Jimberlana pyroxenes correspond closely with the expected changes in the \(a_{{\text{SiO}}_{\text{2}} }\) of the melt. The substitution of divalent ions, such as Mn2+ and Ni2+, in the pyroxene lattice is by replacement of Fe2+ or Mg2+ in the octahedral M 3 and M 2 sites and is therefore independent of charge balance. If there are no size restrictions, the principal factor to be considered is the CFSE the ion receives in octahedral co-ordination. Ni2+, which receives a high CFSE, partitions strongly between the early-formed pyroxenes and olivines and therefore becomes depleted in the magma with fractionation. Conversely Mn2+, which receives zero CFSE, concentrates in the magma with fractionation and becomes a more important substitute in the later-formed pyroxenes. Its geochemical behaviour is controlled by its size. The narrow miscibility gap of the Jimberlana pyroxenes and the high En content of the Ca-poor pyroxenes at the bronzite pigeonite changeover suggest that these pyroxenes crystallised at a higher temperature than pyroxenes of comparable composition from other intrusions.  相似文献   

12.
13.
The electron spin resonance (ESR) spectrum of Cr3+ in a synthetic single crystal of forsterite doped with Cr2O3 was studied at room temperature in the X-band frequency range. The dependence of the observed spectra on the crystal orientation with respect to the applied magnetic field was investigated. The ESR spectra are described by the spin Hamiltonian \(H = \beta HgS + D(S_Z^{\text{2}} - {\text{1/3}}S{\text{(}}S{\text{ + 1)) + }}E{\text{(}}S_x^{\text{2}} - S_y^{\text{2}} {\text{)}}\) with S=3/2. The spin resonance reveals that the chromium ions are located at both the M1 and M2 positions. Other possible substitutional or interstitial Cr3+ positions may be possible, but were not observed. The site occupancy numbers of Cr3+ at M1 and M2 are roughly 1.2×10?4 and 0.8×10?4, respectively, assuming that chromium is oxidized completely. The preference of the chromium ions for M1 was interpreted qualitatively in terms of crystal field criteria. The rhombic and axial spin Hamiltonian parameters, D and E, and the directions of the magnetic axes obtained for M1 and M2 are consistent with the respective oxygen coordination polyhedra.  相似文献   

14.
The thermal waters at the Heybeli (K?z?lkirse) low-temperature geothermal field located in the Afyonkarahisar Province (western Turkey) are discharged from Paleozoic recrystallized limestone. The temperature, specific electrical conductivity, and pH values of the thermal waters are within the range of 28.9 to 54.7 °C, 587 to 3580 μS/cm, and 6.32 to 7.37, respectively. The Heybeli geothermal system is fed by meteoric waters. The waters are heated at depth by high geothermal gradient caused by the neotectonic activity in the deep and ascend to the surface through fractures and faults by convection. The thermal waters are of Na-Ca-HCO3-SO4 type and their chemical composition of the waters is mainly controlled by water-rock interaction and mixing processes. The δ18O, δ2H and tritium compositions show that the thermal waters are of meteoric origin and the residence time at the reservoir is longer than 50 years. Isotope data (δ34S and δ13C) indicate recrystallized limestones as origin of CO2 and structural substitution of sulfate into marine carbonates (CAS) as origin of sulfur. Chemical, \( {\updelta}^{18}{\mathrm{O}}_{\left({\mathrm{SO}}_4-{\mathrm{H}}_2\mathrm{O}\right)} \) isotope geothermometers and mineral equilibrium diagrams applied to thermal waters gave reservoir temperatures between 62 and 115 °C. Saturation index calculations show that the most expected minerals causing scaling at outflow conditions during the production and utilization of Heybeli geothermal waters are calcite, aragonite, dolomite, quartz, and chalcedony.  相似文献   

15.
The stability relations between cordierite and almandite in rocks, having a composition of CaO poor argillaceous rocks, were experimentally investigated. The starting material consisted of a mixture of chlorite, muscovite, and quartz. Systems with widely varying Fe2+/Fe2++Mg ratios were investigated by using two different chlorites, thuringite or ripidolite, in the starting mixture. Cordierite is formed according to the following reaction: $${\text{Chlorite + muscovite + quartz}} \rightleftharpoons {\text{cordierite + biotite + Al}}_{\text{2}} {\text{SiO}}_{\text{5}} + {\text{H}}_{\text{2}} {\text{O}}$$ . At low pressures this reaction characterizes the facies boundary between the albite-epidotehornfels facies and the hornblende-hornfels facies, at medium pressures the beginning of the cordierite-amphibolite facies. Experiments were carried out reversibly and gave the following equilibrium data: 505±10°C at 500 bars H2O pressure, 513±10°C at 1000 bars H2O pressure, 527±10°C at 2000 bars H2O pressure, and 557±10°C at 4000 bars H2O pressure. These equilibrium data are valid for the Fe-rich starting material, using thuringite as the chlorite, as well as for the Mg-rich starting mixture with ripidolite. At 6000 bars the equilibrium temperature for the Mg-rich mixture is 587±10°C. In the Fe-rich mixture almandite was formed instead of cordierite at 6000 bars. The following reaction was observed: $${\text{Thuringite + muscovite + quartz}} \rightleftharpoons {\text{almandite + biotite + Al}}_{\text{2}} {\text{SiO}}_{\text{5}} {\text{ + H}}_{\text{2}} {\text{O}}$$ . Experiments with the Fe-rich mixture, containing Fe2+/Fe2++Mg in the ratio 8∶10, yielded three stability fields in a P,T-diagram (Fig.1):
  1. Above 600°C/5.25 kb and 700°C/6.5 kb almandite+biotite+Al2SiO5 coexist stably, cordierite being unstable.
  2. The field, in which almandite, biotite and Al2SiO5 are stable together with cordierite, is restricted by two curves, passing through the following points:
    1. 625°C/5.5 kb and 700°C/6.5 kb,
    2. 625°C/5.5 kb and 700°C/4.0 kb.
  3. At conditions below curves 1 and 2b, cordierite, biotite, and Al2SiO5 are formed, but no garnet.
An appreciable MnO-content in the system lowers the pressures needed for the formation of almandite garnet, but the quantitative influence of the spessartite-component on the formation of almandite could not yet be determined. the Mg-rich system with Fe2+/Fe2++Mg=0.4 garnet did not form at pressures up to 7 kb in the temperature range investigated. Experiments at unspecified higher pressures (in a simple squeezer-type apparatus) yielded the reaction: $${\text{Ripidolite + muscovite + quartz}} \rightleftharpoons {\text{almandite + biotite + Al}}_{\text{2}} {\text{SiO}}_{\text{5}} {\text{ + H}}_{\text{2}} {\text{O}}$$ . Further experiments are needed to determine the equilibrium data. The occurence of garnet in metamorphic rocks is discussed in the light of the experimental results.  相似文献   

16.
We report Lithium (Li) concentrations and isotopic compositions for co-existing olivine, orthopyroxene (opx), and clinopyroxene (cpx) mineral separates from depleted and metasomatised peridotite xenoliths hosted by basaltic lavas from northwestern Ethiopian plateau (Gundeweyn area). The peridotites contain five lherzolites and one harzburgite and are variably depleted and enriched in LREE relative to HREE. In both depleted and enriched lherzolites, Li is preferentially incorporated into olivine (2.4-3.3 ppm) compared to opx (1.4-2.1 ppm) and cpx (1.4-2.0 ppm) whereas the Li contents of olivines (5.4 ppm) from an enriched harzburgiteare higher than those of lherzolites. Olivines from the samples show higher Li abundances than normal mantle olivines (1.6-1.9 ppm) indicating the occurrence of Li enrichments through melt-preroditite interaction. The average δ7 Li values range from +2.2 to +6.0‰ in olivine, from -0.1 to +2.0‰ in opx and from -4.4 to -0.9‰ in cpx from the lherzolites. The Li isotopic composition (3.5‰) of olivines from harzburgite fall within the range of olivine from lherzolites but the opxs show low in δ7Li (-2.0‰). Overall Li isotopic compositions of olivines from the peridotites fall within the range of normal mantle olivine, δ7Li values of ~+4±2‰ within uncertainty, reflecting metasomatism (enrichment) of the peridotites by isotopically heavy Li-rich asthenospheric melt. Li isotope zonation is also observed in most peridotite minerals. Majority of olivine grains display isotopically heavy cores and light rims and the reverse case is observed for some olivine grains. Orthopyroxene and clinopyroxene grains show irregular distribution in δ7Li. These features of Li isotopic compositions within and between grains in the samples reflect the effect of diffusion-driven isotopic fractionation during meltperidotite interaction and cooling processes.  相似文献   

17.
The purpose of this study is to assess the groundwater quality and identify the processes that control the groundwater chemistry in a crystalline aquifer. A total of 72 groundwater samples were collected during pre- and post-monsoon seasons in the year 2014 in a semi-arid region of Gooty Mandal, Anantapur district, Andhra Pradesh, India. The study utilized chemometric analysis like basic statistics, Pearson’s correlation coefficient (r), principal component analysis (PCA), Gibbs ratio, and index of base exchange to understand the mechanism of controlling the groundwater chemistry in the study area. The results reveal that groundwater in the study area is neutral to slightly alkaline in nature. The order of dominance of cations is Na+ > Ca2+ > Mg2+ > K+ while for anions, it is \( {\mathrm{HCO}}_3^{-}>{\mathrm{Cl}}^{-} \)>\( {\mathrm{NO}}_3^{-} \)>\( {\mathrm{SO}}_4^{2-} \)>\( {\mathrm{CO}}_3^{2-}>{\mathrm{F}}^{-} \) in both seasons. Based on the Piper classification, most of the groundwater samples are identified as of sodium bicarbonate (\( {\mathrm{Na}}^{+}-{\mathrm{HCO}}_3^{-}\Big) \) type. According to the results of the principal component analysis (PCA), three factors and two factors were identified pre and post monsoon, respectively. The present study indicates that the groundwater chemistry is mostly controlled by geogenic processes (weathering, dissolution, and ion exchange) and some extent of anthropogenic activities.  相似文献   

18.
This study presents accurate and precise iron isotopic data for 16 co-magmatic rocks and 6 pyroxene–magnetite pairs from the classic, tholeiitic Red Hill sill in southern Tasmania. The intrusion exhibits a vertical continuum of compositions created by in situ fractional crystallisation of a single injection of magma in a closed igneous system and, as such, constitutes a natural laboratory amenable to determining the causes of Fe isotope fractionation in magmatic rocks. Early fractionation of pyroxenes and plagioclase, under conditions closed to oxygen exchange, gives rise to an iron enrichment trend and an increase in $ f_{{{\text{O}}_{2} }} $ of the melt relative to the Fayalite–Magnetite–Quartz (FMQ) buffer. Enrichment in Fe3+/ΣFemelt is mirrored by δ57Fe, where VIFe2+-bearing pyroxenes partition 57Fe-depleted iron, defining an equilibrium pyroxene-melt fractionation factor of $ \Updelta^{57} {\text{Fe}}_{{{\text{px}} - {\text{melt}}}} \le - 0.25\,\permille \times 10^{6} /T^{2} $ . Upon magnetite saturation, the $ f_{{{\text{O}}_{2} }} $ and δ57Fe of the melt fall, commensurate with the sequestration of the oxidised, 57Fe-enriched iron into magnetite, quantified as $ \Updelta^{57} {\text{Fe}}_{{{\text{mtn}} - {\text{melt}}}} = + 0.20\,\permille \times 10^{6} /T^{2} $ . Pyroxene–magnetite pairs reveal an equilibrium fractionation factor of $ \Updelta^{57} {\text{Fe}}_{{{\text{mtn}} - {\text{px}}}} \approx + 0.30\,\permille $ at 900–1,000?°C. Iron isotopes in differentiated magmas suggest that they may act as an indicator of their oxidation state and tectonic setting.  相似文献   

19.
Theoretical and practical considerations are combined to place limits on the iron content of an FePt alloy that is in equilibrium with silicate melt, olivine and a gas phase of known \(f_{{\text{O}}_{\text{2}} }\) . Equilibrium constants are calculated for the reactions: (1) $$2{\text{Fe}}^{\text{o}} + {\text{SiO}}_{\text{2}} + {\text{O}}_{\text{2}} \rightleftharpoons {\text{Fe}}_{\text{2}} {\text{SiO}}_{\text{4}}$$ (2) $${\text{Fe}}^{\text{o}} + \frac{1}{2}{\text{O}}_{\text{2}} \rightleftharpoons {\text{FeO}}$$ . These equilibria may be used to choose an appropriate iron activity for the FePt alloy of an experiment. The temperature dependence of the equilibrium constants is calculated from experimental data. The Gibbs free energy of reaction (1) obtained using thermochemical data is in close agreement with ΔGrxn calculated from the experimental data. Reaction (1) has the advantage that it is independent of the Fe2+/Fe3+ ratio of the melt, but is limited to applications where olivine is a crystallizing phase and requires a formulation for \(a_{{\text{SiO}}_{\text{2}} }^{{\text{liq}}}\) . Reaction (2) uses an empirical approximation for the FeO/Fe2O3 ratio of the liquid, and is independent of olivine saturation. However, it requires a formulation for a FeO liq . Either equilibrium constant may be used to calculate the appropriate FePt alloy in equilibrium with a silicate melt. If experiments are conducted at an \(f_{{\text{O}}_{\text{2}} }\) parallel that of a buffer assemblage, a small range of FePt alloys may be used over a large temperature interval. For example, an alloy containing from 6 % to 9 % Fe by weight is in equilibrium with olivine-saturated tholeiites and komatiites at the quartzfayalite-magnetite buffer over the temperature interval 1,400° C to 1,100° C. Lunar basalt liquids in equilibrium with olivine at 1/2 log unit below the iron-wüstite buffer require an FePt alloy that contains 30–50 wt. % iron over a similar temperature interval.  相似文献   

20.
The onset of hydrous partial melting in the mantle above the transition zone is dictated by the H2O storage capacity of peridotite, which is defined as the maximum concentration that the solid assemblage can store at P and T without stabilizing a hydrous fluid or melt. H2O storage capacities of minerals in simple systems do not adequately constrain the peridotite water storage capacity because simpler systems do not account for enhanced hydrous melt stability and reduced H2O activity facilitated by the additional components of multiply saturated peridotite. In this study, we determine peridotite-saturated olivine and pyroxene water storage capacities at 10–13 GPa and 1,350–1,450°C by employing layered experiments, in which the bottom ~2/3 of the capsule consists of hydrated KLB-1 oxide analog peridotite and the top ~1/3 of the capsule is a nearly monomineralic layer of hydrated Mg# 89.6 olivine. This method facilitates the growth of ~200-μm olivine crystals, as well as accessory low-Ca pyroxenes up to ~50 μm in diameter. The presence of small amounts of hydrous melt ensures that crystalline phases have maximal H2O contents possible, while in equilibrium with the full peridotite assemblage (melt + ol + pyx + gt). At 12 GPa, olivine and pyroxene water storage capacities decrease from ~1,000 to 650 ppm, and ~1,400 to 1,100 ppm, respectively, as temperature increases from 1,350 to 1,450°C. Combining our results with those from a companion study at 5–8 GPa (Ardia et al., in prep.) at 1,450°C, the olivine water storage capacity increases linearly with increasing pressure and is defined by the relation C\textH2 \textO\textolivine ( \textppm ) = 57.6( ±16 ) ×P( \textGPa ) - 169( ±18 ). C_{{{\text{H}}_{2} {\text{O}}}}^{\text{olivine}} \left( {\text{ppm}} \right) = 57.6\left( { \pm 16} \right) \times P\left( {\text{GPa}} \right) - 169\left( { \pm 18} \right). Adjustment of this trend for small increases in temperature along the mantle geotherm, combined with experimental determinations of D\textH2 \textO\textpyx/olivine D_{{{\text{H}}_{2} {\text{O}}}}^{\text{pyx/olivine}} from this study and estimates of D\textH2 \textO\textgt/\textolivine D_{{{\text{H}}_{2} {\text{O}}}}^{{{\text{gt}}/{\text{olivine}}}} , allows for estimation of peridotite H2O storage capacity, which is 440 ± 200 ppm at 400 km. This suggests that MORB source upper mantle, which contains 50–200 ppm bulk H2O, is not wet enough to incite a global melt layer above the 410-km discontinuity. However, OIB source mantle and residues of subducted slabs, which contain 300–1,000 ppm bulk H2O, can exceed the peridotite H2O storage capacity and incite localized hydrous partial melting in the deep upper mantle. Experimentally determined values of D\textH2 \textO\textpyx/\textolivine D_{{{\text{H}}_{2} {\text{O}}}}^{{{\text{pyx}}/{\text{olivine}}}} at 10–13 GPa have a narrow range of 1.35 ± 0.13, meaning that olivine is probably the most important host of H2O in the deep upper mantle. The increase in hydration of olivine with depth in the upper mantle may have significant influence on viscosity and other transport properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号