首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
王军祥  姜谙男 《岩土力学》2015,36(4):1147-1158
在实际隧道施工过程中,隧道开挖引起地下岩体应力重分布使得围岩的微裂纹扩展损伤,并伴随有塑性流动变形。在地下水环境中对于孔隙和微裂隙围岩介质受到应力作用时,在内部将产生高孔隙水压力影响岩石的力学性质,也改变了围岩的破坏模式。为了研究损伤引起的刚度退化和塑性导致的流动两种破坏机制的耦合作用,从弹塑性力学和损伤理论的角度出发,同时引入修正有效应力原理来考虑孔隙水压力的作用,建立基于Drucker-Prager屈服准则的弹塑性损伤本构模型;针对该本构模型推导了孔隙水压力作用下弹塑性损伤本构模型的数值积分算法-隐式返回映射算法,分别对预测应力返回到屈服面的光滑圆锥面或尖点奇异处两种可能的情况给出了详细的描述,隐式返回映射算法具有稳定性和准确性的特点;大多数弹塑性损伤模型中涉及参数多且不易确定的问题,采用反分析方法获得损伤参数,解决了损伤参数不易确定的难题;采用面向对象的编程方法,使用C++语言编制了弹塑性损伤本构求解程序,并对所建立的弹塑性损伤模型和所编程序进行了试验和数值两个方面的验证;最后将其在吉林抚松隧道工程中进行应用,模拟了塑性区和损伤区的发展变化。研究结果表明:所建立的弹塑性损伤本构模型能够较好地描述岩石的力学性能、塑性和损伤变化趋势,所编程序能够进行实际工程问题的模拟,对现场施工给予一定的指导。  相似文献   

3.
Discrete element modelling of drying shrinkage and cracking of soils   总被引:1,自引:0,他引:1  
This paper is aimed at showing the efficiency of discrete element modelling for the prediction and understanding of drying shrinkage and associated cracking. The discrete element approach used is presented first. Cohesive forces between grains, as well as drying shrinkage deformation, are included in the formulation. A numerical model is then used to simulate drying shrinkage experiments conducted on a fine-grained soil. The numerical simulations agree well with the experimental measurements. When drying shrinkage is constrained at the boundaries, and when moisture gradients develop in the drying soil, the model is able to predict the time of the occurrence of cracking, as well as the crack pattern formed. Finite element simulations and the discrete element approach both predict similar behaviours before cracking occurs. The proposed discrete element approach is highly promising for studying the origins and causes of cracking in soils.  相似文献   

4.
5.
马田田  韦昌富  陈盼  魏厚振  伊盼盼 《岩土力学》2012,33(11):3263-3270
在修正剑桥模型的基础上,提出了一个非饱和土毛细滞回与骨架变形耦合的弹塑性本构模型。该模型考虑了基质吸力与饱和度对屈服应力的影响,可以同时描述非饱和土的弹塑性变形特性与毛细循环滞回效应。根据塑性体变的产生使非饱和土进气值增大的特点,建立了变形对土-水特征曲线影响的数学描述。该模型有效地考虑了饱和度对前期屈服应力的作用,准确地反映了土体在不同土-水状态条件下(脱湿和吸湿过程)强度特性的变化,而且还可以有效地描述水力循环历史对土体变形的影响。通过与试验数据对比,证明了该模型能够模拟非饱和土的主要力学特性。  相似文献   

6.
袁小平  刘红岩  王志乔 《岩土力学》2012,33(6):1679-1688
基于Drucker-Prager(下简称D-P)准则,建立压缩载荷作用下的非贯通节理岩石的弹塑性断裂模型。针对节理岩石小范围屈服翼裂纹尖端塑性区,推导了D-P屈服准则的纯I、纯II及I、II复合型3种翼裂纹无量纲塑性区径长函数,并与Mises准则的塑性区进行对比;结果表明,D-P准则的I型和复合型塑性区较Mises屈服准则的塑性区大,且其II型及I、II复合型塑性区在翼裂纹上下表面不连续。进一步,引入断裂软化因子以表征节理岩石裂隙断裂扩展后的断裂软化规律,考虑非贯通节理岩石复合型断裂软化,是由于节理尖端翼裂纹应变能密度超过最小应变能密度导致其成核扩展引起的,提出用应变能密度的指数函数形式表征断裂软化变量的演化;塑性屈服函数采用Borja等的应力张量3个不变量的硬化/软化函数,反映塑性内变量及应力状态对硬化函数的影响;建立节理岩石的弹塑性断裂本构关系及其数值算法,并用回映隐式积分算法编制了弹塑性断裂模型的程序。以单轴压缩下非贯通节理岩石为例,分析岩石断裂韧度、节理摩擦系数和节理倾角等参数的影响,结果表明,所提出的弹塑性断裂模型与数值和试验结果比较吻合。  相似文献   

7.
In order to understand the mechanical behaviours of the surrounding rocks in the underground caverns of the Wudongde hydropower plant, triaxial tests are performed on a type of dolomite. It is revealed that damage induced by crack development is the main factor controlling the nonlinear plastic deformation and failure behaviour of the dolomite in both pre- and post-peak regimes. Based on this understanding, a coupled elastoplastic damage model is developed for capturing the dolomite’s mechanical behaviours. In the model, the effects of plasticity and damage on rocks is described by introducing plastic hardening and damage softening commonly in the plastic yield surface. Which are both derived from a suitable Helmholtz free energy function. The model is used to simulate the triaxial tests. Comparisons between test results and the numerical modelling show that the developed model is capable of describing the macro mechanical behaviours of the Wudongde dolomite.  相似文献   

8.
This paper presents a micromechanics-based elastoplastic damage model for quasi-brittle rocks under a compressive stress state. The plastic strain is considered to be related to frictional sliding along micro-cracks, and it is coupled inherently with damage evolution. By following a homogenization procedure, we determine the free energy of the matrix-cracks system. The thermodynamic force associated with the inelastic strain contains a back stress, which controls material hardening. Next, in order to determine plastic flow and crack propagation, we propose a Coulomb-type friction criterion, which is used as the plastic yielding function, and a damage criterion based on strain energy release rate. These thermodynamic formulations with a micro–macro scale change allow reducing significantly the number of model parameters, as compared to phenomenological models. Our model is applied to simulate triaxial compression tests on two sets of diabase samples. The first sample set is cored from a fresh diabase rock mass, and the second from a slightly weathered one. Comparisons between numerical predictions and test data are presented.  相似文献   

9.
岩盐弹塑性损伤耦合模型研究   总被引:5,自引:1,他引:4  
岩盐力学模型是进行能源岩盐储存工程稳定性分析的基础,而损伤和塑性机制并存且相互耦合是岩盐力学行为的基本特点。采用云应岩盐,进行了多组围压条件下的三轴压缩试验,分析了不同围压下岩盐的变形特征。在试验分析的基础上,提出了一种能够描述岩盐特性的弹塑性损伤耦合的模型,该模型描述了岩盐损伤的演化和塑性变形的耦合关系,并引入了一种非关联的塑性流动法则来描述岩盐从塑性体积压缩到膨胀的转化。采用该模型对在三轴压缩下的岩盐应力-应变关系进行了模拟分析,并与试验数据进行了对比,结果表明该模型能够较好地描述岩盐的主要力学和变形特性。  相似文献   

10.
11.
周爱兆  卢廷浩  姜朋明 《岩土力学》2012,33(9):2656-2662
基于广义位势理论建立的岩土体材料本构模型以及岩土体材料与结构接触面本构模型原理相通,只是前者是在三轴剪切试验条件下的三维应力空间建模,后者是在单剪试验条件下的二维应力空间建模。单剪试验条件下土与结构的接触面问题可以看作是法向与切向应力空间上的二维问题,其试验结果可以表达成由应力、应变组成的二维矢量。结合接触面力学特性,确定应力空间中的势函数以及塑性状态方程,可以推导出双重势面接触面弹塑性本构方程的一般表达式。进一步取两个势函数分别为法向应力和切向应力,建立简化双重势面接触面弹塑性模型的本构方程,该方程可直接应用于有限元等数值分析。结合试验实例对建模方法的合理性进行验证,模型拟合效果良好。研究结果表明,基于广义塑性位势理论建立接触面本构模型无需推求塑性势函数和屈服函数,可以直接得到弹塑性刚度矩阵,且建模方便。  相似文献   

12.
A new phenomenological macroscopic constitutive model for the numerical simulation of quasi‐brittle fracture and ductile concrete behavior, under general triaxial stress conditions, is presented. The model is particularly addressed to simulate a wide range of confinement stress states, as also, to capture the strong influence of the mean stress value in the concrete failure mechanisms. The model is based on a two‐surface damage‐plastic formulation. The mechanical behavior in different domains of the stress space is separately described by means of a quasi‐brittle or ductile material response:

13.
14.
A discrete plastic–damage model is developed for cohesive‐frictional geomaterials subjected to compression‐dominated stresses. Macroscopic plastic strains of material are physically generated by frictional sliding along weakness planes. The evolution of damage is related to the evolution of weakness planes physically in connection with the propagation of microcracks. A discrete approach is used to account for anisotropic plastic flow and damage evolution, by introducing two stress invariants and one plastic hardening variable for each family of sliding weakness planes. Plastic flow in each family is coupled with damage evolution. The proposed model is applied to typical geomaterials and comparisons between numerical predictions and experimental data are presented. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
The objective of the present paper is to present a numerical study on the penetration performance of concrete targets with 2 different water contents. Numerical analysis has been performed by using the finite element code Abaqus/Explicit, in which a coupled elastoplastic damage model has been developed for saturated/unsaturated concrete under a wide range of confining pressures. The performance of proposed model has been firstly verified by simulating the triaxial compression tests and penetration tests realized with saturated/dry concretes. Comparisons of available experimental results and numerical simulations show that the proposed model is able to reproduce satisfactorily the mechanical behavior of saturated and dry concretes. A higher failure stress and a more important pores closing are generally obtained in dry concrete samples with respect to saturated ones. Furthermore, the main observed patterns of penetration test realized with saturated concrete targets are also satisfactorily simulated by the numerical results. Therefore, the proposed model is used to numerically predict the penetration performance of dry concrete target, and the penetration performance of dry/saturated concrete target is discussed. We observe that in dry concrete target, the penetration of projectile is strongly declined, and a smaller damage zone is created. The numerical predictions and discussions can help engineers to enhance their understandings on the influence of hydraulic conditions on structural vulnerability of concrete structures subjected to near‐field detonations or impacts.  相似文献   

16.
软土的弹塑性各向异性损伤分析   总被引:20,自引:9,他引:11  
孙红  赵锡宏 《岩土力学》1999,20(3):7-12
以热力学理论为基础,提出考虑各向异性损伤的能量指标概念,构造损伤势函数,建立损伤的演化方程,进而建立软土的弹塑性各向异性损伤力学模型。应用此模型分析试验,结果与试验相吻合。  相似文献   

17.
泥岩弹塑性损伤本构模型及其参数辨识   总被引:2,自引:1,他引:1  
贾善坡  陈卫忠  于洪丹  李香玲 《岩土力学》2009,30(12):3607-3614
以连续介质力学和不可逆热力学为基础,将损伤引入到修正的Mohr-Coulomb准则中,建立了泥岩弹塑性损伤本构模型反映泥岩软硬化行为,通过构建损伤势函数导出了泥岩的损伤演化方程,编制了泥岩弹塑性损伤本构模型及其参数反演程序。并根据非排水条件下泥岩三轴试验结果,采用多目标函数优化反分析法获得了泥岩本构模型参数。研究成果表明,所提出的弹塑性损伤本构模型能有效地描述泥岩在不同应力状态下的力学特性。  相似文献   

18.
19.
20.
This paper presents a three‐dimensional elastoplastic constitutive model for predicting the hydraulic and mechanical behaviour of unsaturated soils. It is based on experimental results obtained from a series of controlled‐suction triaxial tests on unsaturated compacted clay with different initial densities. Hydraulic hysteresis in the water‐retention behaviour is modelled as an elastoplastic process, with the elastic part modelled by a series of scanning curves and the elastoplastic part modelled by the main drying and wetting curves. The effect of void ratio on the water‐retention behaviour is studied using data obtained from controlled‐suction wetting–drying cyclic tests on unsaturated compacted clay with different initial densities. The effect of the degree of saturation on the stress–strain‐strength behaviour and the effect of void ratio on the water‐retention behaviour are considered in the model, as is the effect of suction on the hydraulic and mechanical behaviour. The initial density dependency of the compacted soil behaviour is modelled by experimental relationships between the initial density and the corresponding yield stress and, thereby, between the initial density and the normal compression line. The model is generalized to three‐dimensional stress states by assuming that the shapes of the failure and yield surfaces in the deviatoric stress plane are given by the Matsuoka–Nakai criterion. Model predictions of the stress–strain and water‐retention behaviour are compared with those obtained from triaxial tests with different initial densities under isotropic compression, triaxial compression and triaxial extension, with or without variation in suction. The comparisons indicate that the model accurately predicts the hydraulic and mechanical behaviour of unsaturated compacted soils with different initial densities using the same material constant. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号