首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
土壤中的多环芳烃(PAHs)会威胁人类健康和生态环境安全。为掌握北运河流域(北京段)土壤中PAHs的分布特征及其形成机制,采用克里格插值、主成分分析-多元线性回归等多元统计方法,结合同分异构体比值法对该区域表层土壤中16种优控PAHs的质量分数、分布趋势、空间分布特征及其污染来源进行了研究。结果表明:(1)研究区216件土壤样品中16种PAHs均被检出,且主要为高环PAHs(4~6环),总PAHs的质量分数范围在10.5~19 466.5μg/kg,受污染土壤样品占29.63%;(2)表层土壤中的PAHs在东西及南北方向上均呈现出中部高、两端低的趋势,在空间分布上总体表现为北部区域及中部城区含量较高、其他地区相对较低的特征,且由于人为活动影响导致个别点位PAHs富集,存在点源污染或局部污染;(3)PAHs同分异构体比值法及主成分分析法研究表明,研究区内PAHs的来源为以煤/生物质燃烧及交通燃烧为主、石油泄漏等石油化工源为辅的混合源,多元线性回归方法分析后得到2者的贡献率分别为89%和11%。研究结果可为研究区的污染防控、土地质量评价和国土空间规划等工作提供有力支撑。  相似文献   

2.
为研究长江三角洲典型农用地土壤多环芳烃的组成及来源,系统采集华东某地区农用地表层土壤样77个,对16种优先控制的多环芳烃(PAHs)单体含量进行测定。结果表明:研究区农用地土壤中Σ16PAHs浓度范围为18.60~1278.67μg/kg,平均浓度为233.57μg/kg;PAHs组成以2环至4环的中低环组分为主,占85.05%;同分异构体比值法和主成分分析法显示研究区农用地土壤中多环芳烃主要来源于石油泄漏及煤与生物质燃烧。  相似文献   

3.
水体悬浮颗粒物的扫描电镜与X射线能谱显微分析   总被引:3,自引:0,他引:3  
盛东  胡忻  刘锡尧 《岩矿测试》2010,29(6):683-686
通过对湖州地区74个土壤样品多环芳烃含量的测定,分析了湖州市不同土地利用类型土壤中多环芳烃(PAHs)的含量特征及污染水平。结果表明,湖州地区PAHs各组分的含量均有检出,各种土地利用类型表层土壤均受到一定程度的PAHs污染,但均小于荷兰土壤修复标准;湖州市区耕地中PAHs的含量最高;从PAHs低环/高环比值小于1以及芘/苯并(a)芘比值小于2,反映了湖州地区土壤中PAHs主要是由燃煤和生活污染产生的。  相似文献   

4.
多环芳烃(PAHs)具有致癌、致畸、致突变作用,并能够持久存在于环境中。对安徽省某市B河水体中多环芳烃含量进行了分析。使用特征比值法(MOR)对其来源进行了解析,发现其特征比值均大于0.35,为燃烧源。使用风险熵值法(RQ)与毒性等效计量法(TEQ)对其生态风险与致癌风险进行了评价,单体PAHs的低风险熵值(RQNCs...  相似文献   

5.
以我国东部某城市城区表层土壤环境指标为研究对象,采用一元线性回归和主成分分析的方法研究了城市土壤中六六六(HCHs)、滴滴涕(DDTs)、多环芳烃(PAHs)、有机质含量,含水量,重金属含量,土壤pH值等指标间的相关性,确认长期的工业活动是导致土壤重金属和多环芳烃污染的主要来源,城市绿地施用农药是土壤六六六和滴滴涕污染的主要来源。  相似文献   

6.
为研究广西三娘湾海域表层沉积物有机质中烃类化合物的分布特征及来源,于2019年10月在三娘湾海域采集了表层沉积物样品,利用加速溶剂萃取GC-MSD法对沉积物中的16种多环芳烃(PAHs)进行了分析。结果表明: 三娘湾海域表层沉积物样品中多环芳烃的含量为37~241.8 ng/g,总体处于含量较低的水平,但与往年相比研究区PAHs含量增加明显。通过组分分析等方法进行PAHs的来源分析,结果指示其主要来源为燃烧源,夹杂石油源的混合来源; 通过效应区间法对多环芳烃进行生态风险评价,认为其总体处于风险较低的水平。综合研究表明,三娘湾海域总体生态环境较好,但人类活动对多环芳烃含量及分布特征的影响较明显,需要持续关注。  相似文献   

7.
第二松花江中下游河段底泥中多环芳烃的初步研究   总被引:5,自引:1,他引:5  
第二松花江中下游河段8个底泥中多环芳烃(PAHs)分析表明,5种多环芳烃含量和多环芳烃总量随取样点位置发生明显的变化,城区河段底泥中各种PAHs含量和PAHs总量均高于非城区河段。2环加3环与5环PAHs化合物分布特点表明第二松花江中下游非城区河段底泥中PAHs的来源以石油类污染为主,而城区河段PAHs的来源则主要是化石燃料高温燃烧。第二松花江中下游河段(尤其是城区河段)底泥中PAHs具有较高生态风险,可能会对生物产生一定的负面影响。  相似文献   

8.
多环芳烃(polycyclic aromatic hydrocarbons,PAHs)是一种难降解、毒性强的致癌性污染物,其广泛分布于各环境介质中,陆地环境中90%的PAHs累积在土壤中。随着资源的开发,由油品泄漏、垃圾渗滤、污水排放等行为造成的多年冻土区PAHs土壤污染问题日益突显,并且在气候变化背景下,多年冻土中的PAHs具有重新释放而造成二次污染的风险,多年冻土区土壤多环芳烃污染分布特征和迁移规律研究对评估多年冻土区生态环境风险,防治土壤持久性有机物污染,保障广大多年冻土居民生命健康安全具有重要意义。通过回顾目前国内外多年冻土区土壤中PAHs污染的相关研究,分析发现多年冻土区未受污染的土壤中PAHs的污染水平远低于中低纬度人口密集区域,可代表地球土壤中PAHs的背景值;高纬度或高海拔的地理位置以及严寒的气候使得冻土区土壤中PAHs一个普遍且最重要的来源是大气远距离传输;活动层的冻融作用主要通过改变土壤理化性质和控制水分运移方向影响PAHs在多年冻土区土壤中的垂向分布特征,多年冻土的低渗透性具有阻碍PAHs垂向迁移的作用。综合分析已有研究成果,表明目前冻土区土壤PAHs污染研究还是大量集中于表层土壤中的污染分布调查和来源解析,而关于PAHs在活动层和多年冻土层中的垂向迁移研究还仅限于对其在土壤剖面中分布状况的解释性分析,冻融作用对PAHs在土壤中的迁移、转化和归宿的影响机制还不清楚。未来多年冻土区土壤中PAHs的研究将集中于迁移转化机理与污染治理技术两方面,针对PAHs在多年冻土区土壤中迁移行为的模拟模型亟待研究开发,以实现PAHs污染储量和迁移通量的定量预测;此外,多年冻土区土壤污染问题的深入研究还需要紧密联系多圈层、多界面、多介质、多要素以及多目标污染物而开展。  相似文献   

9.
吉林省中部农业土壤中PAHs的分布及风险评价   总被引:6,自引:0,他引:6  
为了探明吉林省中部农业土壤中PAHs的污染现状,系统地测试了该区土壤中PAHs的含量,对土壤中16 种PAHs的分布特征及其生态风险进行了探讨.结果表明:吉林省中部农业土壤中PAHs的质量分数为144.5~2 355.0 μg/kg,且水田土壤中PAHs的含量高于旱田土壤中的含量;土壤PAHs的来源既有燃烧源,又有石油类污染源;目前土壤PAHs以轻微污染水平为主,生态风险评价表明土壤PAHs的生态风险较小.  相似文献   

10.
表层岩溶带土壤中多环芳烃分布特征及来源解析   总被引:3,自引:0,他引:3  
利用气相色谱-质谱联用仪(GC-MS)对表层岩溶泉域土壤中的16种优控的多环芳烃(Polycyclic Aromatic Hydrocarbons, PAHs)含量进行了分析,并对其组成、污染水平和来源进行了探讨。结果表明,16种优控PAHs在表层岩溶泉域土壤中的检出率为100%,其含量介于439.19~3329.72ng/g之间,平均值为1392.44ng/g,7种致癌性PAHs占总量的26%。PAHs的组成特征受地形的控制,随着海拔升高,低环PAHs所占比例升高,高环PAHs比例降低。同分异构体比值分析表明,研究区土壤中的PAHs主要来自于煤、生物质和石油的燃烧排放。研究区土壤中16种PAHs的TEQcarc值介于18.65~501.13ng/g,平均值为140.57ng/g。7种致癌性PAHs占总TEQcarc的比例达到96.8%。研究区表土中,后沟泉域的污染程度最大,次之是兰花沟泉域和柏树湾泉域,水房泉泉域的污染程度最小,但由于柏树湾泉域松针落叶中BaP、PAHs含量较高,松针落叶中PAHs含量分别高达36.36ng/g和2370.1ng/g,土壤生态风险评价中应考虑松针落叶层的潜在影响。   相似文献   

11.
Studies of polycyclic aromatic hydrocarbons (PAHs) in the surface soil were conducted in Huizhou City, which is located in the Pearl River Delta, South China. Sixteen PAHs in 42 soil samples were detected. The results showed that 4 components of PAHs were detectable in all soil samples, and other 12 components were also detectable to some extent. The total PAHs contents range from 35.40 to 534.5 μg/kg with the mean value of 123.09 μg/kg. Soil in Huizhou was slightly polluted by PAHs according to Maliszewska-Kordybach’s study. It can be confirmed that the increase of PAHs contents in the surface soil of Huizhou City is closely connected to human activities. Multivariate analysis was also made in this study. Principal component analysis was used to constrain their origins, and 3 principal components (PCs) were extracted. The results showed that coal combustion and oil spilling made the major contributions to PAHs. Cluster analysis was made and 16 priority PAHs were classified as 4 sorts, and the result revealed the differences in environmental behavior, chemical properties and sources of PAHs.  相似文献   

12.
The concentrations of total polycyclic aromatic hydrocarbons (??PAHs) and 16 individual PAH compounds in 6 surface water and 44 soil samples collected from the vicinity of spilled fuel from a pipeline which carries fuel from a jetty to the tank farm were analyzed. The ??PAHs concentrations in surface water ranged from 0.37 to 99.30?mg/l with a mean concentration of 57.83?mg/l. The ??PAHs concentrations in water are of several orders of magnitude higher than in unpolluted water and some national and international standards including in some surface water in other parts of the world. This suggests that the surface water of the area were heavily polluted by anthropogenic PAHs possibly from the spills. The total PAH concentrations in soil ranged from 16.06 to 25,547.75???g/kg with a mean concentration of 2,906.36???g/kg. ??PAH concentrations of the seven carcinogenic PAH compounds in soil varied between 0.02 and 97,954???g/kg. In terms of composition of patterns in surface water and soil, the PAHs were dominated by four and three rings. The distribution pattern showed marked predominance by low molecular weight compounds. In comparison with ??PAHs concentrations in other part of the world, the total PAH concentrations of this area were higher than those reported for some urban soils in some regions of the world. The ratios of Phe/Ant, Flu/Pyr, Flu/(Flu?+?Pyr), and BaA/(BaA?+?Chyr) in both water and soil indicated various sources of PAH in the area. These sources include fuel spills, burning of motor tyres and vegetation, vehicle repairs and washing, motor exhaust and fire wood burning from cooking.  相似文献   

13.
An extensive soil survey was carried out in Shanghai to investigate the spatial distribution and possible sources of polycyclic aromatic hydrocarbons (PAHs) in urban soils. Soil samples were collected from highways, iron-smelting plants, steel-smelting plants, shipbuilding yards, coking plants, power plants, chemical plants, urban parks, university campuses and residential areas and were analyzed for 16 PAHs by gas chromatography with mass detection. High PAH concentrations were found in all locations investigated, with mean values of soil total PAH concentrations in the range 3,279–38,868 μg/kg DM, and the PAH concentrations were significantly influenced by soil organic matter content. Soil PAH profiles in all districts were dominated by PAHs with 4–6 rings. Principal components analysis and diagnostic ratios of PAHs indicate that they were mainly derived from coal combustion and petroleum but in soils from highways the PAHs were derived largely from vehicle exhaust emissions. The high concentrations of PAHs found indicate that many urban soils in Shanghai represent a potential hazard to public health.  相似文献   

14.
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous organic pollutants in urban environments including urban soils. Elevated concentrations of PAHs in urban soils are caused by incomplete combustion of petroleum and coal. This study assesses 16 individual PAH compounds in a total of 112 surficial soil samples. The objective was to assess and compare the levels of contamination as well as examine the main sources of PAHs in four urban agricultural soils using molecular ratios of some specific hydrocarbons. The study showed that PAH levels in soil ranged from 1.23 ng/kg in soil collected from Dzorwulu to 2.95 ng/kg in soil collected from Ghana Broadcasting Cooperation (GBC) vegetable irrigation site. Of the total PAHs, the more water soluble PAHs (2–4 rings), which tend to be concentrated in the vapour phase were found to dominate the soils. The percentage dominance were Dzorwulu (52.8 %), Marine Drive (62.5 %), CSIR (53.2 %) and GBC (49.2 %). However, there were significant levels of the more carcinogenic PAHs (5–6 rings) present with percentages as 47.1, 37.5 46.8 and 50.8 % for Dzorwulu, Marine Drive, CSIR and GBC vegetable irrigation sites, respectively, and therefore, may impact negatively on public health. Based on the classification by the Institute of Soil Science and Plant Cultivation in Pulawy, Poland, urban soils in Accra could be classified as contaminated to different levels. Molecular ratios of Flu/pyr and PA/Ant were calculated to determine the main sources of PAHs. Results showed that PAHs could originate mainly from incomplete combustion of petroleum products, especially from atmospheric fallout from automobile exhausts. The study further showed that B(a)P concentration of 0.05 ng/kg in soil from GBC urban vegetable irrigation site requires immediate clean-up exercise and monitoring to mitigate human health impact.  相似文献   

15.
土壤,作为城市中最重要的环境介质,承担了较高多环芳烃(PAHs)的环境负荷,开展土壤PAHs分布特征及来源分析研究,可以为污染风险防控、环保政策制定提供支撑.为研究北京市不同功能区土壤环境中PAHs的含量、组成及来源,本文在北京市主城区进行了大范围采样,同时针对工业区、农业种植区、水源保护区及居民区等不同功能区进行了分...  相似文献   

16.
Polycyclic aromatic hydrocarbons (PAHs) in soil originate from various sources under different spatial scales. Coregionalization analysis is more revealing than univariate geostatistical analysis. Scale-dependent spatial features of variables reflect different sources of spatial variability. In this study, 188 topsoil samples in the Tianjin area were collected. The contents of 16 PAHs and soil background properties were determined for all samples. A multivariate geostatistical approach was used for multi-scale spatial analysis for PAH compounds. Results show that coal combustion was the major source for the spatial distribution patterns of PAHs in the topsoil of the studied area. It worked mainly at the short-range scale (5–10 km). Significant spatial variation patterns were identified. In contrast, no significant spatial distribution trends at the nugget (0–5 km) or long-range scales (10–50 km) were seen. Long-range transport and site contamination of PAHs might not be key contributors in forming the distribution pattern of PAHs in the topsoil of Tianjin area.  相似文献   

17.
山东半岛海岸带面临着各类复杂的环境问题,尤其是受到了多环芳烃(PAHs)等持久性有机物的污染,本文研究了整个山东半岛典型海岸带62个站点表层沉积物中PAHs的含量及其分布特征,并对其来源和潜在风险进行解析与评价。研究表明,该地区表层沉积物中16种PAHs总含量为0.06~3191.40 ng/g(平均值262.08 ng/g),与国内外海岸带相比,山东半岛海岸带表层沉积物中PAHs整体污染状况处于较低水平,但个别站点的PAHs含量偏高。运用特征比值法、相关性分析及主成分分析法解析研究区PAHs主要来源为木柴、煤炭、油类的燃烧以及油类泄露的联合作用。采用效应区间低值法(ERL)和中值法(ERM)对PAHs进行生态风险评价,结果表明莱州湾周边所有站点及威海、青岛周边个别站点苊、芴浓度位于ERL值与ERM值之间,但多数站点对生态环境潜在负面效应很小。山东半岛典型海岸带中PAHs对生物的毒副作用尚在安全可控范围内,极少对生态环境产生负面效应。  相似文献   

18.
Black carbon (BC) in soils plays a key role of carrying hydrophobic pollutants like polycyclic aromatic hydrocarbons (PAHs). However, little is known about the spatial distribution, sources of BC and its relationship with PAHs in urban soils. We studied BC, total organic carbon (TOC) and PAHs concurrently in 77 soils collected from downtown area, suburban and rural area and industrial area of Shanghai, China. BC was determined by both chemical oxidation (dichromate oxidation, BCCr) and chemo-thermal oxidation (CTO-375, BCCTO). BC sources were identified qualitatively by BC/TOC concentration ratios and BC-cogenerated high molecular weight (HMW) PAH isomer ratios and quantitatively by principal component analysis followed by multiple linear regression (PCA-MLR). Results showed that BCCr concentration (4.65 g/kg on average) was significantly higher than BCCTO (1.91 g/kg on average) in Shanghai soils. BCCr concentrations in industrial area were significantly higher than those in other two. Stronger correlation was found between PAHs and TOC, BCCr than that between PAHs and BCCTO, which indicates the possibility of PAHs being carried by charcoal and other organic matters thus negating its exclusive dependence on soot. Charcoal was therefore suggested to be taken into account in studies of BC and its sorption of PAHs. BC/TOC ratios showed a mixed source of biomass burning and fossil fuel combustion. PCA scores of BC-cogenerated HMW PAHs isomer ratios in potential sources and soil samples clearly demonstrated that sources of BC in urban soils may fall into two categories: coal and biomass combustion, and traffic (oil combustion and tire wear). PCA-MLR of HMW PAHs concentrations in soil samples indicated that coal and oil combustion had the largest contribution to BC in urban soils while tire wear and biomass combustion were important in downtown and rural area, respectively, which indicated they were main sources of HMW PAHs and presumably of BC.  相似文献   

19.
Concentrations and sources of polycyclic aromatic hydrocarbons (PAHs) were investigated in surface sediments of the Yellow River Estuary (YRE). The isobath-parallel tidal and residual currents play important roles in the variation of PAH distribution, such that the contamination level of PAHs in fine-grained sediments is significantly higher than in the relatively coarse grain size sediments. Both diagnostic ratios and principal component analysis (PCA) with multivariate linear regression (MLR) were used to apportion sources of PAHs. The results revealed that pyrogenic sources are important sources of PAHs. Further analysis indicated that the contributions of coal combustion, traffic-related pollution and mixed sources (spills of oil products and vegetation combustion) were 35, 29 and 36 %, respectively, using PCA/MLR. Pyrogenic sources (coal combustion and traffic-related pollution) contribute 64 % of anthropogenic PAHs in sediments, which indicates that energy consumption could be a predominant factor in PAH pollution of YRE. Acenaphthylene and acenaphthene are the two main species of PAHs with more ecotoxicological concern in YRE.  相似文献   

20.
Concentration, distribution, and sources of 16 polycyclic aromatic hydrocarbons (PAHs) were investigated in surface sediments of Laizhou Bay, China. Total PAH concentrations ranged from 97.2 to 204.8 ng/g, with a mean of 148.4 ng/g. High concentrations of PAHs were found in the fine-grained sediments on both sides of the Yellow River estuary (YRE). In contrast, low levels of PAHs were observed in relatively coarse grain sediments, suggesting hydrodynamics influence the accumulation of sedimentary PAHs. The YRE and its adjacent area is the main sink for Yellow River-derived PAHs. Both PAH isomer ratios and principal component analysis (PCA) with multivariate linear regression (MLR) were applied to apportion sources of PAHs. Results indicated that both pyrogenic and petrogenic PAH sources were important. Further PCA/MLR analysis showed that the contributions of coal combustion, petroleum combustion and a combined source of spilled oil and biomass burning were 41, 15 and 44%, respectively. From an ecotoxicological viewpoint, the studied area appears to have low levels of PAH pollution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号