首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Realistic texture‐based modelling methods, that is microstructural modelling and micromechanical modelling, are developed to simulate the rock aggregate breakage properties on the basis of the rock actual microstructure obtained using microscopic observations and image analysis. The breakage properties of three types of rocks, that is Avja, LEP and Vandle taken from three quarries in Sweden, in single aggregate breakage tests and in inter‐aggregate breakage tests are then modelled using the proposed methods. The microstructural modelling directly integrates the microscopic observation, image analysis and numerical simulation together and provides a valuable tool to investigate the mechanical properties of rock aggregates on the basis of their microstructure properties. The micromechanical modelling takes the most important microstructure properties of rock aggregates into consideration and can model the major mechanical properties. Throughout this study, it is concluded that in general, the microstructure properties of rock aggregate work together to affect their mechanical properties, and it is difficult to correlate a single microstructure property with the mechanical properties of rock aggregates. In particular, for the three types of rock Avja, LEP and Vandle in this study, crack size distribution, grain size and grain perimeter (i.e. grain shape and spatial arrangement) show good correlations with the mechanical properties. The crack length and the grain size negatively affect the mechanical properties of Avja, LEP and Vandle, but the perimeter positively influences the mechanical properties. Besides, the modelled rock aggregate breakage properties in both single aggregate and inter‐aggregate tests reveal that the aggregate microstructure, aggregate shape and loading conditions influence the breakage process of rock aggregate in service. For the rock aggregate with the same microstructure, the quadratic shape and good packing dramatically improve its mechanical properties. During services, the aggregate is easiest to be fragmented under point‐to‐point loading condition, and then in the sequence of multiple‐point, point‐to‐plane and plane‐to‐plane loading conditions. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
This paper presents a simplified finite element analysis technique, the ‘Press‐Replace’ technique, to model pile penetration problems in geotechnical engineering, particularly, pile jacking. The method is employed in standard finite element analysis software. The method involves a straining and a consequent geometry update phase. First, a cone penetration test in (undrained) clay is modelled and compared with the results of analytical, semi‐analytical and more advanced finite element techniques. The model sensitivity for the step size and mesh is investigated using a hypoplastic constitutive model. An optimum way of modelling based on the numerical performance is shown. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
This paper addresses the issue of uncertainty treatment in geotechnical engineering. Emphasis is placed on modelling and analysis of non-random uncertainties using fuzzy sets. Although uncertainties were modelled with fuzzy sets in this study, subsequent analysis or processing of the uncertain information was performed using traditional, non-fuzzy techniques. These techniques, including the vertex method and Monte Carlo simulation, are discussed in detail. An example application using soil liquefaction susceptibility is presented. The paper concludes that non-random uncertainties can be successfully modelled and processed using fuzzy sets.  相似文献   

4.
Geotechnical engineering problems are characterized by many sources of uncertainty. Some of these sources are connected to the uncertainties of soil properties involved in the analysis. In this paper, a numerical procedure for a probabilistic analysis that considers the spatial variability of cross‐correlated soil properties is presented and applied to study the bearing capacity of spatially random soil with different autocorrelation distances in the vertical and horizontal directions. The approach integrates a commercial finite difference method and random field theory into the framework of a probabilistic analysis. Two‐dimensional cross‐correlated non‐Gaussian random fields are generated based on a Karhunen–Loève expansion in a manner consistent with a specified marginal distribution function, an autocorrelation function, and cross‐correlation coefficients. A Monte Carlo simulation is then used to determine the statistical response based on the random fields. A series of analyses was performed to study the effects of uncertainty due to the spatial heterogeneity on the bearing capacity of a rough strip footing. The simulations provide insight into the application of uncertainty treatment to geotechnical problems and show the importance of the spatial variability of soil properties with regard to the outcome of a probabilistic assessment. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
Niobium and Ta concentrations in ultrahigh‐pressure (UHP) eclogites and rutile from these eclogites and associated high pressure (HP) veins were used to study the behaviour of Nb–Ta during dehydration and fluid‐rock interaction. Samples were collected through a ~2 km profile at the Bixiling complex in the Dabie orogenic belt, Central‐Eastern China. All but one eclogite away from veins (EAVs) display nearly constant Nb/Ta ratios ranging from 16.1 to 19.2, with an average of 16.9 ± 0.8 (2 SE), similar to that of their gabbroic protolith from the Yangtze Block. Nb/Ta ratios of rutile from the EAVs range from 12.7 to 25.3 among different individual grains, with the average values close to those of the corresponding bulk rocks. These observations show that Nb and Ta were not significantly fractionated by prograde metamorphism up to eclogite facies when no significant fluid‐rock interaction occurs. In contrast, Nb/Ta ratios of rutile from eclogites close to veins (ECVs) are highly variable from 17.8 to 49.8, which are systematically higher (by up to 17) than those of rutile from the veins. These observations demonstrate that Nb and Ta were mobilized and fractionated during localized fluid flow and intensive fluid‐rock interaction. This is strongly supported by Nb/Ta zoning patterns in single rutile grains revealed by in situ LA‐ICP‐MS analysis. Ratios of Nb/Ta in the ECV‐hosted rutile decrease gradually from cores towards rims, whereas those in the EAV‐hosted rutile are nearly invariable. Furthermore, the vein rutile shows Nb/Ta zoning patterns that are complementary to those in rutile from their immediate hosts (ECVs), suggesting an internal origin for the vein‐forming fluids. The Nb/Ta ratios of such fluids evolved from low values at the early stage of subduction to higher values at later supercritical conditions with increased temperature and pressure. Quantitative modelling was conducted to constrain the compositional evolution of metamorphic fluids during dehydration and fluid‐rock interaction focusing on Nb–Ta distribution. The modelling results based on our proposed multistage fluid phase evolution path can essentially reproduce the natural observations reported in the present study.  相似文献   

6.
Discrete fracture network simulations are computationally intensive and usually time-consuming to construct and configure. This paper presents a case study with techniques for building a 3D finite element model of an inhomogeneous fracture network for modelling flow and tracer transport, combining deterministic and stochastic information on fracture aperture distributions. The complex intersected fractures represent a challenge for geometrical model design, mesh quality requirements and property allocations. For the integrated and holistic modelling approach, including the application of numerical and analytical simulation techniques, new object-oriented concepts in software engineering are implemented to ensure a resourceful and practicable software environment.  相似文献   

7.
Concrete‐faced rockfill dam (CFRD) is a popular alternative to traditional dam types in the last two decades. The modelling of CFRD involves complex multi‐body contact and strong geometry and material nonlinearities. We present a numerical approach for the modelling of CFRDs in this paper. Based on the dual‐mortar finite element method, the presented approach considers different parts of rockfill and all concrete slabs as independent deformable continuum. The multi‐body contacts are modelled using Lagrange multipliers with a weak form segment‐to‐segment contact strategy. To alleviate instability induced by strong geometry nonlinearity in the slab–slab contact, we propose a mixed type of constraints for the tangential contact. A general transformation scheme is introduced to simplify the implementation of contact constraints. Three‐dimensional analysis of Tianshengqiao‐1 CFRD is performed. The nonlinear and time‐dependent deformation of the rockfill is considered. We study the influence of the rockfill deformation on the reliability of the concrete face. Three major concerns of the face, that is, the axial compression, the slab–slab separation and the face‐rockfill separation, are discussed in detail. The numerical results are compared with data from in‐situ observation. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
The paper deals with the analysis of excavations which are very long and can, for all practical purposes, be considered to be infinitely long. Special infinite finite and boundary elements are developed for the modelling of the infinitely long part of such excavations. Test examples are presented which show the accuracy which can be obtained by using these elements. Finally, examples of application in mining and petroleum engineering are shown.  相似文献   

9.
 A site specific evaluation of geological barriers is required for landfills and waste repositories. The waste-repository-rock system has to be taken into consideration for this. Since the geotechnical barrier in conjunction with geological barriers contributes considerably to long-term isolation of the harmful substances from the biosphere, it is absolutely necessary to use engineering geology and hydrogeological methods for a quantitative assessment of the barrier effect of the host rock and the geological environment. For a waste disposal mine, the load-bearing capacity of the rock, the protective properties of the surrounding rock formations and the geological stability of the area are important factors in a safety analysis, of which the geotechnical stability analysis is an important part. Such an analysis comprises an engineering geological study of the site, laboratory and in situ experiments and model calculations, long-term monitoring, and special geological and geochemical investigations. Existing geomechanical modelling techniques provide a useful tool to perform barrier integrity calculations and to design an underground disposal mine. As an example, the barrier performance of the rock salt of the Gorleben salt dome is demonstrated using various safety indicators. Received: 3 January 1997 · Accepted: 29 January 1997  相似文献   

10.
Soil properties are indispensable input parameters in geotechnical design and analysis. In engineering practice, particularly for projects with relatively small or medium sizes, soil properties are often not measured directly, but estimated from geotechnical design charts using results of some commonly used laboratory or in situ tests. For example, effective friction angle ?′ of soil is frequently estimated using standard penetration test (SPT) N values and design charts relating SPT N values to ?′. Note that directly measured ?′ data are generally not available when (and probably why) the use of design charts is needed. Because design charts are usually developed from past observation data, on either empirical or semi‐theoretical basis, uncertainty is unavoidably involved in the design charts. This situation leads to two important questions in engineering practice: 1 how good or reliable are the soil properties estimated in a specific site when using the design charts? (or how to measure the performance of the design charts in a specific site?); and 2 how to incorporate rationally the model uncertainty when estimating soil properties using the design charts? This paper aims to address these two questions by developing a Bayesian statistical approach. In this paper, the second question is firstly addressed (i.e., soil properties are probabilistically characterized by rationally incorporating the model uncertainty in the design chart). Then, based on the characterization results obtained, an index is proposed to evaluate the site‐specific performance of design charts (i.e., to address the first question). Equations are derived for the proposed approach, and the proposed approach is illustrated using both real and simulated SPT data. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
This paper investigates the effects of a non‐coaxial model on simulated stress–strain behaviour of granular materials subject to simple shearing under various initial conditions. In most cases, a significant difference of predictions between coaxial and non‐coaxial modelling is found during the early stage in shearing. With the increase in shearing, non‐coaxial simulations approach and tend to coincide with coaxial simulations. It is also found that the roles of non‐coaxial modelling in simulating simple shear behaviour are considerably influenced by hardening rules, flow rules, initial static lateral pressure coefficients. In some cases, the non‐coaxial modelling gives a similar simulation as the coaxial modelling. In other cases, the non‐coaxial modelling decreases the hardening response or softening response of materials, compared with the coaxial modelling. Under certain conditions, the predicted peak strength of materials with non‐coaxial modelling is larger than that for coaxial modelling. Some of these observations can be attributed to the amount of principal stress rotation in various cases analysed. Others can be attributed to the difference between the directions of the non‐coaxial plastic flow and those for coaxial plastic flow. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

12.
Time‐domain analysis of dynamic soil–structure interaction based on the substructure method plays an increasing role in practical applications as compared with the frequency‐domain analysis. Efficient and accurate modelling of the unbounded soil or rock medium has been a key issue in such an analysis. This paper presents a subregional stepwise damping‐solvent extraction formulation for solving large‐scale dynamic soil–structure problems in the time domain. Accuracy and efficiency of the formulation are evaluated in detail for a classical problem involving a rigid strip foundation embedded in a half‐space. A practical large‐scale soil–structure interaction problem, which represents a high concrete gravity dam subjected to seismic load, is then analysed using the proposed method. Various responses of the dam, including time histories of the crest displacement and acceleration and contours of the peak principal stresses within the dam body, are presented. Comparisons are also made between these results with those obtained using other models for the unbounded medium. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

13.
Turbid meltwater plumes and ice‐proximal fans occur where subglacial streams reach the grounded marine margins of modern and ancient tidewater glaciers. However, the spacing and temporal stability of these subglacial channels is poorly understood. This has significant implications for understanding the geometry and distribution of Quaternary and ancient ice‐proximal fans that can form important aquifers and hydrocarbon reservoirs. Remote‐sensing and numerical‐modelling techniques are applied to the 200 km long marine margin of a Svalbard ice cap, Austfonna, to quantify turbid meltwater‐plume distribution and predict its temporal stability. Results are combined with observations from geophysical data close to the modern ice front to refine existing depositional models for ice‐proximal fans. Plumes are spaced ca 3 km apart and their distribution along the ice front is stable over decades. Numerical modelling also predicts the drainage pattern and meltwater discharge beneath the ice cap; modelled water‐routing patterns are in reasonable agreement with satellite‐mapped plume locations. However, glacial retreat of several kilometres over the past 40 years has limited build‐up of significant ice‐proximal fans. A single fan and moraine ridge is noted from marine‐geophysical surveys. Closer to the ice front there are smaller recessional moraines and polygonal sediment lobes but no identifiable fans. Schematic models of ice‐proximal deposits represent varying glacier‐terminus stability: (i) stable terminus where meltwater sedimentation produces an ice‐proximal fan; (ii) quasi‐stable terminus, where glacier readvance pushes or thrusts up ice‐proximal deposits into a morainal bank; and (iii) retreating terminus, with short still‐stands, allowing only small sediment lobes to build up at melt‐stream portals. These modern investigations are complemented with outcrop and subsurface observations and numerical modelling of an ancient, Ordovician glacial system. Thick turbidite successions and large fans in the Late Ordovician suggest either high‐magnitude events or sustained high discharge, consistent with a relatively mild palaeo‐glacial setting for the former North African ice sheet.  相似文献   

14.
Evaluating the induced subsidence is a critical step in multi‐seam longwall mining. Numerical modelling can be a cost‐effective approach to this problem. Numerical evaluation of longwall mining‐induced subsidence is much more complicated when more than one seam is to be extracted. Only a few research works have dealt with this problem. This paper discusses the essential requirements of a robust numerical modelling approach to simulation of multi‐seam longwall mining‐induced subsidence. In light of these requirements, the previous works on this topic are critically reviewed. A simple yet robust FEM‐based modelling approach is also proposed that is capable of simulating caving process, rock mass deterioration and subsidence around multi‐seam excavations. The effectiveness of this approach in comparison with two other conventional FEM approaches is demonstrated through numerical examples of two different multi‐seam mining configurations. Results show that the proposed numerical modelling approach is the only robust method, which is capable of simulating multi‐seam subsidence in both demonstrated cases. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

15.
Predicting the fate of the injected CO2 is crucial for the safety of carbon storage operations in deep saline aquifers: especially the evolution of the position, the spreading and the quantity of the mobile CO2 plume during and after the injection has to be understood to prevent any loss of containment. Fluid flow modelling is challenging not only given the uncertainties on subsurface formation intrinsic properties (parameter uncertainty) but also on the modelling choices/assumptions for representing and numerically implementing the processes occurring when CO2 displaces the native brine (model uncertainty). Sensitivity analysis is needed to identify the group of factors which contributes the most to the uncertainties in the predictions. In this paper, we present an approach for assessing the importance of model and parameter uncertainties regarding post-injection trapping of mobile CO2. This approach includes the representation of input parameters, the choice of relevant simulation outputs, the assessment of the mobile plume evolution with a flow simulator and the importance ranking for input parameters. A variance-based sensitivity analysis is proposed, associated with the ACOSSO-like meta-modelling technique to tackle the issues linked with the computational burden posed by the use of long-running simulations and with the different types of uncertainties to be accounted for (model and parameter). The approach is tested on a potential site for CO2 storage in the Paris basin (France) representative of a project in preliminary stage of development. The approach provides physically sound outcomes despite the challenging context of the case study. In addition, these outcomes appear very helpful for prioritizing the future characterisation efforts and monitoring requirements, and for simplifying the modelling exercise.  相似文献   

16.
Grain‐size distribution is a fundamental tool for interpreting sedimentary units within depositional systems. The techniques assessed in this study are commonly used to determine grain‐size distributions for sand‐dominated sediments. However, the degree of consistency and differences in interpretation when using a combination of grain‐size methods have not yet been assessed systematically for sand‐dominated fluvial sediments. Results obtained from laser diffraction, X‐ray attenuation and scanning electron microscopy grain‐size analysis techniques were compared with those obtained from the traditional sieve/hydrometer method. Scanning electron microscopy was shown to provide an inaccurate quantitative analysis of grain‐size distributions because of difficulties in obtaining representative samples for examination. The X‐ray attenuation method is unsuitable for sand‐dominated sediments because of its upper size range of only 300 μm. The consistently strong correlation between the laser diffraction results and the sieve/hydrometer results shows that these methods are comparable for sand‐dominated fluvial sediments. Provided that sample preparation is consistent, the latter two methods can be used together within a study of such sediments while maintaining a high degree of accuracy. These results indicate that data for sand‐dominated fluvial sediments gained from the long‐established sieve/hydrometer method can be compared with confidence to those obtained by modern studies using laser diffraction techniques.  相似文献   

17.
Safety assessment of geosequestration of CO2 into deep saline aquifers requires a precise understanding of the study of hydro‐chemo‐mechanical couplings occurring in the rocks and the cement well. To this aim, a coupled chemo‐poromechanical model has been developed and implemented into a research code well‐suited to the resolution of fully coupled problems. This code is based on the finite volume methods. In a 1D axisymmetrical configuration, this study aims to simulate the chemo‐poromechanical behaviour of a system composed by the cement well and the caprock during CO2 injection. Major chemical reactions of carbonation occurring into cement paste and rocks are considered in order to evaluate the consequences of the presence of CO2 on the amount of dissolved matrix and precipitated calcium carbonates. The dissolution of the solid matrix is taken into account through the use of a chemical porosity. Matrix leaching and carbonation lead, as expected, to important variations of porosity, permeability and to alterations of transport properties and mechanical stiffness. These results justify the importance of considering a coupled analysis accounting for the main chemical reactions. It is worth noting that the modelling framework proposed in the present study could be extended to model the chemo‐poromechanical behaviour of the reservoir rock and the caprock when subjected to the presence of an acidic pore fluid (CO2‐rich brine). Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
This paper introduces an unconventional constitutive model for soils, which deals with a unified thermo‐mechanical modelling for unsaturated soils. The relevant temperature and suction effects are studied in light of elasto‐plasticity. A generalized effective stress framework is adopted, which includes a number of intrinsic thermo‐hydro‐mechanical connections, to represent the stress state in the soil. Two coupled constitutive aspects are used to fully describe the non‐isothermal behaviour. The mechanical constitutive part is built on the concepts of bounding surface theory and multi‐mechanism plasticity, whereas water retention characteristics are described using elasto‐plasticity to reproduce the hysteretic response and the effect of temperature and dry density on retention properties. The theoretical formulation is supported by comparisons with experimental results on two compacted clays. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

19.
20.
论地质灾害风险评价   总被引:25,自引:0,他引:25  
地质灾害风险,是指地质灾害活动及其以地人类生命财产造成破坏损失的可能。地质灾害风险具有必然万籁 、随机性、模性、不均稀性等特点。按地质灾害风险评价区域范围,分为点评价、面评价、区域评价。基本内容包括危险性评价、易损性评价、破坏损失评价、防治工程价,由此构成多层次的评价系统。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号