首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
A simple mechanical model explaining the long-period (about 100-year) variations in the Earth’s rotational velocity is proposed. This model takes into account the gravitational interaction of the mantle with the solid core of the Earth and the fact that the core rotation leads that of the mantle. Well-known Earth parameters provide estimates of the gravitational torque that support the proposed model. The mathematical problem involved reduces to the classical problem of a nonlinear oscillator exposed to a constant torque. The well-known parameters of the core-mantle system result in a stable equilibrium and a stable limiting cycle on the phase cylinder of this oscillator. This equilibrium corresponds to a single angular velocity for the mantle and solid core, with no long-period oscillations in the length of the day. The limiting cycle corresponds to the core rotation leading the mantle rotation. In this case, the ellipsoidality of the gravitationally interacting bodies provides a periodic interchange of kinetic angular momentum between the mantle and solid core that results in long-period variations in the length of the day. The proposed model does not support the formerly widespread opinion that the core rotates more slowly than the mantle.  相似文献   

3.
Bulk mineral resources of iron ores, copper ores, bauxite, lead ores, zinc ores and potassium salt play a pivotal role on the world’s and China’s economic development. This study analyzed and predicted their resources base and potential, development and utilization and their world’s and China’s supply and demand situation in the future 20 years. The supply and demand of these six bulk mineral products are generally balanced, with a slight surplus, which will guarantee the stability of the international mineral commodity market supply. The six mineral resources(especially iron ores and copper ores) are abundant and have a great potential, and their development and utilization scale will gradually increase. Till the end of 2014, the reserveproduction ratio of iron, copper, bauxite, lead, zinc ores and potassium salt was 95 years, 42 years, 100 years, 17 years, 37 years and 170 years, respectively. Except lead ores, the other five types all have reserve-production ratio exceeding 20 years, indicative of a high resources guarantee degree. If the utilization of recycled metals is counted in, the supply of the world’s six mineral products will exceed the demand in the future twenty years. In 2015–2035, the supply of iron ores, refined copper, primary aluminum, refined lead, zinc and potassium salt will exceed their demand by 0.4–0.7 billion tons(Gt), 5.0–6.0 million tons(Mt), 1.1–8.9 Mt, 1.0–2.0 Mt, 1.2–2.0 Mt and 4.8–5.6 Mt, respectively. It is predicted that there is no problem with the supply side of bulk mineral products such as iron ores, but local or structural shortage may occur because of geopolitics, monopoly control, resources nationalism and trade friction. Affected by China’s compressed industrialized development model, the demand of iron ores(crude steel), potassium salt, refined lead, refined copper, bauxite(primary aluminum) and zinc will gradually reach their peak in advance. The demand peak of iron ores(crude steel) will reach around 2015, 2016 for potassium salt, 2020 for refined lead, 2021 for bauxite(primary aluminum), 2022 for refined copper and 2023 for zinc. China’s demand for iron ores(crude steel), bauxite(primary aluminum) and zinc in the future 20 years will decline among the world’s demand, while that for refined copper, refined lead and potassium salt will slightly increase. The demand for bulk mineral products still remains high. In 2015–2035, China’s accumulative demand for iron ores(crude steel) will be 20.313 Gt(13.429 Gt), 0.304 Gt for refined copper, 2.466 Gt(0.616 Gt) of bauxite(primary aluminum), 0.102 Gt of refined lead, 0.138 Gt of zinc and 0.157 Gt of potassium salt, and they account for the world’s YOY(YOY) accumulative demand of 35.17%, 51.09%, 48.47%, 46.62%, 43.95% and 21.84%, respectively. This proportion is 49.40%, 102.52%, 87.44%, 105.65%, 93.62% and 106.49% of that in 2014, respectively. From the supply side of China’s bulk mineral resources, it is forecasted that the accumulative supply of primary(mine) mineral products in 2015–2035 is 4.046 Gt of iron ores, 0.591 Gt of copper,1.129 Gt of bauxite, 63.661 Mt of(mine) lead, 0.109 Gt of(mine) zinc and 0.128 Gt of potassium salt, which accounts for 8.82%, 13.92%, 26.67%, 47.09%, 33.04% and 15.56% of the world’s predicted YOY production, respectively. With the rapid increase in the smelting capacity of iron and steel and alumina, the rate of capacity utilization for crude steel, refined copper, alumina, primary aluminum and refined lead in 2014 was 72.13%, 83.63%, 74.45%, 70.76% and 72.22%, respectively. During 2000–2014, the rate of capacity utilization for China’s crude steel and refined copper showed a generally fluctuating decrease, which leads to an insufficient supply of primary mineral products. It is forecasted that the supply insufficiency of iron ores in 2015–2035 is 17.44 Gt, 0.245 Gt of copper in copper concentrates, 1.337 Gt of bauxite, 38.44 Mt of lead in lead concentrates and 29.19 Mt of zinc in zinc concentrates. China has gradually raised the utilization of recycled metals, which has mitigated the insufficient supply of primary metal products to some extent. It is forecasted that in 2015–2035 the accumulative utilization amount of steel scrap(iron ores) is 3.27 Gt(5.08 Gt), 70.312 Mt of recycled copper, 0.2 Gt of recycled aluminum, 48 Mt of recycled lead and 7.7 Mt of recycled zinc. The analysis on the supply and demand situation of China’s bulk mineral resources in 2015–2035 suggests that the supply-demand contradiction for these six types of mineral products will decrease, indicative of a generally declining external dependency. If the use of recycled metal amount is counted in, the external dependency of China’s iron, copper, bauxite, lead, zinc and potassium salt will be 79%, 65%, 26%, 8%, 16% and 18% in 2014, respectively. It is predicted that this external dependency will decrease to 62%, 64%, 20%,-0.93%, 16% and 14% in 2020, respectively, showing an overall decreasing trend. We propose the following suggestions correspondingly.(1) The demand peak of China’s crude steel and potassium salt will reach during 2015–2023 in succession. Mining transformation should be planned and deployed in advance to deal with the arrival of this demand peak.(2) The supply-demand contradiction of China’s bulk mineral resources will mitigate in the future 20 years, and the external dependency will decrease accordingly. It is suggested to adjust the mineral resources management policies according to different minerals and regions, and regulate the exploration and development activities.(3) China should further establish and improve the forced mechanism of resolving the smelting overcapacity of steel, refined copper, primary aluminum, lead and zinc to really achieve the goal of "reducing excess production capacity".(4) In accordance with the national strategic deployment of "One Belt One Road", China should encourage the excess capacity of steel, copper, alumina and primary aluminum enterprises to transfer to those countries or areas with abundant resources, high energy matching degree and relatively excellent infrastructure. Based on the national conditions, mining condition and geopolitics of the resources countries, we will gradually build steel, copper, aluminum and lead-zinc smelting bases, and potash processing and production bases, which will promote the excess capacity to transfer to the overseas orderly.(5) It is proposed to strengthen the planning and management of renewable resources recycling and to construct industrial base of renewable metal recycling.(6) China should promote the comprehensive development and utilization of paragenetic and associated mineral species to further improve the comprehensive utilization of bulk mineral resources.  相似文献   

4.
The radio spectrum of Tycho’s Supernova Remnant is constructed at frequencies 12.6–143 000 MHz for epoch 2010.3, taking into account the secular decrease in the radio flux density of the remnant at the rate d = ?(0.46 ± 0.03)%/year:
$$S_\nu ^{3C10} (t = 2010.3) = (43.1 \pm 1.8 Jy)(\nu [GHz])^{ - (0.592 \pm 0.019) + (0.041 \pm 0.012)\log (\nu [GHz])} .$$
The spectrum has positive curvature. The presence of a low-frequency turnover in the spectrum of the radio source 3C10 with its maximum at 7.7 MHz is predicted, due to absorption in the interstellar medium in the direction toward the source.
  相似文献   

5.
6.
Angus Cameron 《Geoforum》2012,43(4):741-749
This paper argues that the metaphorical figure of the island plays an important but profoundly ambiguous role in the imagination of social space. The paper argues that ‘utopic’ islands have historically provided a fictional domain of experimentation that has informed the constitution of ‘real’ state spaces. From the 16th to 20th centuries this took the form of an increasingly consolidated and ‘global’ endotopia: a world, exemplified by the ‘political’ map, full of state spaces constituted as interiors. More recently, islands have served a very different metaphoric function, being used to create and legitimise spaces of exteriority – ‘xenospaces’ such as the online worlds of the ‘metaverse’ and the arcane legal/financial spaces of offshore – which in combination constitute an emergent xenotopia. The ‘philosopher’s island’ (Mackay, 2010), therefore, represents a complex and polyvalent spatial form that serves to continuously and expediently redefine the nature of social space.  相似文献   

7.
Methods of celestial mechanics are used to refine a mathematical model for irregularity in the axial rotation of the Earth proposed earlier. This refinement applies corrections (residuals) introduced by perturbations of zonal tides. We examine intraday and near-diurnal variations in the Earth’s axial rotation, and a celestial-mechanical model explaining the origin of the intraday and near-diurnal oscillations in the rotational angular velocity is constructed. The correspondence between the variations of the intrayear rotational irregularity and the overall angular momentum of the atmosphere is analyzed.  相似文献   

8.
The fluorine (F) and chlorine (Cl) contents of arc magmas have been used to track the composition of subducted components, and the F and Cl contents of MORB have been used to estimate the halogen content of depleted MORB mantle (DMM). Yet, the F and Cl budget of the Earth’s upper mantle and their distribution in peridotite minerals remain to be constrained. Here, we developed a method to measure low concentrations of halogens (≥0.4 µg/g F and ≥0.3 µg/g Cl) in minerals by secondary ion mass spectroscopy. We present a comprehensive study of F and Cl in co-existing natural olivine, orthopyroxene, clinopyroxene, and amphibole in seventeen samples from different tectonic settings. We support the hypothesis that F in olivine is controlled by melt polymerization, and that F in pyroxene is controlled by their Na and Al contents, with some effect of melt polymerization. We infer that Cl compatibility ranks as follows: amphibole > clinopyroxene > olivine ~ orthopyroxene, while F compatibility ranks as follows: amphibole > clinopyroxene > orthopyroxene ≥ olivine, depending on the tectonic context. In addition, we show that F, Cl, Be and B are correlated in pyroxenes and amphibole. F and Cl variations suggest that interaction with slab melts and fluids can significantly alter the halogen content of mantle minerals. In particular, F in oceanic peridotites is mostly hosted in pyroxenes, and proportionally increases in olivine in subduction-related peridotites. The mantle wedge is likely enriched in F compared to un-metasomatized mantle, while Cl is always low (<1 µg/g) in all tectonic settings studied here. The bulk anhydrous peridotite mantle contains 1.4–31 µg/g F and 0.14–0.38 µg/g Cl. The bulk F content of oceanic-like peridotites (2.1–9.4 µg/g) is lower than DMM estimates, consistent with F-rich eclogite in the source of MORB. Furthermore, the bulk Cl budget of all anhydrous peridotites studied here is lower than previous DMM estimates. Our results indicate that nearly all MORB may be somewhat contaminated by seawater-rich material and that the Cl content of DMM could be overestimated. With this study, we demonstrate that the halogen contents of natural peridotite minerals are a unique tool to understand the cycling of halogens, from ridge settings to subduction zones.  相似文献   

9.
10.
The field of modern tectonic stresses was reconstructed for the Earth’s crust of the northwestern segment of the Pacific subduction zones. For this purpose, we used the method of cataclastic analysis and data on the magnitude of the stresses released at the source of the Simushir earthquake of 2006, which allowed us to determine both the orientation of the principal stress axes and the magnitude of the stresses and to estimate the effective strength of rock masses. The effective cohesion was estimated for this region of the Earth’s crust as 12 bar, and the maximum shear stresses are no higher than 300 bar. The analysis of the reconstructed stress field in the zone of the preparation of the Simushir earthquake showed that this region was almost free of domains with high stresses where brittle failure requires considerable energy inputs. The medium level of effective pressure indicates that this region is most favorable for the development of a large-scale brittle failure.  相似文献   

11.
12.
The region of Orion’s Sword with coordinates α = 83.79°, δ = −5.20° and a size of 1.0° × 2.5° is analyzed. We compiled a master catalog of stars observed in the optical, containing positions, proper motions, and UBV photometry for 1634 stars. Using the nearest-neighbor-distance technique, we subdivided the region into stellar groups with different numbers of members. The positions of five groups coincide with known clusters, and two groups coincide with aggregates of stars with Hα emission. We have identified groups with low membership that are moving away from the system. We also considered the kinematic structure of the groups using the AD-diagram method we developed earlier. Most of the stellar clusters and groups display similar kinematics, with the exception of the group OMC-2, which is moving toward its own apex. We also confirmed the existence of the kinematic star group 189 discovered earlier; its position is close to the cluster NGC 1977, and it is probably a component of its corona.  相似文献   

13.
正Objective In order to reduce the interfering noise from the earth surface,scientists have carried out multi-geophysical borehole observations and the related study.This study aims at improving signal-to-noise ratio obtained from the  相似文献   

14.
The formation of manganese rocks and ores occurred during the whole geological history of the Earth. Five metallogenic epochs (Early to Middle Proterozoic, Late Proterozoic, Early to Middle Paleozoic, Late Paleozoic, and Meso-Cenozoic) and 7 very important phases (Early, Middle, and Late Proterozoic, Early to Middle Paleozoic, Late Paleozoic, Late Mesozoic, and Meso-Cenozoic) can be distinguished. The phases of manganese ore genesis at many stratigraphic levels are closely related to the global climatic and tectonic reconstructions (the breakup of the continent of Gondwana and periods of glaciations and aridization) and biotic events (mass extinction of organisms). Based on carbon isotopic composition in manganese carbonates, participation of oxidized organic carbon is established.  相似文献   

15.
16.
The catastrophic Shikotan earthquake of October 4 (5), 1994, occurred in the Pacific Ocean. Its focus was located 80 km eastward of Shikotan Island. The stress state of the Earth’s crust in this area was estimated by the method of the cataclastic analysis of the whole range of the earthquake mechanisms. The performed reconstruction of the parameters of the current stress state of the Earth’s crust and the upper mantle in the area of the Southern Kuril Islands made it possible to establish that this area is characterized, on the one hand, by the presence of extensive areas of steady behavior of the stress tensor parameters and, on the other hand, by the presence of local sections of anomalously fast changes in these parameters.  相似文献   

17.
18.
19.
The methods of celestial mechanics can be used to construct a mathematical model for the perturbed rotational motions of the deformable Earth that can adequately describe the astrometric measurements of the International Earth Rotation Service (IERS). This model describes the gravitational and tidal influences of the Sun and Moon. Fine resonant interactions of long-period zonal tides (annual, semiannual, monthly, and biweekly) with the diurnal and semidiurnal tides are revealed. These interactions can be reliably confirmed via a spectral analysis of the IERS data. Numerical modeling of tidal irregularities of the Earth’s axial rotation was carried out, focusing on the analysis and forecasting of variations of the day length occurring within short time intervals of a year or shorter (intrayear variations).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号