首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Based on the compositions and distributions of biomarkers in thirty-five representative oil samples, oils from the Tarim Basin of northwestern China are mainly divided into two oil families. One oil family contains relatively low amounts of C15-C20 isoprenoid hydrocarbons and shows pristane predominance with Pr/Ph ratios ranging from 1.50 to 3.00. The GC/MS analytical data of these oils show the occurrence of abundant hopanes, and low concentrations of steranes and tricyclic terpanes with hopanes/steranes ratios from 6.25 to 12.24 and tricyclic terpanes/hopanes ratios from 0.03 to 0.24. These oils contain low drimane relative to homodrimane (C15/C16 < 1.0) and abundant rearranged bicyclanes in bicyclic sesquiterpanes. They are dominated by low carbon number (C19-C21) compounds in the tricyclic terpanes, and are rich in rearranged hopanes, C29Ts and an unknown C30 compound in pentacyclic triterpanes. These geochemical characteristics suggest that the oils were generated mainly from terrigenous organic matter. The other oil family shows remarkably different biomarker compositions and distributions. The oils revealed Pr/Ph ratios of about 1.0, high drimane/homodrimane ratios (>1.0), low hopanes/steranes ratios (0.65–2.50), high tricyclic terpanes/hopanes ratios (0.30–2.00) and a dominant peak at C23 in tricyclic tepanes, suggesting a marine organic origin. Oil-source rock correlation indicates that these two oil families seem to have been derived from Mesozoic Jurassic-Triassic terrestrial source rocks (shales and coal seams) and Lower Paleozoic Ordovician-Cambrian marine source rocks, respectively.  相似文献   

2.
A suite of 27 oils from the Qinjiatun–Qikeshu oilfields in the Lishu Fault Depression of the Songliao Basin was analyzed using whole oil gas chromatography. In combination with the relative distribution of C27, C28, and C29 regular steranes, detailed geochemical analyses of light hydrocarbons in oil samples revealed crude oils characterized by the dual input of lower aquatic organisms and higher terrestrial plants. Several light hydrocarbon indicators suggest that the liquid hydrocarbons have maturities equivalent to vitrinite reflectances of around 0.78%–0.93%. This is consistent with the maturity determination of steranes C29 20S/(20S + 20R) and C29 ααβ/(ααα + αββ). Crude oils derived from the two distinct oilfields likely both have source rocks deposited in a lacustrine environment based on light hydrocarbon parameters and on higher molecular weight hydrocarbon parameters. The results show that light hydrocarbon data in crude oils can provide important information for understanding the geochemical characteristics of the Qinjiatun–Qikeshu oils during geologic evolution.  相似文献   

3.
Distinctive compositional features of cyclic saturated hydrocarbon biomarkers have been established in oils from the main petroliferous lithostratigraphic complexes of various structural zones in the Timan-Pechora petroliferous province (TPPP). Four geochemical families (types) of oils in TPPP are recognized based on the variations in the geochemical parameters of steranes and terpanes including sterane ratios C27/C29 and C28/C29, K1 mat and K2 mat, diasterane/regular sterane, pregnane (C21–22)/sterane (C21–22 + C27–29), as well as terpane Ts/Tm parameters, adiantane C29/hopane C30, neoadiantane/adiantane, tryciclic terpane/pentacyclic terpane, hopane/sum of C29 steranes, etc. The distribution of various types of oil in the sedimentary sequence of TPPP makes it possible to infer source rocks for each of the four selected types.  相似文献   

4.
Petroleum geologists have debated whether the hydrocarbons from Jurassic coal measures are derived from the coals, carbonaceous mudstones or coal-measure mudstones in the Turpan Basin. Based on the geochemistry analysis of the 20 crude oils and 40 source rocks from the Turpan Basin, some data have been obtained as follows: carbon preference index and methylphenanthrene index of the Jurassic oils are 1.16–1.45 and 0.28–0.80, and the ααα C29 sterane 20S/(20S+20R) and C29 sterane ββ/(ββ+αα) are 0.44–0.51 and 0.4–0.54 respectively, which show the normal maturity of oils; the vitrinite reflectance of the source rocks from the Xishanyao to Badaowan Formations range from 0.47% to 0.97%, which indicate immature to mature thermal evolutionary stage and sufficient conditions for generating mass mature oil. The effect of hydrocarbon expulsion should be considered when studying the source of coal-derived oil by using Biomarkers. Biomarkers in the Jurassic oils from the basin are similar to those in the coals and carbonaceous mudstones, with a strong predominant content of pristane, relatively high ratio of C15/C16 sesquiterpenoids (>1), a relatively high content of low carbon number tricyclic terpanes and C24 tetracyclic terpane, little gammacerane and C29 Ts detected, an absolute predominant content of C29 sterane and a relatively high content of diasterane. However, the opposite characteristics are shown in mudstones, with an approximately equal content of pristane and phytane, relatively low ratio of C15/C16 sesquiterpenoids (<1), a relatively high content of high carbon number tricyclic terpanes and a low content of C24 tetracyclic terpane, peaks of gammacerane and C29 Ts detected obviously and an increasing C27 sterane content. All of these characteristics identify the coals and carbonaceous mudstones as the possible major oil source rocks in this area, and they were formed in the stronger oxidizing environment with shallower water than mudstones.  相似文献   

5.
Geochemical characterisation of 18 crude oils from the Potwar Basin (Upper Indus), Pakistan is carried out in this study. Their relative thermal maturities, environment of deposition, source of organic matter (OM) and the extent of biodegradation based on the hydrocarbon (HC) distributions are investigated. A detailed oil-oil correlation of the area is established. Gas chromatography-mass spectrometry (GC-MS) analyses and bulk stable carbon and hydrogen isotopic compositions of saturated and aromatic HC fractions reveals three compositional groups of oils. Most of the oils from the basin are typically generated from shallow marine source rocks. However, group A contains terrigenous OM deposited under highly oxic/fluvio-deltaic conditions reflected by high pristane/phytane (Pr/Ph), C30 diahopane/C29Ts, diahopane/hopane and diasterane/sterane ratios and low dibenzothiophene (DBT)/phenanthrene (P) ratios. The abundance of C19-tricyclic and C24-tetracyclic terpanes are consistent with a predominant terrigenous OM source for group A. Saturated HC biomarker parameters from the rest of the oils show a predominant marine origin, however groups B and C are clearly separated by bulk δ13C and δD and the distributions of the saturated HC fractions supporting variations in source and environment of deposition of their respective source rocks. Moreover, various saturated HC biomarker ratios such as steranes/hopanes, diasteranes/steranes, C23-tricyclic/C30 hopane, C28-tricyclic/C30 hopane, total tricyclic terpanes/hopanes and C31(R + S)/C30 hopane show that two different groups are present. These biomarker ratios show that group B oils are generated from clastic-rich source rocks deposited under more suboxic depositional environments compared to group C oils. Group C oils show a relatively higher input of algal mixed with terrigenous OM, supported by the abundance of extended tricyclic terpanes (up to C41+) and steranes.Biomarker thermal maturity parameters mostly reached to their equilibrium values indicating that the source rocks for Potwar Basin oils must have reached the early to peak oil generation window, while aromatic HC parameters suggest up to late oil window thermal maturity. The extent of biodegradation of the Potwar Basin oils is determined using various saturated HC parameters and variations in bulk properties such as API gravity. Groups A and C oils are not biodegraded and show mature HC profiles, while some of the oils from group B show minor levels of biodegradation consistent with high Pr/n-C17, Ph/n-C18 and low API gravities.  相似文献   

6.
The molecular composition of Carboniferous–Permian coals in the maturity range from 0.66 to 1.63% vitrinite reflectance has been analysed using organic geochemistry to investigate the factors influencing the biomarker compositions of humic coals. The Carboniferous–Permian coal has a variable organofacies and is mainly humic-prone. There is a significant difference in the distribution of saturated and aromatic hydrocarbons in these coals, which can be divided into three types. The Group A coals have biomarker compositions typical of humic coal, characterised by high Pr/Ph ratios, a lower abundance of tricyclic terpanes with a decreasing distribution from C19 tricyclic terpane to C24 tricyclic terpane and a high number of terrigenous-related biomarkers, such as C24 tetracyclic terpane and C29 steranes. The biomarker composition of Group B coals, which were deposited in a suboxic environment, have a higher abundance of rearranged hopanes than observed in Group A coals. In contrast, in Group C coals, the Pr/Ph ratio is less than 1.0, and the sterane and terpane distributions are very different from those in groups A and B. Group C coals generally have abnormally abundant tricyclic terpanes with a normal distribution maximising at the C23 peak; C27 steranes predominates in the m/z 217 mass fragmentograms. The relationships between biomarker compositions, thermal maturity, Pr/Ph ratios and depositional environments, indicate that the biomarker compositions of Carboniferous–Permian coals in Ordos Basin are mainly related to their depositional environment. This leads to the conclusion that the biomarker compositions of groups A and B coals collected from Shanxi and Taiyuan formations in the northern Ordos Basin are mainly related to their marine–terrigenous transitional environment, whereas the biomarker compositions for the Group C coals from Carboniferous strata and Shanxi Formation in the eastern Ordos Basin are associated with marine incursions.  相似文献   

7.
塔里木盆地一类新海相原油的地球化学特征   总被引:1,自引:0,他引:1  
对塔中52等井奥陶系储层产出的原油进行的分析结果表明,它们的三环萜烷系列较为特殊,主要表现为其相对丰度呈C19>C20>C21>C23>C24>C25>C26阶梯状的模式,C24四环萜烷异常丰富,且其丰度远高于C26三环萜烷,这一分布模式一般出现在淡水沼泽相和浅湖相沉积地层与原油中。在三萜烷分布特征上,其伽马蜡烷含量很低,甾烷系列和藿烷系列的分布与组成特征与该地区来源于中上奥陶统烃源岩的海相原油十分接近,同时它们的全油均具有轻的碳同位素组成,其δ13C值都小于-30‰,具有海相成因原油的特征。而塔中12井上奥陶统良里塔格组4-5段烃源岩中生物标志物的分析结果进一步证实了该类原油与那些富含宏观藻残片,且有机质类型偏腐殖型的上奥陶统海相烃源岩关系密切,是该地区油气勘探中值得关注的对象。   相似文献   

8.
Molecular data from a large set of source rock, crude oil and oil-containing reservoir rock samples from the Tarim Basin demonstrate multiple sources for the marine oils in the studied areas of this basin. Based on gammacerane/C31 hopane and C28/(C27 + C28 + C29) sterane ratios, three of the fifteen crude oils from the Tazhong Uplift correlate with Cambrian-Lower Ordovician source rocks, while the other crude oils from the Tazhong Uplift and all 39 crude oils from the Tahe oilfield in the Tabei Uplift correlate with Middle-Upper Ordovician source rocks. These two ratios further demonstrate that most of the free oils and nearly all of the adsorbed and inclusion oils in oil-containing reservoir rocks from the Tazhong Uplift correlate with Cambrian-Lower Ordovician source rocks, while the free and inclusion oils in oil-containing carbonates from the Tahe oilfield correlate mainly with Middle-Upper Ordovician source rocks. This result suggests that crude oils in the Tazhong Uplift are partly derived from the Cambrian-Lower Ordovician source rocks while those in the Ordovician carbonate reservoirs of Tahe oilfield are overwhelmingly derived from the Middle-Upper Ordovician source rocks.The scatter of C23 tricyclic terpane/(C23 tricyclic terpane + C30 17α,21β(H)-hopane) and C21/(C21 + ΣC29) sterane ratios for the free and inclusion oils from oil-containing carbonates in the Tahe oilfield possibly reflects the subtle organofacies variations in the source rocks, implying that the Ordovician reservoirs in this oilfield are near the major source kitchen. In contrast, the close and positive relationship between these two ratios for oil components in the oil-containing reservoir rocks from the Tazhong Uplift implies that they are far from the major source kitchen.  相似文献   

9.
传统上认为大分子烃类很难通过微渗漏方式逸散到地表,但已有研究表明高分子量烃类也可以逸散到现代沉积物中。本文基于黄海现代沉积物与典型原油地球化学特征的不同,将二者进行正交配比,系统研究不同配比产物的组成特征。结果表明:随着配比实验中原油比例的增大,正构烷烃和部分芳烃的色谱指纹呈现规律性变化,其正构烷烃奇偶优势逐渐消失,烷基芳烃丰度随之增加;三环萜烷、藿烷、规则甾烷等化合物的绝对浓度,以及二苯并噻吩/菲等的比值也呈现规律性变化,其中三环帖烷、C_(24)四环萜烷/C_(26)三环萜烷和三环萜烷/藿烷三者的变化明显且平稳,其数值范围均在0~3.0,适合用于渗逸图版。将研究区采集的未知样品与配比产物的组成特征进行对比,在排除外源污染的情况下可定性判识该研究区是否存在地下油气藏;将样品的相关参数投到图版上,有望进一步定量判识样品中渗入原油的比例。该方法可以作为常规油气化探的补充,在油气藏评价方面提供诸多信息,甚至在环境污染监控等领域有望获得推广。  相似文献   

10.
The Halahatang Depression in the Tabei Uplift of the Tarim basin is an active exploration area because it has substantial reservoir potential and contains or is near to many commercial oil fields. Geochemical analysis indicates that Halahatang oils were derived from marine carbonate source rocks deposited under anoxic reducing conditions. The maturities for Halahatang oils are corresponding to the peak of the oil window and slightly higher than the neighboring Tahe oils. The Halahatang oils feature low Pr/Ph, C21/C23 tricyclic terpane and, C28/C29 sterane ratios, high C29/C30 hopane and C35/C34 hopane ratios, a “V” shape in the distribution of C27–C28–C29 steranes and light carbon isotope ratios, similar to the Tahe oils and correlate well with the Middle-Upper Ordovician source rock. However, some source-related biomarker parameters imply a more reducing source organofacies with more zooplanktonic contribution than that for the Tahe oils.  相似文献   

11.
Terrestrial faulted lacustrine basin is considered as a favorable place for the development of source rocks,especially the fault basins in eastern China.Based on molecular composition study of saturated and aromatic hydrocarbons in the extracts of source rocks of the Yingcheng and Shahezi formations in the Lishu Fault Depression,it is revealed that the extracts of source rocks are provided with low ratio of Pr/Ph,low content of C24 tetracyclic terpanes,high content of tricyclic terpanes and gammacerane,relatively high content of C27 steranes in the sag belt and its periphery;relatively high ratio of Pr/Ph,relatively high content of tetracyclic terpanes and gammacerane,low content of C27 steranes and obvious advantages of C29 steranes in its gentle slope belt;with high ratio of Pr/Ph,high content of C19,C20 tricyclic and C24 tetracyclic terpanes,very low content of gammacerane and C27 steranes,and high content of C29 steranes in the edge of fault depression.According to the organic matter input and sedimentary environment,three types of source rocks have been established,which,respectively,are the mode of mixing organic matter input in deep and semi-deep lake,the advantage of terrigenous input in shallow lake and terrigenous input in shore-shallow lacustrine.The first mode is supposed to generate oil and gas,while the second one tends to generate oil.The distribution characteristics of oil and gas in the Lishu Fault Depression are very likely to be controlled by hydrocarbon generating characteristic of different source rock types.  相似文献   

12.
China has a number of petroliferous lacustrine sedimentary basins of varying salinity and age (mainly Eocene). A geochemical investigation has been undertaken on several oils and source rocks from the Eocene lacustrine Biyang Basin. The distributions of n-alkanes, isoprenoids, steranes, and terpanes have been studied and used to characterize the sedimentary environment of deposition, maturity, biodegradation and undertake possible correlations. The ratios of C30-hopane/gammacerane, 4-methyl-steranes/regular steranes, steranes/hopanes, C21 tricyclic/C30 hopane are proposed to be indicative of the depositional environment whereas ß-carotane appears to be a source related indicator. The geochemical data obtained in this study suggest that the major source rocks in the Biyang Basin were deposited in a saline/hypersaline depositional environment.  相似文献   

13.
Crude oil samples from two basins were analyzed using comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry (GC×GC–TOFMS) to better understand the compositional heterogeneity of branched-cyclic hydrocarbons. GC×GC–TOFMS and conventional GC–MS results were compared. GC×GC–TOFMS revealed a wide range of compounds, including tricyclic, tetracyclic and pentacyclic terpane series, rearranged hopanes, methyl hopanes, secohopanes, onoceranes and steranes. Assignment of methyl hopane and 8,14-secohopane series other than onocerane isomers was only possible due to the high peak capacity and sensitivity of GC×GC. The oils comprised a mixture of two end members: non-biodegraded oil with abundant tricyclic terpanes and hopanes, and severely biodegraded oil with abundant 8,14-secohopane and demethylated tricyclic terpanes. A predominance of two distinct series, 3β-methylhopane and onocerane, was detected only in the lacustrine samples (classification based on biomarker parameters). In contrast, the predominance of a 2α-methylhopane series and lack of onocerane were found only for the marine oil sample. The results suggest that the distribution of 3β- and 2α-methylhopane series and the presence or absence of onocerane isomers reflect genetic differences in the source organic matter and that these compounds are new classes of biomarkers that can used as depositional paleoenvironment proxies.  相似文献   

14.
对渤海湾盆地一系列生物降解原油的色谱-质谱分析结果表明,庙西凹陷PL15-8D与PL9-4井四个严重生物降解原油三环萜烷系列分布较为异常,主要表现为以C23为主峰的后峰型、C20与C23为主峰的微弱双峰型以及以C20与C24为主峰的双峰型分布模式。强烈的生物降解作用导致C19~C23三环萜烷优先于C24+三环萜烷被不同程度地侵蚀,是形成这一异常分布的根本原因。三环萜烷系列相对丰度与绝对浓度的变化规律表明,不同碳数三环萜烷的生物降解作用同时发生,但其降解速率有明显差别,即抗生物降解能力不同。三环萜烷系列化合物(除C20三环萜烷以外)的抗生物降解能力具有随碳数增加而增强的趋势,而C20三环萜烷抗降解能力似乎强于C21~C23三环萜烷。原油中未检测到脱甲基三环萜烷,表明三环萜烷的降解并非通过微生物的脱甲基化作用,推测其降解途径是微生物氧化三环萜烷C环支链末端的甲基,形成对应的羧酸化合物。四个原油样品甾烷、藿烷与三环萜烷被微生物严重侵蚀,不能用于油源对比研究,而三芳甾烷未受生物降解影响,可作为研究区严重生物降解原油油源对比的有效指标。  相似文献   

15.
The geochemical characteristics of crude oils from Zao-V oil measures in the Shen-jiapu oilfield are systematically described in terms of the fractional composition of crude oils, GC characteristics of saturated hydrocarbon fraction of crude oils and the characteristics of their bio-markers. The deposifional environment, type and evolution of the biological source are also discussed. All pieces of evidence such as low saturated hydrocarbon fraction, high resin and asphalt, high isoprenoid alkane, weak odd-carbon number predominance ( CPI ranging from 1.23 to 1,29, OEP ranging from 1.14 to 1.16) and low sterane and terpane maturity parameters show these crude oils are immature oils. Low Pr/Ph ratios (0.66 -0.88) and high gammacer-ante/C31 hopane ratios ( 0.59 - 0.86 ) indicate the source rocks were formed in a slightly saline to brackish reducing lake depositional environment. Gas chromatographic characteristics of the saturated hydrocarbon fraction and the predominance of C30 hopane in terpane series and C29 sterane in sterane series indicate the biological source of the crude oils is composed mainly of bacterial and algal organic matter, and some algae are perhaps the main contributor of organic matter to the source rocks.  相似文献   

16.
黔北务川-正安-道真地区铝土矿位于石炭系黄龙组和二叠系梁山组之间,主要属于沉积型铝土矿。通过气相色谱(GC)与气相色谱-质谱(GC-MS)手段分析铝土矿系钻孔岩心中的生物标志物,发现了含量丰富的正构烷烃、类异戊二烯烷烃、萜类化合物与甾类化合物。对10个样品饱和烃组分GC分析表明,正构烷烃主要呈双峰式分布特征,碳数分布n-C14~n-C35,CPI值范围为0.90~3.45,表现出奇偶优势。姥鲛烷/植烷(Pr/Ph)值为0.38~077,表现出明显植烷优势。对3个样品饱和烃组分GC-MS分析表明,萜烷类化合物以C30藿烷占优势,相对丰度由大到小依次为五环三萜烷、三环萜烷、四环萜烷,并检测出少量的γ-蜡烷。规则甾烷C27-C28-C29呈近L型或V型分布,并含少量4-甲基甾烷。根据生物标志物特征参数,结合岩心样品岩相学特征,确定了铝土矿系中有机质的陆上植物与低等菌藻类双重来源,铝土质沉积时为偏酸性较还原环境,明确了铝土矿系的形成过程受到来自陆上与沉积水体内两个古生态系统的双重作用。  相似文献   

17.
A series of tricyclic terpanes from C19 to C45 has been identified in petroleum by gas chromatographic mass spectroscopic (GCMS) analysis. This discovery extends the previously known homologous series reported from C19 to C30. A method of preparation of a tricyclic terpane concentrate is described which facilitates tricyclic terpane analysis by the GCMS m/z 191 fragment. Metastable scanning GCMS is described as an additional method for characterization of the tricyclic terpanes.  相似文献   

18.
通过采集鄂尔多斯盆地西南缘4个剖面奥陶系马家沟群碳酸盐岩和平凉组泥页岩样品,对其中可溶有机质饱和烃与芳烃组分进行GC-MS分析,对比研究了马家沟群碳酸盐岩和平凉组泥页岩生物标志化合物特征。结果表明,马家沟群与平凉组正构烷烃分布形式及峰型特征、生物标志化合物参数Pr/Ph、伽马蜡烷/C30-αβ藿烷、C20-29三环萜烷/(C20-29三环萜烷+C27-35藿烷),以及甲基菲指数(MPI)均存在明显差异,这些差异反映了其沉积环境与成熟度的不同,对于马家沟群与平凉组来源油的识别具有参考价值。马家沟群正构烷烃分布形式与甾/藿比值以及C28/C29ααα20R甾烷比值之间的对应关系,反映了母质输入的细微差别。Ts/(Ts+Tm)与伽马蜡烷/C30-αβ藿烷比值之间的关系,C29甾烷αββ/(αββ+ααα)比值变化与重排藿烷与重排甾烷丰度的关系,反映上述成熟度参数明显受沉积环境影响。  相似文献   

19.
Comparison of biological marker alkanes in the kerogen pyrolyzate and bitumen from a sediment is a useful test for the indigenous nature of sediment extracts. For the pyrolysis conditions used, the bulk of the hydrocarbons is released from the kerogen matrix between 375° and 550°C; and its steriochemistry is almost the same as that observed in the extractable bitumen in a genuine source rock. Examples are given to demonstrate that, during pyrolysis, the sterane/terpane ratio decreases and secondary terpanes are generated at the expense of primary ones.The mechanism of artificial petroleum generation by pyrolysis differs from ‘natural’ diagenesis during geological time and is reflected in the composition of certain C27-C29 steranes, as demonstrated by simulation experiments and C29-C30 moretanes and hopanes. The -sterane ratios, jointly with 17α(H)-hopane17β(H)-moretane ratios, tricyclic terpane concentrations and 17α(H)17β(H)-trisnorhopane ratios, allow the differentiation of kerogens from adjacent stratigraphies.  相似文献   

20.
The enclosed organic matter chiefly releases lower carbon-number n-alkanes under high temperature and high pressure,while the kerogen mainly produces higher carbon-number n-alkanes.The rsidual hydrocarbons generated by both kerogen and enclosed organic matter in the Tieling limestone contain abundant tricyclic terpanes,pentacyclic triterpanes and steranes,but the contents of tetracyclic terpanes and 25-norhopane are lower.The residual enclosed orgainc matter shows the same distribution characteristics of n-alkanes,steranes and terpanes as that of the original bitumaen A,i.e.,the higher contents of triterpanes and tetracyclic terpanes,the higher ratios of 25-norhopanes over regular hopanes and markedly degraded steranes.By comparing the residual hydrocarbon.residual enclosed orgainc matter and original enclosed orgainc matter.it can be concluded that steranes and terpanes in the residual hydrocarbons are produced mainly by the kerogen and subordinately by the residual enclosed organic matter,the steranes and terpanes do not enter into the residual enclosed organic matter,and the thermal evolution of the residual enclosed organic matter maintains its unique character.Furthermore,pressure retards the pyrolysis of higher carbon-number alkanes and influences the isomerization ratios of C29-steranes,making 20S/(20S 20R) lower under the higher pressure than that under lower pressure,Higher pressure retards the thermal evolution of organic matter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号