首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
陈世忠  朱筱婷 《中国地质》2013,40(6):1912-1924
提要:岗上超镁铁质岩主要由纯橄岩和石榴橄榄岩组成,主要组成矿物橄榄石、铬铁矿、石榴子石、单斜辉石和斜方辉石等。铬铁矿的Cr#[Cr/(Cr+Mg)×100]从51到89变化,铬铁矿矿物表现为4期次演化的特点,反映了从岩浆期向榴辉岩相、角闪岩相和绿片岩相演化特征。随着超镁铁质岩的演化,铬铁矿中Cr#不断增大,而铬铁矿Mg#〔Mg×100/(Mg+Fe2+)〕不断减少,氧逸度不断增加。在绿片岩相-绿片角闪岩相退变质过程中,铬铁矿中Cr、Mg和Al减少,Fe相对增加,产生富Cr尖晶石变质作用样式。晚期剪切变形等次生变化有利于富铬铬铁矿矿物的形成和铬铁矿的富集。同时,绿片岩相变质作用降低了铬铁矿与其他硅酸盐矿物的结合强度,降低了开采强度和成本,使原本不易于开采的铬铁矿体变得可以开采。这些意味着该地区铬铁矿矿体展布要结合区域构造特征和变质作用进行研究、尤其是结合中晚期脆韧性构造进行分析。  相似文献   

2.
PP3超镁铁岩主要岩石类型有纯橄岩和石榴石橄榄岩,两者为渐变,主要矿物为橄榄石、铬尖晶石、石榴石、单斜辉石和斜方辉石.铬尖晶石的Cr#[Cr/(Cr Mg)×100]从51~89变化,TiO2和MnO2值分别低于0.26%和0.46%.铬尖晶石矿物表现为4期次演化的特点,反映了从岩浆期、榴辉岩相、角闪岩相和绿片岩相演化特征.随着超镁铁岩的演化,铬尖晶石表现为Cr#不断增大,而Mg#[Mg×100/(Mg Fe2 )]不断减少、氧逸度不断增加的过程.PP3铬尖晶石反映了地幔来源,为大陆岩石圈超镁铁岩特征,后期随折返而演化.从石榴石与铬尖晶石相互转变过程看出,PP3超镁铁岩经历了深度加大的过程,超镁铁岩曾经到达100km以上的岩石圈地幔深处.在绿片岩相-绿片角闪岩相变质过程中,铬尖晶石中Cr、Mg和Al减少,Fe相对增加,产生富Cr尖晶石变质作用样式.晚期剪切变形等次生变化影响了铬尖晶石矿物成分.  相似文献   

3.
两类蛇绿岩中变质橄榄岩的矿物表现出的共同特征是:从二辉橄榄岩→斜辉橄榄岩→斜辉辉橄岩→纯橄岩→铬铁矿石,其橄榄石、斜方辉石和单斜辉石的Mg/(Mg+Fe)(矿物牌号)依次升高,表现出富Mg贫Fe的演化趋势;铬尖晶石的Cr/(Cr+Al)亦同时升高,表现为富Cr贫Al的演化特征。 变质橄榄岩中的矿物均是原始上地幔岩部分熔融的残余物。在部分熔融过程中,橄榄石与铬尖晶石是生成相矿物,而斜方与单斜辉石则是消失相矿物,正是通过两种辉石的不断消失,岩石才从二辉橄榄岩依次转化为纯橄岩,并造成纯橄岩与铬铁矿的紧密伴生。在此过程中,矿物成分时刻都在变化,造岩矿物向富Mg贫Fe,金属矿物向富Cr贫Al方向调整,这与实际测定结果是一致的。  相似文献   

4.
胶北地块变质基底超镁铁岩的矿物岩石地球化学特征   总被引:2,自引:2,他引:0  
胶北地块变质基底的蛇纹岩、蛇纹岩化尖晶石方辉橄榄岩、尖晶石橄榄斜方辉石岩、角闪石岩自形成以后,经历了早期的高角闪岩相和晚期绿片岩相的变质作用,因而记录了三个阶段的矿物组合:早期的Opx1+Ol1+Spl1;中期的Opx2+Ol2+Spl2+Amp2和晚期的Amp3+Srp3+Mag3+Cal组合。超镁铁岩中普遍存在的角闪石,具有粒状变晶结构特征,形成于角闪岩相和绿片岩相的变质作用过程。蛇纹石没有受到应力作用的迹象,显示其形成于晚期非挤压环境的交代变质作用过程。尖晶石橄榄岩中斜方辉石的矿物化学以及尖晶石橄榄岩的高Mg O含量都表现出克拉通橄榄岩的性质。角闪石岩的稀土元素配分图解的(La/Sm)N的比值1.11~1.41,(La/Yb)N的比值0.91~1.61,超镁铁岩多元素图解显示无高场强元素异常,都表明胶北地块变质基底的超镁铁岩形成的构造背景或是裂谷环境。尖晶石矿物的Mg#0.72~0.79、Cr#0.06~0.12表明交代变质成因。方辉橄榄岩橄榄石的Fo值88.42~90.50、超镁铁质岩石全岩主元素的分散性、较大的∑REE含量变化以及Si/Al-(Mg+Fe)/Al和Mg/Ti-Fe/Ti主元素的比值图解所表现出的超镁铁岩与角闪石岩具有成因联系等,都表明胶北变质基底的超镁铁岩可能是具有堆晶成因的一套幔源岩浆系列。高MgO含量(16%~42%)表现出前寒武纪变质基底的橄榄岩地幔性质;高水含量反映出漫长地质历史时期变质作用过程。  相似文献   

5.
山东半岛早前寒武纪高级变质基底中超镁铁质岩的成因   总被引:13,自引:12,他引:1  
山东半岛早前寒武纪高级变质基底广泛出露超镁铁质岩,它们呈大小不等的透镜体产于TTG片麻岩中,且与基性高压麻粒岩密切"伴生"。岩相学和矿物相转变分析、温压条件估算以及锆石原位U-Pb定年结果表明,山东半岛超镁铁质岩记录了十分复杂的演化历史,其中早期残留的原岩标志性的矿物组合 (M1) 以尖晶石 (富Mg)+橄榄石 (富Mg)+斜方辉石 (富Mg) 为特征,相应的岩浆结晶温压条件T=980~1050℃、P=1.55~1.65GPa;峰期高压麻粒岩相变质阶段 (M2) 的典型的矿物组合以尖晶石 (富Fe)+橄榄石 (富Fe)+斜方辉石 (富Fe) 为特征,相应的温压条件T=840~880℃、P=1.40~1.55GPa,此阶段形成的变质锆石记录的高压麻粒岩相变质时代为1858~1877Ma;峰后中低压角闪-麻粒岩岩相退变质阶段 (M3) 的矿物组合以斜方辉石+单斜辉石+橄榄石+角闪石 (富 (Na+K))+尖晶石+磁铁矿(富Cr) 为特征,相应的温压条件T=760~820℃、P=0.55~0.65GPa,此阶段形成的变质锆石记录的退变质时代为1820~1840Ma;晚期低角闪岩相-绿片岩相变质阶段 (M4),以形成角闪石 (贫 (Na+K))+磁铁矿 (贫Cr)+蛇纹石±绿泥石±金云母的矿物组合为特征,相应的温压条件T=500~600℃、P=0.32~0.40GPa。超镁铁质岩的变质演化具有典型碰撞造山带顺时针P-T-t轨迹,指示山东半岛超镁铁岩是古老陆块之间碰撞造山的产物。该项成果对于进一步深入探讨华北克拉通东南缘早前寒武纪古老陆块的碰撞-拼贴及其演化的动力学过程具有重要科学意义。  相似文献   

6.
新疆萨尔托海铬铁矿造矿铬尖晶石蚀变特征及指示意义   总被引:2,自引:0,他引:2  
本文通过对萨尔托海矿区25矿群矿体边部、接近围岩造矿铬尖晶石的镜下观察发现: 造矿铬尖晶石由三部分组成, 自核部至边部依次是未蚀变的核部(灰色)、早期蚀变的中间带(灰白色)和晚期蚀变的边部(浅灰色)。探针分析上述三部分的成分, 得出早期蚀变中Al大量流失, 而Fe发生富集, 晚期蚀变Al、Cr、Mg相对于早期蚀变发生富集, 而Fe大量流失。通过研究区造矿铬尖晶石与国外变质超基性岩副矿物铬尖晶石对比, 认为早期蚀变对应的低角闪岩相变质, 温度为550℃~600℃, 晚期蚀变对应的是绿片岩相变质, 温度为350℃~500℃, 核部对应蚀变环境介于低角闪岩相和高角闪岩相之间, 稳定温度高于600℃, 故未发生蚀变。通过分析区域变质特征并结合造矿铬尖晶石所处的空间部位, 认为晚期蚀变是达拉布特蛇绿岩定位后期区域构造作用的结果, 推测早期蚀变可能与蛇绿岩构造侵位有关。  相似文献   

7.
似层状铬铁矿床长期以来被认为是岩浆分异成因,但近年来有学者提出其中个别产在蛇绿岩中。本文选择北京放马峪似层状铬铁矿床中纯橄岩、辉橄岩和辉石岩中不同类型的含铬尖晶石进行了电子探针分析。研究表明,岩浆早期的纯橄岩和辉橄岩中的铬尖晶石富铬(Cr2O3平均43.32%),而岩浆晚期辉石的结晶消耗了大量Cr3+,由于氧逸度的升高,在辉石岩的单斜辉石中出溶贫铬的铬磁铁矿(Cr2O3平均10.32%)和富铝尖晶石(Cr2O3平均15.77%)。与世界上不同类型铬尖晶石的矿物化学特征进行对比,可以认为放马峪铬铁矿床是产在阿拉斯加型岩体中的早期岩浆矿床,而与蛇绿岩无关。本文对放马峪铬铁矿床成因和成矿专属性的限定,为这类镁铁-超镁铁岩体的铬、铜镍、铂族元素的找矿勘查提供了依据。  相似文献   

8.
豆荚状铬铁矿是关键金属铬的重要来源之一,尽管豆荚状铬铁矿的研究取得了诸多进展,但对于发育于蛇绿岩壳-幔过渡带的铬铁矿成因却涉及较少。阿尔巴尼亚布尔齐泽岩体壳-幔过渡带中产出的Cerruja豆荚状铬铁矿矿床,其矿体及纯橄岩围岩普遍被辉石岩脉穿切,辉石岩脉与矿体接触带以及辉石岩脉中的铬尖晶石强烈破碎,在铬尖晶石的裂隙和包裹体中发育大量富Ti矿物相,如金红石、钛铁矿和榍石等,是研究壳-幔过渡带铬铁矿成因的理想对象。Cerruja豆荚状铬铁矿及纯橄岩围岩中铬尖晶石Cr#分别为0.56~0.58和0.52~0.55,属于高铝型铬铁矿。接触带及辉石岩脉中的铬尖晶石Cr#明显升高(分别为0.57~0.67和0.72~0.83),且Ti、V、Mn、Sc、Co、Zn和Ga含量也升高。本文依据铬尖晶石的结构及矿物化学成分变化特征,提出布尔齐泽壳-幔过渡带铬铁矿经历多阶段演化叠加:首先,Mirdita-Pindos洋盆在侏罗纪(约165 Ma)发生洋内初始俯冲,软流圈物质上涌生成的MORB-like弧前玄武质熔体随着俯冲的进行逐渐向玻安质熔体演变,期间产生的过渡型熔体与地幔橄榄岩反应生成高铝型铬铁矿;然后,部分MORB-like弧前玄武质熔体随着堆晶间隙分离结晶往富Fe和Ti的方向演化,改造早期形成的高铝型铬铁矿并结晶高铬型铬铁矿,同时生成金红石、钛铁矿和榍石等富Ti矿物相。  相似文献   

9.
镁铁-超镁铁岩的自然组合与铬镍矿床的成矿专属性   总被引:1,自引:0,他引:1  
基于幔源岩石产出的不同岩石组合与铬镍的浓集关系得出:铬矿体的寄主岩相优选于M/F值6~12区间内,专属于超镁铁质岩区和岩体,寄主岩相造岩矿物橄榄石专属于镁橄榄石,副矿物铬尖晶石富Mg和Cr.镍矿体寄主岩相的M/F值介于2~6,造岩矿物橄榄石为贵橄榄石,副矿物铬尖晶石相对富Fe贫Mg和Cr.铬和镍对不同Si-O系统的选择,制约于系统能量效应的不同.氧逸度(fo2)达1.013×10-3.5Pa时有利于铬尖晶石的生成.镁铁质岩浆同化地壳是获取硫得以产出硫化物矿石的必要条件.岩浆中地壳Ca、Al、Na、Si等造岩组分的加入有利于镍矿浆的熔离,并导致超镁铁载镍岩相必含有少量斜长石.  相似文献   

10.
新疆达拉布特超镁铁岩成因——来自铬尖晶石的证据   总被引:6,自引:0,他引:6  
通过研究西准噶尔达拉布特蛇绿混杂岩中方辉橄榄岩和橄榄辉石岩的岩石学特征,分析方辉橄榄岩广泛发育的铬尖晶石和斜方辉石构成的蠕虫状共生连晶结构的成因,得出结论认为:这种共生连晶结构不是前人所认为的文象结构或者石榴石的后成合晶,而是原始地幔岩熔融形成富铬岩浆的演化产物。这种富铬岩浆高度分异形成铬铁矿块体(即萨尔托海铬铁矿矿床)后,熔体进入地幔岩中结晶形成铬尖晶石和斜方辉石的蠕虫状共生连晶结构。因此,铬尖晶石与辉石的共生连晶结构可以作为豆荚状铬铁矿的重要找矿标志。方辉橄榄岩中的斜方辉石发育铬尖晶石出溶结构,出溶棒的成分特点表明,该结构是达拉布特蛇绿岩在快速就位过程中环境氧逸度突然升高诱发变质反应的结果。  相似文献   

11.
Chrome-spinels from the layered Peridotilte Series of the unmetamorphosed, anorogenic 60 Ma Cuillin Igneous Complex, Isle of Skye, display a wide variety of compositions. Cumulus (within seams) chrome-spinels from the lowest exposed portion of the Peridotite Series exhibit features indicative of textural equilibrium, are rich in Al and Mg, and have low values of the ratio Cr/(Cr+Al). Cumulus chrome-spinels from higher up in the series are different from these: particularly, textural disequilibrium is evident, intercumulus plagioclase and olivine are present, and the chrome-spinels are rich in Cr, Fe and Ti, with high values of the ratio Cr/(Cr+Al). Intercumulus (dispersed) chrome-spinels tend towards anhedral forms and define enrichment trends towards Fe (both Fe2+ and Fe3+) with decreasing Mg, Cr and Al, and towards Al, with decreasing Fe2+ and Cr (and increasing Mg). Individual crystals are completely homogeneous and are devoid of reaction rims. The observed textural characteristics and compositional data of the chrome-spinels documented here suggest that the semi-quantitative peritectic reaction: aluminous chrome-spinel + meltplagioclase + olivine + chromian chrome-spinel, is responsible for the observed parageneses, and that both the environment of crystallization (eumulus or intercumulus) and the role of plagioclase ±olivine crystallization are critical parameters for this geochemical trend in spinels within upper crustal magmatic systems. The effects of pyroxene crystallization on the development of this geochemical trend are also considered. This investigation highlights the need to consider the role of post-cumulus mineral-melt reactions and their influences upon the final compositions of major oxide and silicate phases within layered intrusions.  相似文献   

12.
Several types of both magmatic and metamorphic spinels have been found in Archean komatiites of the Sovdozero and Kostomuksha greenstone belts in the eastern part of the Fennoscandian Shield. Scanning electron microscopy and Raman spectroscopy revealed relics of cores of primary magmatic chrome-spinels with high Cr and Al contents. In the Sovdozero structure, the relics are better retained than those in the Kostomuksha structure, which is caused by a different degree of metamorphic transformation. The comparable 100 · Cr/(Al + Cr) values of spinel cores from Sovdozero and Kostomuksha reflect similar conditions of partitional melting in the mantle. These data agree with the fact that both komatiite complexes belong to the Al-undepleted petrogenic type. Wide variations in the Cr and Al contents in primary chrome-spinel cores together with a constant Mg/(Fe2+ + Mg) ratio correspond to low oxygen fugacity during magma crystallization. In general, the composition of these primary chrome-spinels is similar to that of accessory phases in peridotites from suprasubduction zones and agrees with hypothesis of komatiite complex formation in back-arc basins.  相似文献   

13.
Serpentinites and talc-carbonate rocks of El Ideid-El Sodmein District (ISD), central Eastern Desert, Egypt, contain variably altered chrome-spinels. Back-scattered electron images and electron microprobe analyses of chrome-spinels and associated silicates are made to evaluate their textural and compositional variations with metamorphism. In most cases the chrome-spinel crystals are concentrically zoned with unaltered cores through transitional zone of ferritchromit to Cr-magnetite toward the rims. In talc-carbonate rocks chrome-spinels are extensively altered to Cr-magnetite. Compared to cores, the metamorphic rims are enriched in Cr# (0.83–1.0 vs. 0.58–0.63 for rims and cores, respectively) and impoverished in Mg# (0.05–0.29 vs. 0.57–0.63), due to Mg–Fe and Al(Cr)–Fe3+ exchange with the surrounding silicates during regional metamorphism rather than serpentinization process. Textural and compositional features of the chrome-spinels suggest transitional greenschist-amphibolite up to lower amphibolite facies metamorphism (at 500–600 °C), which is isofacial with the country rocks. The common preservation of unaltered chrome-spinel cores in the serpentinites, contrary to talc-carbonate rocks, implies that full equilibration has not been attained due to small metamorphic fluid–rock ratio. Microprobe analyses profile across a concentrically zoned grain confirms the presence of two compositional (miscibility?) gaps; one between chrome-spinel core and ferritchromit zone; and another one between ferritchromit zone and Cr-magnetite outer rim.Chrome-spinel cores do not appear to have re-equilibrated completely with the metamorphic spinel rims and surrounding silicates, indicating relic magmatic composition not affected by metamorphism. Core compositions suggest an ophiolitic origin and derivation by high degrees of melting of reduced, depleted harzburgite to dunite mantle peridotites in an oceanic supra-subduction zone (marginal-basin) tectonic environment.  相似文献   

14.
Composition of chromiferous spinel included in olivines of Mg-rich basalts and gabbros of the Deccan Traps (Gujarat and Western Ghats) are reported here. They vary from Al-rich compositions [Al2O3 = 53wt.%; Cr#, 100Cr/(Cr + Al) = 12] to Cr-rich compositions [Cr2O3 = 51wt.%; Cr# = 84], and from Cr-Al rich compositions towards Cr-rich Ti-magnetite (TiO2 up to 23 wt.%, ulvöspinel up to 67mol.%). The Mg# [100Mg/(Mg + Fe2+)] of spinel decreases from 81 to nearly zero. The highest Cr# has been found in the Bushe Fm., Thakurvadi Fm., and some high-Ti basalts of the Pavagadh section, whereas some of the low-Ti basalts of Saurashtra have Al-rich compositions typical of spinels found in mid-ocean ridge basalts. The chemical composition of the Deccan Trap spinels is completely different compared to that observed in mantle spinel suites, with very few exceptions. The decreasing Al and increasing Fe and Ti of spinel seems to be mainly the result of decrease of Mg in the locally coexisting melts and favourable cationic substitutions in the lattice. There is barely any evidence of general relationships between the composition of the Deccan spinels and inferred mantle sources of the host magmas. Pyroxene inclusions in spinels may witness a high-pressure stage of crystallization, but the possibility of non-equilibrium crystallization, or even magma mixing, cannot be ruled out. Overall, the compositional ranges of chromiferous spinel in the Deccan Traps closely match those observed in the other Large Igneous Provinces having mafic/ultramafic intrusions and mafic magma compositions (e.g., Siberian Traps, Karoo, Emeishan).  相似文献   

15.
A great variety of platinum group mineral, sulfide and silicate inclusions in chrome spinel from Hochgrössen and Kraubath ultramafic massifs, and platinum group element contents of three different rock types have been investigated. Both ultramafic massifs are tectonically isolated bodies, variably serpentinized and metamorphosed (greenschist to lower amphibolite facies), and show ophiolitic geochemical affinities. The chromite from massive chromitites and disseminated in serpentinized dunites and serpentinites, exhibits compositional zonation as the result of alteration during serpentinization and metamorphism. Three distinctive alteration stages are indicated in the chrome-spinels from the Hochgrössen, whereas alteration is less significant in chromites from Kraubath: The core of chrome spinel represents the least altered part, surrounded by an inner rim characterized by slight compositional differences in Cr, Mn, Fe2+ and Al with respect to the core. The outer rim is formed by ferritchromite with a sharp boundary to the inner rim and shows a significant decrease of Al, Mg, Cr and increase of Fe2+, Fe3+ and Ni compared to the core. Two different groups of inclusions in chrome-spinel are present: the first group occurs within the chromite core, and comprises olivine, orthopyroxene, amphibole, sulfides and platinum-group minerals, i.e. dominated by Ru-Os-Ir-sulfides. The second group is formed by chlorite, serpentine, galena, pyrite, arsenopyrite, Pt-Pd-Rh-dominated sulfarsenides and sperrylite. In particular the abundance of Pt-Pd-Rh-sulfarsenides and arsenides is typical of both ultramafic massifs and is very unusual for chromitites from ophiolites. Morphology, paragenesis and chemical composition indicate a different origin for these two groups of inclusions. The first group is intimately related to the crystallisation of the chromite host. The second group of inclusions clearly displays a secondary formation during serpentinization and metamorphism, closely related to the alteration of chrome-spinel and the development of ferritchromite. The distribution patterns of the platinum group elements from massive chromitites, disseminated chrome-spinel bearing serpentinites and serpentinites exhibit variable enrichment of Rh, Pt and Pd, Rh, Pt for the Hochgrössen and Kraubath massifs, respectively. These results are in accordance with the occurrence and distribution of platinum-group mineral phases. A remobilisation of Pt, Pd, and Rh, together with Ni, Cu and possibly Fe as bisulfide and/or hydroxide complexes and deposition of metals by the reaction of the metal bearing hydrothermal fluid with chromite is proposed.  相似文献   

16.
In the Kakkaponnu area within the Achankovil Shear Zone (ACSZ), southern India, an undeformed ultramafic body occurs within intensely deformed granulite facies metamorphic rocks of Pan-African age. The Kakkaponnu ultramafic body is composed of spinel-dunite, phlogopite-dunite, glimmerite, graphite-spinel-glimmerite, and phlogopite-graphite-spinellite. The spinel-dunite is a fine- to medium-grained rock composed mainly of olivine and aluminous spinel and is characterized by relatively high MgO (50.39–50.90 wt.%), (Mg/ (Mg+Fe) = 0.95), Al2O3 (7.8–8.98 wt.%), and low Ni (10–14 ppm). The phlogopite-dunite comprises serpentinized olivine, phlogopite and subordinate amounts of dolomite and is high in MgO (36.5 wt.%), Mg# [(Mg/(Mg+Fe) = 0.97], and K2O (%%5.5 wt.%). Olivine in the spinel-dunite is marked by unusually high MgO (Mg# = 0.96) and extremely low NiO (<0.14 wt.%). Spinels in all rock variants are highly aluminous with low Cr# [Cr/(Al+Cr)] ratio (<0.01). Magnesian ilmenite [Mg# = 59], rutile, zirconolite and baddeleyite are main accessory phases. No significant compositional variation is noted between large grains and small inclusions for all minerals. Abundant graphite, magnesite, melt and ubiquitous CO2 fluid inclusions are identified in the olivine and spinel grains. The data imply that the Kakkaponnu ultramafic body was formed by progressive crystallization of highly potassic CO2-rich melts injected into lower crustal levels. K-Ar ages of 470.5±9.3 and 464.5±9.2 Ma are obtained for phlogopite separates from glimmerite and phlogopite-dunite respectively. These ages are comparable to the phlogopite K-Ar ages reported from lithospheric shear zones in southern Madagascar, which was once conjugated to the Southern Peninsular India prior to the Gondwana breakup. This implies widespread highly potassic CO2-rich fluid/melt influx along shear zones in this part of East Gondwana continent.  相似文献   

17.
Abstract Ultramafic rocks of Tibet and Xinjiang are the products of partial melting of the upper mantle. The evolution of their mineral composition is marked by two parallel evolutionary series: one is the progressive increase of the 100 Mg / (Mg+Fe2+) ratio of silicate minerals in order of lherzolite?harzburgite?dunite, i.e. the increase in magnesium; the other is the increase of the 100 Cr/(Cr+Al) ratio of accessory chrome spinel in the same order, i.e. the increase in Chromium. The above- mentioned evolutionary trends are contrary to that of magmatic differentiation. The evolution of fabrics of ultramafic rocks is characterized by progressive variation in order of protogranular texture? melted residual texture, symplectic texture and clastophyritic texture? equigranular mosaic texture and tabular mosaic texture. Experiments of partial melting of lherzolite have convincingly shown that the evolution of Alpine ultramafic rocks resulted from the partial melting of pyrolite. Various subtypes of them represent different degrees of partial melting. The vertical zoning marked by more basic rocks in the upper part and more acid rocks in the lower actually belongs to the fusion zoning of pyrolite.  相似文献   

18.
PP3超镁铁岩在钻孔中出露厚度达480米,包括纯橄岩、石榴橄榄岩和闪石化金云母橄榄岩等岩石类型。岩石主要组成矿物橄榄石、铬尖晶石、石榴子石、单斜辉石和斜方辉石等。橄榄石为镁橄榄石(Fo在88.7-93.1之间),SiO2含量在38.8wt.%-42.4wt.%;石榴子石为钙饱和的镁铝榴石(Py65.945Alm18.095Uv7.518Gr4.695And3.605Sp0.142),MgO含量在16.77wt.%-20.04wt.%,CaO含量在5.4到6.4wt.%之间,Cr2O3含量在0.3到3.3wt.%,FeO含量在2.48wt.%-11.78wt.%,TiO2含量小于0.04wt.%,代表早期矿物组合;两类斜方辉石的成分都为顽火辉石(OpxⅠ:En91.86Fs7.80Wo0.34,OpxⅡ:En91.83Fs7.91Wo0.21Ac0.06)。斜方辉石Mg#(Mg/(Mg Fe)×100)在91.7-92.5间,Cr2O3含量低于0.32wt.%,CaO含量在0.102-0.199wt.%间,Al2O3含量为0.32-1.06wt.%,均值在0.72wt.%;单斜辉石可分为早期透辉石(Wo45.98En47.89Fs2.73Ac3.39)和晚期顽透辉石(Wo27.61En68.78Fs2.27Ac1.34)两种。铬尖晶石的Cr#(Cr/(Cr Mg)×100)从51到89变化,TiO2和MnO2含量分别低于0.26wt%和0.46wt%。橄榄石、铬尖晶石和单斜辉石等矿物组合表现为3-4期次的特点。  相似文献   

19.
Compositional variation of phlogopitic micas in upper mantle peridotites is reviewed. Phlogopitic micas in garnet peridotites are systematically lower in Al (or eastonite component) than those in spinel peridotites. The core of phlogopite megacryst and phenocryst of kimberlite is always lower in Al than the rim. It is apparent that Al/(Al + Si) ratio or eastonite component in phlogopitic micas in ultramafic rocks is controlled by the equilibrium pressure and temperature. In the upper mantle peridotites containing garnet or spinel, the Al/(Al + Si) ratio of phlogopitic mica decreases with increasing pressure at constant temperature. Phlogopitic mica is a potential thermo-barometer in both garnet- and spinel-peridotite facies.  相似文献   

20.
Glaucophane-lawsonite facies blueschists representing a metamorphosed sequence of basic igneous rocks, cherts and shales have been investigated northeast of the district of Tav?anli in Northwest Turkey. Sodic amphiboles are rich in magnesium reflecting the generally high oxidation states of the blueschists. Lawsonite has a very uniform composition with up to 2.5 wt.% Fe2O3. Sodic pyroxenes show an extensive range of compositions with all the end-members represented. Chlorites are uniform in their Al/(Al+Fe+Mg) ratio but show variable Fe/ (Fe+Mg) ratios. Garnets from metacherts are rich in spessartine (>50%) whereas those from metabasites are largely almandine. Pistacite rich epidote is found in metacherts coexisting with lawsonite. Phengites are distinctly higher in their Fe, Mg and Si contents than those from greenschist facies. Hematites with low TiO2 are ubiquitous in metacherts. Fe2+/Mg partitioning between chlorite and sodic amphibole is strongly controlled by the calcium content of the sodic amphibole and ranges from 1.1 for low calcium substitution to 0.8 for higher calcium substitution. The Al/Fe3+ partition coefficient between sodic amphibole and sodic pyroxene is 2.1. A model system has been constructed involving projections from lawsonite, iron-oxide and quartz onto a tetrahedron with Na, Al, Fe2+ and Mg at its apices. Calcite is treated as an indifferent phase. The model system illustrates the incompatibility of the sodic pyroxene with chlorite in the glaucophanelawsonite facies; this assemblage is represented by sodic amphibole. Sodic amphibole compositions are plotted in terms of coexisting ferromagnesian minerals. Five major areas on the sodic amphibole compositional field are delineated, each associated with one of the following minerals: chlorite, stilpnomelane, talc, almandine, deerite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号