首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cordierite–quartz and plagioclase–quartz intergrowths in a paragneiss from northern Labrador (the Tasiuyak Gneiss) were studied using SEM, STEM and TEM. The gneiss experienced granulite facies conditions and partial melting during both regional and, subsequently, during contact metamorphism. The microstructures examined all results from the contact metamorphism. Cordierite–quartz intergrowths occur on coarse and fine scales. The former sometimes exist as a ‘geometric’ intergrowth in which the interface between cordierite and quartz appears planar at the resolution of the optical microscope and SEM. The latter exists in several microstructural variants. Plagioclase is present as a minor component of the intergrowth in some examples of both the coarse and fine intergrowth. Grain boundaries in cordierite–quartz intergrowths are occupied by amorphous material or a mixture of amorphous material and chlorite. Cordierite and quartz are terminated by crystal faces in contact with amorphous material. Chlorite is sometimes found on cordierite surfaces and penetrating into cordierite grains along defects. Quartz contains (former) fluid inclusions 10–20 nm in maximum dimension. The presence of planar interfaces between cordierite and the amorphous phase is reminiscent of those between crystals and glass in volcanic rocks, but in the absence of compelling evidence that the amorphous material represents former melt, it is interpreted as a reaction product of cordierite. Plagioclase–quartz intergrowths occur in a number of microstructural variants and are commonly associated with cordierite–quartz intergrowths. The plagioclase–quartz intergrowths display simple, non‐planar interfaces between plagioclase and quartz. Quartz contains (former) fluid inclusions of dimensions similar to those observed in cordierite–quartz intergrowths. The boundary between quartz and enclosing K‐feldspar is cuspate, with quartz cusps penetrating a few tens of nanometres into K‐feldspar, commonly along defects in K‐feldspar and sometimes with very low dihedral angles at their tips. This cuspate microstructure is interpreted as melt pseudomorphs. The plagioclase–quartz intergrowths share some features with myrmekite, but differ in some respects: the composition of the plagioclase (An37Ab62Or1–An38Ab61Or1); the association with cordierite–quartz intergrowths; and microstructures that are atypical of myrmekite (e.g. quartz vermicules shared with cordierite–quartz intergrowths). It is inferred that the plagioclase–quartz intergrowths may have formed from, or in the presence of, melt. Inferred melt‐related microstructures preserved on the nanometre scale suggest that melt on grain boundaries was more pervasive than is evident from light optical and SEM observations.  相似文献   

2.
Abstract Sapphirine-bearing rocks occur in three conformable, metre-size lenses in intrusive quartzo-feldspathic orthogneisses in the Curaçà valley of the Archaean Caraiba complex of Brazil. In the lenses there are six different sapphirine-bearing rock types, which have the following phases (each containing phlogopite in addition): A: Sapphirine, orthopyroxene; B: Sapphirine, cordierite, orthopyroxene, spinel; C: Sapphirine, cordierite; D: Sapphirine, cordierite, orthopyroxene, quartz; E: Sapphirine, cordierite, orthopyroxene, sillimanite, quartz; F: Sapphirine, cordierite, K-feldspar, quartz. Neither sapphirine and quartz nor orthopyroxene and sillimanite have been found in contact, however. During mylonitization, introduction of silica into the three quartz-free rocks (which represent relict protolith material) gave rise to the three cordierite and quartz-bearing rocks. Stable parageneses in the more magnesian rocks were sapphirine–orthopyroxene and sapphirine–cordierite. In more iron-rich rocks, sapphirine–cordierite, sapphirine-cordierite–sillimanite, cordierite–sillimanite, sapphirine–cordierite–spinel–magnetite and quartz–cordierite–orthopyroxene were stable. The iron oxide content in sapphirine of the six rocks increases from an average of 2.0 to 10.5 wt % (total Fe as FeO) in the order: C,F–A,D–B,E. With increase in Fe there is an increase in recalculated Fe2O3 in sapphirine. The four rock types associated with the sapphirine-bearing lenses are: I: Orthopyroxene, cordierite, biotite, quartz, feldspar tonalitic to grandioritic gneiss; II: Biotite, quartz, feldspar gneiss; III: Orthopyroxene, clinopyroxene, hornblende, plagioclase meta-norite; IV: Biotite, orthopyroxene, quartz, feldspar, garnet, cordierite, sillimanite granulite gneiss. The stable parageneses in type IV are orthopyroxene–cordierite–quartz, garnet–sillimanite–quartz and garnet–cordierite–sillimanite. Geothermobarometry suggests that the associated host rocks equilibrated at 720–750°C and 5.5–6.5 kbar. Petrogenetic grids for the FMASH and FMAFSH (FeO–MgO–Al2O3–Fe2O3–SiO2–H2O) model systems indicate that sapphirine-bearing assemblages without garnet were stabilized by a high Fe3+ content and a high XMg= (Mg/ (Mg+Fe2+)) under these P–T conditions.  相似文献   

3.
The investigated area around Sarvapuram represents a part of the Karimnagar granulite terrane of the Eastern Dharwar Craton, India. Garnet–bearing gneiss is hosted as enclaves, pods within granite gneiss and charnockite. It is largely made up of garnet, orthopyroxene, cordierite, biotite, plagioclase, K–feldspar, sillimanite and quartz. The peak metamorphic stage is represented by the equilibrium mineral assemblage i.e. garnet, orthopyroxene, cordierite, biotite, plagioclase, sillimanite and quartz. Breakdown of the garnet as well as preservation of the orthopyroxene–cordierite symplectite, formation of cordierite with the consumption of the garnet + sillimanite + quartz represents the decompressional event. The thermobarometric calculations suggest a retrograde P–T path with a substantial decompression of c. 3.0 kbar. The water activity(XH2 O) conditions obtained with the win TWQ program for core and symplectite compositions from garnet–bearing gneiss are 0.07–0.14 and 0.11–0.16 respectively. The quantitative estimation of oxygen fugacity in garnet–bearing gneiss reveal log f O2 values ranging from-11.38 to-14.05. This high oxidation state could be one of the reasons that account for the absence of graphite in these rocks.  相似文献   

4.

Granulite facies rocks on Else Platform in the northern Prince Charles Mountains, east Antarctica, consist of metasedimentary gneiss extensively intruded by granitic rocks. The dominant rock type is a layered garnetbiotite‐bearing gneiss intercalated with minor garnet‐cordierite‐sillimanite gneiss and calc‐silicate. Voluminous megacrystic granite intruded early during a mid‐Proterozoic (ca 1000 Ma) granulite event, M1, widely recognized in east Antarctica. Peak metamorphic conditions for M1 are in the range of 650–750 MPa at ~800°C and were associated with the development of a gneissic foliation, S1 and steep east‐plunging lineation, L1. Strain partitioning during progressive non‐coaxial deformation formed large D2 granulite facies south‐dipping thrusts, with a steep, east‐plunging lineation. In areas of lower D2 strain, large‐scale upright, steep east‐plunging fold structures formed synchronously with the D2 high‐strain zones. Voluminous garnet‐bearing leucogneiss intruded at 940 ±20 Ma and was deformed in the D2 high‐strain zones. Textural relationships in pelitic rocks show that peak‐M2 assemblages formed during increasing temperatures via reactions such as biotite + sillimanite + quartz ± plagioclase = spinel + cordierite + ilmenite + K‐feldspar + melt. In biotite‐absent rocks, re‐equilibration of deformed M1 garnet‐sillimanite‐ilmenite assemblages occurred through decompressive reactions of the form, garnet + sillimanite + ilmenite = cordierite + spinel + quartz. Pressure/temperature estimates indicate that peak‐M2 conditions were 500–600 MPa and 700±50°C. At about 500 Ma, north‐trending granitic dykes intruded and were deformed during D3‐M3 at probable upper amphibolite facies conditions. Cooling from peak D3‐M3 conditions was associated with the formation of narrow greenschist facies shear zones, and the intrusion of pegmatite. Cross‐cutting all features are abundant north‐south trending alkaline mafic dykes that were emplaced over the interval ca 310–145 Ma, reflecting prolonged intrusive activity. Some of the dykes are associated with steeply dipping faults that may be related to basin formation during Permian times and later extension, synchronous with the formation of the Lambert Graben in the Cretaceous.  相似文献   

5.
Melt infiltration into quartzite took place due to generation and migration of partial melts within the high‐grade metamorphic rocks of the Big Cottonwood (BC) formation in the Little Cottonwood contact aureole (UT, USA). Melt was produced by muscovite and biotite dehydration melting reactions in the BC formation, which contains pelite and quartzite interlayered on a centimetre to decimetre scale. In the migmatite zone, melt extraction from the pelites resulted in restitic schollen surrounded by K‐feldspar‐enriched quartzite. Melt accumulation occurred in extensional or transpressional domains such as boudin necks, veins and ductile shear zones, during intrusion‐related deformation in the contact aureole. The transition between the quartzofeldspathic segregations and quartzite shows a gradual change in texture. Here, thin K‐feldspar rims surround single, round quartz grains. The textures are interpreted as melt infiltration texture. Pervasive melt infiltration into the quartzite induced widening of the quartz–quartz grain boundaries, and led to progressive isolation of quartz grains. First as clusters of grains, and with increasing infiltration as single quartz grains in the K‐feldspar‐rich matrix of the melt segregation. A 3D–μCT reconstruction showed that melt formed an interconnected network in the quartzites. Despite abundant macroscopic evidence for deformation in the migmatite zone, individual quartz grains found in quartzofeldspathic segregations have a rounded crystal shape and lack quartz crystallographic orientation, as documented with electron backscatter diffraction (EBSD). Water‐rich melts, similar to pegmatitic melts documented in this field study, were able to infiltrate the quartz network and disaggregate grain coherency of the quartzites. The proposed mechanism can serve as a model to explain abundant xenocrysts found in magmatic systems.  相似文献   

6.
Mineral textures in metapelitic granulites from the northern Prince Charles Mountains, coupled with thermodynamic modelling in the K2O–FeO–MgO–Al2O3–SiO2–H2O–TiO2–Fe2O3 (KFMASHTO) model system, point to pressure increasing with increasing temperature on the prograde metamorphic path, followed by retrograde cooling (i.e. an anticlockwise P–T path). Textural evidence for the increasing temperature part of the path is given by the breakdown of garnet and biotite to form orthopyroxene and cordierite in sillimanite‐absent rocks, and through the break‐down of biotite and sillimanite to form spinel, cordierite and garnet in more aluminous assemblages. This is equated to the advective addition of heat from the regional emplacement of granitic and charnockitic magmas dated at c. 980 Ma. A subsequent increase in pressure, inferred from the break‐down of spinel and quartz to sillimanite, cordierite and garnet in aluminous rocks, is attributed to crustal thickening related to upright folding dated at 940–910 Ma. The terrane attained peak metamorphic temperatures of c. 880 °C at pressures of c. 6.0–6.5 kbar during this event. Subsequent cooling is inferred from the localised breakdown of cordierite and garnet to form biotite and sillimanite that developed in the latter stages of the same event. The textural observations described are interpreted via the application of P–T and P–T–X pseudosections. The latter show that most rock compositions preserve only fragments of the overall P–T path; a result of different rock compositions undergoing mineral assemblage changes, or changes in mineral modal abundance, on different sections of the P–T path. The results also suggest that partial melting during granulite facies metamorphism, coupled with melt loss and dehydration, initiated a switch from pervasive ductile, to discrete ductile/brittle deformation, during retrograde cooling.  相似文献   

7.
A petrological and thermobarometric study of the Lago Teleccio hornfelses was undertaken to reconstruct the polymetamorphic evolution and constrain the P–T conditions of Permian contact metamorphism. The Lago Teleccio metasedimentary rocks record a Variscan regional metamorphism characterized by amphibolite facies mineral assemblages including quartz, plagioclase, K‐feldspar (Kfs 1), biotite, garnet (Grt 1) and staurolite; this was followed by a late‐Variscan mylonitization event. Metamorphism of the Variscan metamorphic rocks at the contact with a Permian granitic intrusion produced static recrystallization and/or new growth of quartz, garnet (Grt 2), plagioclase, K‐feldspar (Kfs 2), cordierite, green spinel, biotite and prismatic sillimanite (Contact 1). This thermal event, which occurred at a peak pressure of 0.23–0.35 GPa, temperature of 670–700 °C and aH2O of 0.751, was followed either during post‐contact metamorphism cooling or, more likely, during the early‐Alpine metamorphism by the breakdown of cordierite into an anhydrous kyanite + orthopyroxene + quartz assemblage. The poorly developed early‐Alpine eclogite facies metamorphism (Alpine 1) was characterized by relatively anhydrous mineral associations and low strain, which locally produced coronitic and pseudomorphous microstructures in metasedimentary rocks, with scanty formation of jadeite, zoisite and a new high‐pressure garnet (Grt 3). Greenschist facies retrogression (Alpine 2) was characterized by the local development of a chlorite‐ and muscovite‐bearing mineral association, suggestive of aqueous fluid incursion. In the hornfelses, the limited extent of metamorphic overprinting is suggested by the fine grain size of the Alpine mineral associations, which formed at the expense of the Permian contact metamorphic associations, and was favoured by the anhydrous mineralogy of the hornfelses.  相似文献   

8.
Contact metamorphism of greenschist facies Neoproterozoic turbidites by the Cretaceous Bugaboo Batholith in southeastern British Columbia has resulted in a well‐developed contact aureole. The aureole is about 1 km wide and can be divided into three main zones: (i) spotted phyllite zone, extending from the first appearance of spots of cordierite or andalusite to the last occurrence of primary chlorite; (ii) cordierite + andalusite + biotite zone, comprising hornfelses or schists with abundant porphyroblasts of cordierite and andalusite and, at higher grades, fibrolitic sillimanite; and (iii) K‐feldspar zone, characterized by hornfelses and schists that, in the inner part of this zone, are variably migmatitic. Four parts of the aureole were examined, three of which are characterized by schists, and one of which (Cobalt Lake area) is characterized by hornfelses and has exceptional exposure and comparatively unaltered rocks. Petrographic, modal, mineral‐compositional and whole rock‐compositional data were collected from the Cobalt Lake transect, allowing the prograde reaction sequence to be inferred. Notable features of the aureole at Cobalt Lake include: initial development of andalusite and plagioclase at the expense of paragonite‐rich white mica; a narrow interval across which cordierite, andalusite and biotite increase markedly at the expense of chlorite; gradual development of andalusite and biotite at the expense of cordierite and muscovite upgrade of chlorite consumption; and near‐simultaneous development of andalusite + K‐feldspar and sillimanite, the latter indicating a pressure of contact metamorphism of ~3 kbar. In other parts of the aureole, the development of sillimanite downgrade of the initial development of K‐feldspar suggests slightly higher pressures of contact metamorphism. Lack of correspondence between the observed sequence of reactions in the aureole and those predicted thermodynamically suggests that modifications to some of the thermodynamic data or activity–composition models may be required. Textural features in the aureole suggest the influence of kinetic factors on metamorphic recrystallization, including: (i) deformation‐catalysed reaction in the schists compared to the hornfelses, as indicated by different mineral‐growth sequences inferred from microstructures, and (ii) heating rate‐controlled recrystallization, as indicated by the decrease in grain size of hornfelses with increasing metamorphic grade.  相似文献   

9.
Interpretations based on quantitative phase diagrams in the system CaO–Na2O–K2O–TiO2–MnO–FeO–MgO–Al2O3–SiO2–H2O indicate that mineral assemblages, zonations and microstructures observed in migmatitic rocks from the Beit Bridge Complex (Messina area, Limpopo Belt) formed along a clockwise P–T path. That path displays a prograde P–T increase from 600 °C/7.0 kbar to 780 °C/9–10 kbar (pressure peak) and 820 °C/8 kbar (thermal peak), followed by a P–T decrease to 600 °C/4 kbar. The data used to construct the P–T path were derived from three samples of migmatitic gneiss from a restricted area, each of which has a distinct bulk composition: (1) a K, Al‐rich garnet–biotite–cordierite–sillimanite–K‐feldspar–plagioclase–quartz–graphite gneiss (2) a K‐poor, Al‐rich garnet–biotite–staurolite–cordierite–kyanite–sillimanite–plagioclase–quartz–rutile gneiss, and (3) a K, Al‐poor, Fe‐rich garnet–orthopyroxene–biotite–chlorite–plagioclase–quartz–rutile–ilmenite gneiss. Preservation of continuous prograde garnet growth zonation demonstrates that the pro‐ and retrograde P–T evolution of the gneisses must have been rapid, occurring during a single orogenic cycle. These petrological findings in combination with existing geochronological and structural data show that granulite facies metamorphism of the Beit Bridge metasedimentary rocks resulted from an orogenic event during the Palaeoproterozoic (c. 2.0 Ga), caused by oblique collision between the Kaapvaal and Zimbabwe Cratons. Abbreviations follow Kretz (1983 ).  相似文献   

10.
The Leverburgh Belt and South Harris Igneous Complex in South Harris (northwest Scotland) experienced high-pressure granulite facies metamorphism during the Palaeoproterozoic. The metamorphic history has been determined from the following mineral textures and compositions observed in samples of pelitic, quartzofeldspathic and mafic gneisses, especially in pelitic gneisses from the Leverburgh Belt: (1) some coarse-grained garnet in the pelitic gneiss includes biotite and quartz in the inner core, sillimanite in the outer core, and is overgrown by kyanite at the rims; (2) garnet in the pelitic gneiss shows a progressive increase in grossular content from outer core to rims; (3) the AlVI/AlIV ratio of clinopyroxene from mafic gneiss increases from core to rim; (4) retrograde reaction coronas of cordierite and hercynite+cordierite are formed between garnet and kyanite, and orthopyroxene+cordierite and orthopyroxene+plagioclase reaction coronas develop between garnet and quartz; (5) a P–T path is deduced from inclusion assemblages in garnet and from staurolite breakdown reactions to produce garnet+sillimanite and garnet+sillimanite+hercynite with increasing temperature; and (6) in sheared and foliated rocks, hydrous minerals such as biotite, muscovite and hornblende form a foliation, modifying pre-existing textures. The inferred metamorphic history of the Leverburgh Belt is divided into four stages, as follows: (M1) prograde metamorphism with increasing temperature; (M2) prograde metamorphism with increasing pressure; (M3) retrograde decompressional metamorphism with decreasing pressure and temperature; and (M4) retrograde metamorphism accompanied by shearing. Peak P–T conditions of the M2 stage are 800±30 °C, 13–14 kbar. Pressure increasing from M1 to M2 suggests thrusting of continental crust over the South Harris belt during continent–continent collision. The inferred P–T path and tectonic history of the South Harris belt are different from those of the Lewisian of the mainland.  相似文献   

11.
The Mollendo–Camana Block (MCB) is a 50 × 150 km Precambrian inlier of the Andean belt that outcrops along the Pacific coast of southern Peru. It consists of stromatic migmatites of Paleoproterozoic heritage intensely metamorphosed during the Grenville event (c. 1 Ga; U‐Pb and U‐Th‐Pb ages on zircon and monazite). In the migmatites, aluminous mesosomes (FMAS) and quartzofeldspathic leucosomes (KFMASH), contain various amounts of K‐feldspar (Kfs), orthopyroxene (XMg Opx = 0.86), plagioclase (Pl), sillimanite (Sil; exceptionally kyanite, Ky) ilmenite (Ilm), magnetite (Mag), quartz (Qtz), and minor amounts of garnet (XMg Grt = 0.60), sapphirine (XMg Spr = 0.87), cordierite (XMg Crd = 0.92) and biotite (XMg Bt = 0.83). The ubiquitous peak mineral assemblage is Opx‐Sil‐Kfs‐Qtz‐(± Grt) in most of the MCB, which, together with the high Al content of orthopyroxene (10% Al2O3) and the local coexistence of sapphirine‐quartz, attest to regional UHT metamorphism (> 900 °C) at pressures in excess of 1.0 GPa. Fluid‐absent melting of biotite is responsible for the massive production of orthopyroxene that proceeded until exhaustion of biotite (and most of the garnet) in the southern part of the MCB (Mollendo‐Cocachacra areas). In this area, a first stage of decompression from 1.1–1.2 to 0.8–0.9 GPa at temperatures in excess of 950 °C, is marked by the breakdown of Sil‐Opx to Spr‐Opx‐Crd assemblages according to several bivariant FMAS reactions. High‐T decompression is also shown by Mg‐rich garnet being replaced by Crd‐Spr‐ and Crd‐Opx‐bearing symplectites, and reacting with quartz to produce low‐Al‐Opx‐Sil symplectites in quartz‐rich migmatites. Neither osumilite nor spinel‐quartz assemblages being formed, isobaric cooling at about 0.9 GPa probably followed the initial decompression and proceeded with massive precipitation of melts towards the (Os) invariant point, as demonstrated by Bt‐Qtz‐(± pl) symplectites in quartz‐rich migmatites (melt + Opx + Sil = Bt + Grt + Kfs + Qtz). Finally, Opx rims around secondary biotite attest to late fluid‐absent melting, compatible with a second stage of decompression below 900 °C. The two stages of decompression are interpreted as due to rapid tectonic denudation whereas the regional extent of UHT metamorphism in the area, probably results from large‐scale penetration of hot asthenospheric mantle at the base of an over‐thickened crust.  相似文献   

12.
Mineralogical and mineral chemical evidence for prograde metamorphism is rarely preserved in rocks that have reached ultrahigh‐temperature (UHT) conditions (>900 °C) because high diffusion and reaction rates erase evidence for earlier assemblages. The UHT, high‐pressure (HP) metasedimentary rocks of the Leverburgh belt of South Harris, Scotland, are unusual in that evidence for the prograde history is preserved, despite having reached temperatures of ~955 °C or more. Two lithologies from the belt are investigated here and quantitatively modelled in the system NaO–CaO–K2O–FeO–MgO–Al2O3–SiO2–H2O: a garnet‐kyanite‐K‐feldspar‐quartz gneiss (XMg = 37, A/AFM = 0.41), and an orthopyroxene‐garnet‐kyanite‐K‐feldspar quartzite (XMg = 89 A/AFM = 0.68). The garnet‐kyanite gneiss contains garnet porphyroblasts that grew on the prograde path, and captured inclusion assemblages of biotite, sillimanite, plagioclase and quartz (<790 °C, <9.5 kbar). These porphyroblasts preserve spectacular calcium zonation features with an early growth pattern overgrown by high‐Ca rims formed during high‐P metamorphism in the kyanite stability field. In contrast, Fe‐Mg zonation in the same garnet porphyroblasts reflects retrograde re‐equilibration, as a result of the relatively faster diffusivity of these ions. Peak PT are constrained by the occurrence of coexisting orthopyroxene and aluminosilicate in the quartzite. Orthopyroxene porphyroblasts [y(opx) = 0.17–0.22] contain sillimanite inclusions, indicative of maximum conditions of 955 ± 45 °C at 10.0 ± 1.5 kbar. Subsequently, orthopyroxene, kyanite, K‐feldspar and quartz developed in equilibrated textures, constraining the maximum pressure conditions to 12.5 ± 0.8 kbar at 905 ± 25 °C. P–T–X modelling reveals that the mineral assemblage orthopyroxene‐kyanite‐quartz is compositionally restricted to rocks of XMg > 84, consistent with its very rare occurrence in nature. The preservation of unusual high P–T mineral assemblages and chemical disequilibrium features in these UHT HP rocks is attributed to a rapid tectonometamorphic cycle involving arc subduction and terminating in exhumation.  相似文献   

13.
Due to the retrograde cation exchange problems experienced by conventional geothermobarometers above their closure temperatures, petrogenetic grids are a potentially powerful alternative to unravelling the PT evolution of ultrahigh‐T granulite terranes. A new qualitative KFMASH (K2O–FeO–MgO–Al2O3–SiO2–H2O) petrogenetic grid for Mg–Al rich metapelites containing K‐feldspar, sillimanite and quartzofeldspathic melt that successfully accounts for the majority of assemblages composed of variations of sapphirine, spinel, garnet, orthopyroxene, cordierite, biotite and quartz is developed. Univariant reactions are predicted utilizing a newly derived ‘melt projection’ and these reactions are entirely consistent with algebraically calculated reaction coefficients obtained using a set of standard phase compositions. Based upon observations of commonly associated mineral assemblages in natural lithologies the [Spr, Spl], [Qtz, Spl], [Bt, Spl], [Opx, Spr], [Opx, Qtz] and [Bt, Opx] invariant points are assumed to be stable, whilst the [Grt, Spr], [Grt, Qtz], [Spr, Qtz] and [Crd, Qtz] are assumed to be metastable. Biotite‐bearing assemblages are confined to the lowest temperatures, and sapphirine + quartz to the highest temperatures. Orthopyroxene + sillimanite ± quartz assemblages are confined to the highest pressures, whilst spinel‐bearing assemblages are stabilized by lower pressures. The alternative choice of invariant point stability leads to significant differences between this grid and previously proposed topologies. Spinel cannot be stable along with the orthopyroxene and sillimanite assemblage as previously proposed. Further, more subtle differences in topology result from the treatment of H2O in the chemographic projection used to deduce univariant reactions, and projecting from a water‐bearing quartzofeldspathic melt does not yield the same reaction coefficients as projection from H2O. The new grid allows reinterpretation of previously proposed evolutionary P–T paths for Mg–Al rich granulites from the Napier Complex and Rauer Group, East Antarctica, and In Ouzzal, Algeria.  相似文献   

14.
Granulite facies cordierite–garnet–biotite gneisses from the southeastern Reynolds Range, central Australia, contain both orthopyroxene‐bearing and orthopyroxene‐free quartzofeldspathic leucosomes. Mineral reaction microstructures at the interface of gneiss and leucosome observed in outcrop and petrographically, reflect melt‐rock interaction during crystallization. Accessory monazite, susceptible to fluid alteration, dissolution and recrystallization at high temperature, is tested for its applicability to constrain the chemical and P–T–time evolution of melt‐rock reactions during crystallization upon cooling. Bulk rock geochemistry and phase equilibria modelling constrain peak pressure and temperature conditions to 6.5–7.5 kbar and ~850°C, and UPb geochronology constrains the timing of monazite crystallization to 1.55 Ga, coeval with the Chewings Orogeny. Modelling predicts the presence of up to 15 vol.% melt at peak metamorphic conditions. Upon cooling below 800°C, melt extraction and in situ crystallization of melt decrease the melt volume to less than 7%, at which time it becomes entrapped and melt pockets induce replacement reactions in the adjacent host rock. Replacement reactions of garnet, orthopyroxene and K‐feldspar liberate Y, REE, Eu and U in addition to Mg, Fe, Al, Si and K. We demonstrate that distinguishing between monazite varieties solely on the basis of U–Pb ages cannot solve the chronological order of events in this study, nor does it tie monazite to the evolution of melt or stability of rock‐forming minerals. Rather, we argue that analyses of various internal monazite textures, their composition and overprinting relations allow us to identify the chronology of events following the metamorphic peak. We infer that retrograde reactions involving garnet, orthopyroxene and K‐feldspar can be attributed to melt‐rock interaction subsequent to partial melting, which is reflected in the development of compositionally distinct monazite textural domains. Internal monazite textures and their composition are consistent with dissolution and precipitation reactions induced by a high‐T melt. Monazite rims enriched in Y, HREE, Eu and U indicate an increased availability of these elements, consistent with the breakdown of orthopyroxene, garnet and K‐feldspar observed petrographically. Our study indicates that compositional and textural analysis of monazite in relation to major rock‐forming minerals can be used to infer the post‐peak chemical evolution of partial melts during high‐ to ultrahigh‐temperature metamorphism.  相似文献   

15.
Metapelitic rocks from the Marble Hall Fragment, enclosed in the granites of the magmatic Bushveld Complex, record a two‐stage, low‐pressure, high‐temperature metamorphism. An early paragenesis containing chiastolitic andalusite, cordierite, biotite and quartz ± garnet crystallized in most rocks and equilibrated at 550–600 °C, 0.2 GPa. It was transformed during the second, peak event into various parageneses that commonly coexist within a single thin section. These include garnet–cordierite–biotite–K‐feldspar–quartz, sillimanite–cordierite–K‐feldspar–quartz and spectacular quartz‐undersaturated cordierite–spinel symplectites replacing the chiastolite porphyroblasts. Based on a detailed phase diagram analysis, we argue that these parageneses result from rapid heating at an approximately constant pressure to temperatures of more than about 720 °C. At these temperatures, the internally buffered activity of water was reduced by incipient water‐saturated partial melting, while only minor quantities of melt were produced. Subsequent dry conditions inhibited large‐scale equilibration and, together with local inhomogeneities in mineral distribution, led to the development of contrasting parageneses and symplectite textures. No signs of widespread fluid‐absent melting of biotite were found, and so the temperature probably did not exceed 760 °C. The peak metamorphic event is attributed to the emplacement of the hot Nebo granite, whereas the early metamorphism was probably caused by the intrusion of one of the phases of the Rustenburg Layered Suite. We infer the conditions of development of the cordierite–spinel intergrowths and we show that, although symplectites are commonly associated with retrograde processes (cooling and/or decompression), they can record a prograde metamorphic evolution. Furthermore, our contribution emphasizes the importance of the concept of reduced equilibration volume for the understanding and interpretation of some particular textures and parageneses in common rocks.  相似文献   

16.
The Winding Stair Gap in the Central Blue Ridge province exposes granulite facies schists, gneisses, granofelses and migmatites characterized by the mineral assemblages: garnet–biotite–sillimanite–plagioclase–quartz, garnet–hornblende–biotite–plagioclase–quartz ± orthopyroxene ± clinopyroxene and orthopyroxene–biotite–quartz. Multiple textural populations of biotite, kyanite and sillimanite in pelitic schists support a polymetamorphic history characterized by an early clockwise P–T path in which dehydration melting of muscovite took place in the stability field of kyanite. Continued heating led to dehydration melting of biotite until peak conditions of 850 ± 30 °C, 9 ± 1 kbar were reached. After equilibrating at peak temperatures, the rocks underwent a stage of near isobaric cooling during which hydrous melt ± K‐feldspar were replaced by muscovite, and garnet by sillimanite + biotite + plagioclase. Most monazite crystals from a pelitic schist display patchy zoning for Th, Y and U, with some matrix crystals having as many as five compositional zones. A few monazite inclusions in garnet, as well as Y‐rich cores of some monazite matrix crystals, yield the oldest dates of c. 500 Ma, whereas a few homogeneous matrix monazites that grew in the main foliation plane yield dates of 370–330 Ma. Culling and analysis of individual spot dates for eight monazite grains yields three age populations of 509 ± 14 Ma, 438 ± 5 Ma and 360 ± 5 Ma. These data suggest that peak‐temperature metamorphism and partial melting in the central Blue Ridge occurred during the Salinic or Taconic orogeny. Following near isobaric cooling, a second weaker thermal pulse possibly related to intrusion of nearby igneous bodies resulted in growth of monazite c. 360 Ma, coinciding with the Neoacadian orogeny.  相似文献   

17.
The Chinese Altai orogen formed in the Paleozoic is an important part of the Central Asian Orogenic Belt (CAOB), and the study on the metamorphism will provide novel and robust constraints on its tectonic evolution. In this study, we investigate our newly recognized garnet–orthopyroxene–cordierite granulites at Wuqiagou area in the southern Chinese Altai. Detailed petrographic study and P–T estimates suggest four distinct metamorphic stages of mineral assemblages: (1) pre–peak (M1) stage containing the spinel–cordierite–bearing association or biotite–plagioclase–quartz–bearing inclusion–phase assemblage, with P–T conditions of 3.0–4.0 kbar/700–750 °C; (2) peak ultrahigh–temperature (UHT) (M2) stage represented by relatively coarse–grained garnet–orthopyroxene–cordierite–bearing porphyroblastic assemblage, with high–Al2O3 contents (up to ∼8.7 wt%) in orthopyroxene and P–T conditions of ∼8.0 kbar/∼980 °C; (3) post–peak high–temperature granulite facies (M3) stage consisted of orthopyroxene–cordierite and cordierite–quartz corona assemblages, formed during cooling and moderate decompression; and (4) post–peak upper amphibolite facies (M4) stage represented by retrograde biotite–plagioclase–quartz intergrowths. These four discrete metamorphic stages define an anticlockwise P–T path involving a post–peak moderate decompression followed by nearly isobaric cooling process. LA–ICP–MS U–Pb age dating results of metamorphic zircons for UHT samples show two weighted mean ages of ∼390 Ma and ∼280 Ma. We propose that the M1 stage might occur in the middle Devonian, whereas the near–peak UHT stage probably occurred in the early Permian. The Permian UHT metamorphism was further supported by the monazite U–Th–Pb dating results (287.9 ± 2.1 Ma), reflecting a prominent HT–UHT reworking event in the late Paleozoic. We proposed that the Permian UHT reworking event in the southern Chinese Altai probably occurred in a post–orogenic or intraplate extensional tectonic setting associated with the input of external heat, related to the underplating of deep–derived magma as a result of the Tarim mantle plume activity.  相似文献   

18.
Dehydration melting of muscovite in metasedimentary sequences is the initially dominant mechanism of granitic melt generation in orogenic hinterlands. In dry (vapour-absent) crust, muscovite reacts with quartz to produce K-feldspar, sillimanite, and monzogranitic melt. When water vapour is present in excess, sillimanite and melt are the primary products of muscovite breakdown, and any K-feldspar produced is due to melt crystallization. Here we document the reaction mechanisms that control nucleation and growth of K-feldspar, sillimanite, and silicate melt in the metamorphic core of the Himalaya, and outline the microstructural criteria used to distinguish peritectic K-feldspar from K-feldspar grains formed during melt crystallization. We have characterized four stages of microstructural evolution in selected psammitic and pelitic samples from the Langtang and Everest regions: (a) K-feldspar nucleates epitaxially on plagioclase while intergrowths of fibrolitic sillimanite and the remaining hydrous melt components replace muscovite. (b) In quartzofeldspathic domains, K-feldspar replaces plagioclase by K+–Na+ cation exchange, while melt and intergrowths of sillimanite+quartz form in the aluminous domains. (c) At 7–8 vol.% melt generation, the system evolves from a closed to open system and all phases coarsen by up to two orders of magnitude, resulting in large K-feldspar porphyroblasts. (d) Preferential crystallization of residual melt on K-feldspar porphyroblasts and coarsened quartz forms an augen gneiss texture with a monzogranitic-tonalitic matrix that contains intergrowths of sillimanite+tourmaline+muscovite+apatite. Initial poikiloblasts of peritectic K-feldspar trap fine-grained inclusions of quartz and biotite by replacement growth of matrix plagioclase. During subsequent coarsening, peritectic K-feldspar grains overgrow and trap fabric-aligned biotite, resulting in a core to rim coarsening of inclusion size. These microstructural criteria enable a mass balance of peritectic K-feldspar and sillimanite to constrain the amount of free H2O present during muscovite dehydration. The resulting modal proportion of K-feldspar in the Himalayan metamorphic core requires vapour-absent conditions during muscovite dehydration melting and leucogranite formation, indicating that the generation of large volumes of granitic melts in orogenic belts is not necessarily contingent on an external source of fluids.  相似文献   

19.
The Bruinbun pluton is a small, massive, I‐type granitoid intruded into the meta‐sedimentary Hill End Trough, in eastern N.S.W. It is a multiple pluton representing two discrete magma pulses, the granodiorite core intruding the adamellite margin. A weak alignment of orthoclase megacrysts in the granitoids is best developed adjacent to both the internal and external intrusive contacts, and is considered by the writer to be a product of magmatic flow. Part of the northern contact and the southern and western contacts dip inward at moderate angles, whereas the eastern contact is vertical to outward‐dipping. The pluton is inferred to be mushroom‐shaped, and slightly tilted.

The intensity of aureole deformation is low. The aureole has been flexed into concordancy with the pluton roof, and a rudimentary rim fold‐zone is present around lower levels of the pluton. Intrusion of the granitoid is inferred to be primarily by uplift of its roof and depression of its floor.

The highest‐grade contact metamorphic parageneses developed are: cordierite‐K feldspar‐biotite‐quartzite ± andesine ± epidote in metapelites, and ferrohornblende‐biotite‐muscovite‐andesine‐epidote‐quartz in metavolcarenites. No intrusion‐related foliation or lineation was formed.  相似文献   

20.
Spinel–cordierite symplectites partially replacing andalusite occur in metapelitic rocks within the cores of several country rock diapirs that have ascended into the upper levels of layered mafic/ultramafic rocks in the Bushveld Complex. We investigate the petrogenesis of these symplectites in one of these diapirs, the Phepane dome. Petrographic evidence indicates that at conditions immediately below the solidus the rocks were characterized by a cordierite‐, biotite‐ and K‐feldspar‐rich matrix and 5–10 mm long andalusite porphyroblasts surrounded by biotite‐rich fringes. Phase relations in the MnNCKFMASHT model system constrain the near‐solidus prograde path to around 3 kbar and imply that andalusite persisted metastably into the sillimanite + melt field, where the fringing relationship between biotite and andalusite provided spatially restricted equilibrium domains with silica‐deficient effective bulk compositions that focused suprasolidus reaction. MnNCKFMASHT pseudosections that model these compositional domains suggest that volatile phase‐absent melting reactions consuming andalusite and biotite initially produced a moat of cordierite surrounding andalusite; reaction progressed until all quartz was consumed. Spinel is predicted to grow with cordierite at around 720 °C. Formation of the aluminous solid products was strongly controlled by the receding edge of andalusite grains, with symplectites forming at the andalusite‐cordierite moat interface. Decompression due to melt‐assisted diapiric rise of the floor rocks into the overlying mafic/ultramafic rocks occurred close to the thermal peak. Re‐crossing of the solidus at P = 1.5–2 kbar, T > 700 °C resulted in preservation of the symplectites. Two features of the silica‐deficient domains inhibited resorption of spinel. First, the cordierite moat armoured the symplectites from reaction with crystallizing melt in the outer part of the pseudomorphs. Second, an up‐T step in the solidus at low‐P, which may be in excess of 100 °C higher than the quartz‐saturated solidus, resulted in high‐T crystallization of melt on decompression. Even in metapelitic rocks where melt is retained, preservation of spinel is favoured by decompression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号