首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 109 毫秒
1.
工作面上覆坚硬顶板往往不易垮落,破断后易形成动压灾害。以神东矿区布尔台煤矿为背景,针对典型坚硬顶板造成的强矿压动力灾害问题,采用数值模拟、理论分析的方法分析并揭示坚硬顶板弱化前后的应力演化特征及顶板破断机理,提出超前区域防治技术并应用于现场实践。结果表明:坚硬顶板破断演化特征分为3个阶段,即“长悬臂梁”阶段—“砌体梁滑落失稳”阶段—重新压实阶段,其中“长悬臂梁”阶段支架上方顶板应力显著增大至6.8 MPa,破断前支架上方顶板应力为破断后的2倍,其临界破断产生的应力释放是引起强矿压的根本原因,这也是弱化改造控制的主要阶段。基于坚硬顶板灾害发生机理,提出“广域大空间”超前区域防治技术,阐述了绿色、精准、广域的防治优势,以及钻孔轨迹控制、封孔质量控制、多孔联动效应的关键技术及治理评价体系。结合数值模拟进一步验证防治技术的可靠性,当“长悬臂梁”结构弱化后,其破断前支架上方顶板应力为4.6 MPa,降幅32.4%,顶板破断演化特征3个阶段演变为来压前阶段—“砌体梁滑落失稳”阶段—重新压实阶段,弱化后顶板各阶段支架上方顶板应力降幅达到32.4%~79.4%,表明预成裂隙弱面和降低坚硬层完整性能够有效改变顶板破断结构,显著降低来压强度。实践表明:压裂过程产生多次压降,降幅均达到3 MPa以上,探测裂缝发育长度达到30 m以上,压裂前后工作面周期来压步距降幅44.9%,支架来压载荷降幅18.1%,治理效果良好。研究结果可为类似矿区动力灾害治理提供借鉴。   相似文献   

2.
“十三五”以来,围绕“我国煤矿井下煤层区域增透瓦斯高效抽采和坚硬顶板岩层弱化区域治理”两大难题,将定向长钻孔与分段压裂技术结合,通过技术攻关与装备研发及工程试验,在煤矿井下定向长钻孔分段水力压裂技术和装备研发及工程示范应用等方面均取得了明显进展。主要表现在如下4个方面:(1)开发了适合于煤矿井下煤岩层裸眼定向长钻孔不动管柱和动管柱两种分段水力压裂工艺技术与工具,不动管柱分段压裂工程应用钻孔长度突破了500 m,单孔压裂实现了5段;动管柱分段压裂钻孔长度工程应用突破了800 m,单孔压裂实现了17段。(2)研发了煤矿井下低压端加砂压裂泵组和高压端加砂压裂装置,低压端加砂泵组压力达到了70 MPa,排量达到90 m3/h,携砂比达到20%;高压端加砂压裂装备耐压能力达到55 MPa,一次连续加砂压裂的砂量达到750 kg;低压端和高压端加砂装备均在现场进行了工程应用,应用结果表明装备均具有较好携砂压裂能力。(3)建立了碎软煤层围岩分段压裂和硬煤顺层钻孔分段压裂区域增透瓦斯高效抽采技术模式,前者在山西阳泉矿区和陕西韩城矿区应用钻孔瓦斯抽采纯量均值分别达到了2 811 m3/d和1 559 m3/d,后者在陕西彬长矿区应用钻孔瓦斯抽采纯量达到了2 491 m3/d。(4)探索出了坚硬顶板强矿压煤矿井下定向长钻孔分段水力压裂主动超前区域弱化治理的新模式,工程应用钻孔长度突破了800 m,坚硬顶板分段水力压裂治理后,顶板来压步距、动载系数和最高压力值较未压裂区分别下降了18.9%~70.6%,5.8%~7.9%,13.7%~19.4%,有效治理了工作面坚硬顶板引起的强矿压灾害。随着煤矿井下分段水力压裂技术改进和煤矿智能开采发展的实际需要,提出了煤矿井下大排量高压力智能压裂泵组、井下长钻孔裸眼分段压裂智能工具等装备和煤矿井?地联合分段水力压裂技术研发方向,以更好地推动煤矿井下水力压裂技术与装备发展,为煤矿安全高效绿色智能开采提供技术和装备支撑。   相似文献   

3.
坚硬顶板是岩层控制的一大难题,高位坚硬岩层的破断失稳经常会诱发强矿压灾害,严重威胁矿井的安全生产,坚硬顶板的治理是煤矿安全生产的重大难题之一。针对神东矿区布尔台煤矿煤层顶板厚度大、硬度高、垮落难等问题,分析定向长钻孔分段水力压裂的压裂机理和技术优势,基于关键层理论确定了钻孔布置层位,采用拟三维裂缝模型对压裂注入时间和注入流速对裂缝扩展的影响进行分析计算,确定布尔台煤矿42108工作面顶板压裂钻孔布置方式,沿工作面倾向方向平行布孔3个,裂缝半长41 m,压裂控制区域覆盖了整个工作面。实践表明:42108工作面在实施了坚硬顶板分段水力压裂弱化后,工作面正常支架循环末阻力同比下降3.33%;周期来压期间,支架循环末阻力同比下降6.81%;动载系数平均降低了10.88%;强矿压显现减弱,保证工作面安全回采。   相似文献   

4.
复杂地质条件下开采深度的增加极易导致强矿压动力灾害的发生。以华煤集团华亭煤矿250102综放工作面及其回采巷道为研究背景,通过SOS微震监测系统拾取回采工作面推进过程中微震(声发射)信号,获取强矿压动力灾害前兆信息特征规律,分析3种不同危险等级(R,O,Y)强矿压的分布规律且判定其危险区域。综合现场开采特征,确定工作面开切眼至400 m范围为危险区域,此期间20 m煤柱侧强矿压显现尤为严重。最终确定了采用"超前顶板深孔爆破+帮侧煤体卸压爆破+顶板煤层注水"相结合的解危措施来减轻和消除强矿压动力灾害现象,保障井下工作人员在工作期间的安全。   相似文献   

5.
随着煤矿开采强度的不断增大,矿井逐渐向深部转移,冲击地压灾害日益严峻。而深部冲击地压矿井往往存在一层或多层坚硬厚岩层,这些坚硬顶板厚度较大,整体性强,突然断裂时会释放大量弹性能,易引发冲击地压事故,严重制约矿井安全生产。以陕西彬长矿区孟村矿为例,针对矿区内煤层埋藏深、普遍存在多种坚硬厚岩层的特殊情况,提出针对性治理措施:对顶板上方0~80 m范围内厚度超过10 m的坚硬厚岩层进行破断、弱化处理,对煤层上方0~30 m范围的低位岩层采取顶板深孔爆破预裂措施,对煤层上方30~60 m范围内的中位坚硬岩层采取顶板定向长钻孔水力压裂措施,对煤层60 m以上高位坚硬岩层采取地面水平井分段压裂措施;使高、中、低位顶板产生的裂缝在垂向上实现贯穿,将顶板“切割”成相对规则的“块状”结构,使上覆岩层应力由“硬传递”转化为“软传递”;并结合煤层大直径孔卸压、煤层爆破等煤层卸压措施,形成了区域与局部相结合、煤层与岩层全覆盖的“井上下”立体防治模式。工程实践证明:采用“井上下”立体防治模式后,工作面103 J以上微震事件降低88%,周期来压强度降低23%,来压持续时间缩短61%,防冲效果良好。该技术模式的成功...  相似文献   

6.
以长平矿保护层掘进工作面动力显现为工程背景,通过保护层掘进工作面动力现象发生过程分析,结合现场调研和瓦斯参数测定,分析确定长平矿保护层掘进工作面前方赋存的DX19陷落柱是工作面破坏的根本原因。揭示了陷落柱为掘进工作面发生煤体压出破坏提供了能量基础和物质来源的机制。提出了掘进工作面防治矿井动力灾害的"预测+解危+动力灾害识别培训"的综合防治措施,研究成果可为类似条件矿井动力灾害的预测和防治提供借鉴。  相似文献   

7.
应用覆岩空间结构学术观点对孤岛顶煤综放采场冲击矿压机制及其控制技术进行研究。根据覆岩关键层的岩性、层位、范围等因素,覆岩关键层空间结构分为覆岩空间大结构和基本顶有限矿压结构。孤岛顶煤采场冲击矿压发生机制:①孤岛顶煤综放采场 ? 型空间大结构形成过程是集中压力逐渐增加的过程,是该时间段发生冲击矿压的力源;②采场基本顶形成最下位 ? 型空间结构后,随着工作面推进,基本顶块体产生滑落失稳,造成工作面冲击矿压现象。通过对分段来压理论、基本顶结构失稳理论和坚硬顶板预断裂理论对覆岩关键层空间结构运动的控制作用研究,提出采用覆岩空间结构理论分析、分阶段降低放煤率、坚硬覆岩预爆泄压技术、覆岩坚硬岩层破裂的微地震监测技术等方式方法预防冲击矿压的发生。  相似文献   

8.
深部开采覆岩应力变化规律模拟实验研究   总被引:4,自引:0,他引:4  
为了研究深部开采条件下覆岩结构运动所引发的动力破坏特征及巷道围岩中采动支承压力分布规律,以某矿20180工作面覆岩为研究对象,通过相似材料模拟实验,得出了深部开采条件下覆岩应力变化规律。结果表明:顶板垮落规律显著,初次来压步距较长,周期来压步距基本相似;开采过程中底板与顶板支撑压力是动态变化的,并具有同步性;随着顶板岩层高度的增加,应力集中系数逐渐减小。根据底板和顶板的应力变化规律,将底板和顶板划分为五个区域,为深部开采条件下工作面巷道超前支护,采空区瓦斯抽放及矿压控制提供可靠理论依据。  相似文献   

9.
杨敬虎  孙少龙  孔德中 《岩土力学》2015,36(Z2):333-339
高强度开采工作面矿压显现复杂,容易发生压架、冒顶等灾害。为从理论上解释高强度开采工作面的矿压特征,分析了高强度开采工作面的一般特征及其对矿压显现的影响,以顶板初次断裂为例,运用薄板理论并结合岩石力学试验成果,推导出不同面长和不同推进速度下顶板断裂步距的计算公式,并分析了面长和推进速度对来压时支架工作阻力的影响机制。结果表明,面长影响顶板应力分布,推进速度改变顶板承载能力,而且面长越短,推进速度越快,顶板的初次断裂步距就会越大。对于高强度开采工作面,面长普遍大于200 m,面长效应影响微弱,矿压显现主要受推进速度作用,断裂步距和来压时支架工作阻力都比非高强度开采工作面大,容易发生压架和冒顶等灾害。  相似文献   

10.
黄澎涛 《探矿工程》2021,48(S1):187-194
针对我国目前冲击地压防治工程人员身处冲击危险区域,无法实现区域先行、超前治理的局面,论文提出了矿井冲击地压关键层远程钻孔水力压裂防治技术。分析了我国冲击地压矿井的地质条件和近几年重大冲击地压灾害的特点,认为华北石炭—二叠系煤田和侏罗系煤田很多冲击地压煤矿煤层上覆地层,普遍发育厚层坚硬的砂岩关键层,能量的释放符合冲击地压形成的“3因素”理论。经论证,关键层脆性强,硬度大,易于压裂,利用水力压裂法解除地应力是合适的;井下长钻孔、地面深孔和地面导斜钻孔的施工技术和钻孔水力压裂技术已成熟,实现远程钻孔水力压裂区域性的防治冲击地压是可行的。工业性试验显示,井下长钻孔顺层分段水力压裂长度可达800 m,水压可达40 MPa,裂缝半径为40 m;地面垂直钻孔分段压裂深度可达3000 m,压裂段高>100 m,压力达80 MPa,裂缝半径为100~200 m;地面导斜钻孔水平顺层段长度达1000 m,压力达80 MPa,裂缝半径为100~150 m;压裂前后煤体应力或支架压力的检测数据对比显示,压裂后的应力较压裂前降低了10 MPa以上,满足区域治理的要求,钻孔远程水力压裂在防治冲击地压上较传统方法具有显著超前优势、区域优势、效率优势、安全优势和环保优势,可以做到冲击地压防治区段的无人化,满足区域先行、超前治理的国家要求。  相似文献   

11.
With hard roof conditions and the influence of side and front abutment pressures, pressure bump and large deformations periodically occur in the advanced support area of longwall face gob-side gateroads. To control the strong strata behaviours in gob-side gateroads, “directional hydraulic fracturing, to cut off the roof hanging over the adjacent gob area, and pre-fracturing of the roof, located behind the working face being extracted,” are performed. The directional initiation of hydraulic fracturing is controlled by pre-slotting, and this action guides the propagation of hydraulic fractures in three-dimensional space. The oriented fractures meet engineering requirements by cooperating with both the in situ ground stresses and the mining-induced stresses, as well as the technology of hydraulic fracturing. In field applications, hydraulic fracturing has proven to be a viable option for weakening hard roofs, destressing the side and front abutment pressures at the mining face and also transferring in situ and mining-induced stresses. Successful field tests in the Tongxin coal mine, Datong district, as well as other coal mines, show that hydraulic fracturing in both a hanging roof over an adjacent gob area and in the gob area behind the advancing working face controls the behaviour of strong strata material on the gob-side of gateroads in longwall mining and also guarantees safe extraction at the working face.  相似文献   

12.
In order to determine the rock mechanics characteristics, a uniaxial compression experiment for the hard sandstone in the 6305 working face of Jining No.3 Coal Mine was designed. The experimental results show that the bending energy is weakly impacted and the bending energy index is 66 kJ. To crack into the hard roof to prevent roof formation of rock burst with the Polish hydraulic fracturing technology. According to on-site hydraulic fracturing test, hydraulic fracturing radius of 6305 working face can reach 5–15 m. Finally, there is a little vibration, and energy is mainly concentrated range from 1000 to 10,000 J from the characteristics of mine waveform and spectrum distribution through microseismic monitoring system during the fracturing process. It shows that some microseismic events induced by hard roof after hydraulic fracturing have achieved the purpose of slow relief of hard roof and prevent the occurrence of rock burst.  相似文献   

13.
陕北榆神矿区煤层开采面临顶板水害防治与水资源协同保护技术需求,根据材料力学、断裂力学相关理论,以及不同覆岩类型的采动裂隙带统计成果,提出基于预裂–注浆改性(P-G)的煤层顶板失水控制技术思路,其基本原理为通过压裂工艺将连续性好的基岩层压裂成非连续性岩层,削弱采动导水裂隙在坚硬岩层中向上扩展的“尖端效应”,抑制导水裂隙发育高度。再采用黏土类软弱注浆材料将岩层改性为相对软弱的岩层,起到抑制导水裂隙带向上发育与降低上覆岩层导水能力的双重作用,从而实现煤层顶板含水层失水控制。本文以陕北能源基地榆神矿区为对象,提出以采煤工作面地质与水文地质条件分析,采煤工作面顶板含水层涌(失)水模式识别,P-G模式、层位与时间确定,顶板岩层水平孔水力压裂与注浆改性为主要思路,对榆神矿区采煤工作面顶板含水层失水控制方法进行了探讨,为我国陕北能源基地榆神矿区顶板水害防治和水资源协同保护技术实践提供一定的借鉴。   相似文献   

14.
蒋金泉  代进  王普  张林良 《岩土力学》2014,35(Z1):264-270
硬厚覆岩的破断与结构将发生显著的变化。针对汝箕沟煤矿二2煤层上覆厚层石英砂岩条件,采用现场实测、数值模拟、理论分析及现场试验等方法,研究了硬厚覆岩裂隙发育特征、破断运动、矿压显现特征及断顶控制技术,为硬厚覆岩工作面灾害防治提供了依据。研究表明,硬厚石英砂岩的微观结构致密完整,呈现大面积悬空、大步距破断运动,引起强烈的支架动载,甚至导致工作面风流逆转、沟通上部采空区隐形火区;硬厚岩层破断运移后产生明显的离层空间,并在开切眼上部和工作面上部及采空区中部形成覆岩主裂隙带,且发育高度大于经验计算数值,甚至与上方采空区沟通诱发灾害;实施开切眼深孔断顶爆破及降低工作面采高,有效缩短了硬厚岩层的初次破断步距,降低了支架动载及主裂隙带高度。  相似文献   

15.
Intensive strata behaviors are generated when the No. 8707 working face of the 8# coal seam in a coal mine is advanced by way of the pillars left over of the upper part of 7# close distance coal seam. The theoretical analysis, numerical simulation and filed measurement were utilized to obtain the rule of the stress change when the 8707 working face of the 8# coal seam passes the pillars left over of the 7# coal seam. Meanwhile, a pressure-relief mining (PRM) technology was put forward. According to the research results, when the 8707 working face in the 8# coal seam was advanced to the position that was 20 m in front of the pillar left over, the abutment pressure reached the maximum for 26 MPa and the stress concentration factor was 3.25, which was likely to give rise to the rock burst. With the advance of the working face, the abutment pressure was reduced slowly. As the 8707 working face advanced 15 m away the pillar left over, the transfixed shear failure region of 45° was found in the bedrocks of the upper and lower coal seams, which was readily to give rise to the shear rupture, leading to the rock burst. Based on the aforementioned research, this research carried out the PRM by applying the hydraulic fracturing technology on the coal roof and pillar, which can ensure the safety and efficient mining of working faces.  相似文献   

16.
瓦斯区域超前治理是实现煤矿安全、高效及智能化开采的重要保障,针对碎软煤层区域瓦斯高效抽采难题,以陕西韩城矿区3号煤层为研究对象,提出井下煤层顶板梳状长钻孔水力压裂区域瓦斯抽采模式。采用理论分析、数值模拟和现场试验等多手段相结合的方法,验证模式适用性,阐明紧邻煤层顶板梳状钻孔压裂裂缝延展规律、抽采机理和压裂曲线特征,进而建立适用于500 m孔深的集地质条件动态分析、分段水力压裂、封隔器遇阻解卡和压裂范围连续探查于一体的顶板梳状长钻孔裸眼分段水力压裂关键技术体系,实现煤层顶板梳状钻孔主孔轨迹距离煤层5 m左右、多段均匀压裂、压裂范围全孔监测和孔内事故高效处理。以此为基础,在韩城桑树坪二号井开展2孔次的工程实践:压裂主孔深度588 m、距3号煤层2 m左右,单孔压裂6段,压裂范围探查深度381 m、压裂影响半径20 m以上;压裂后,钻孔抽采瓦斯平均体积分数40%以上、瓦斯抽采量1 m3/min以上,抽采效果是常规钻孔的4倍,120 d瓦斯抽采有效半径可达9 m,实现了碎软煤层瓦斯区域高效抽采。并提出了适用于碎软煤层大区域瓦斯抽采以及高瓦斯压力碎软强突煤层远程区域抽采卸压等规模化应用技术思路。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号