首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Great Lisbon earthquake of 1755 with an estimated magnitude of 8.5–9.0 is the most destructive earthquake in European history, yet the source region remains enigmatic. Recent geophysical data provide compelling evidence for an active east dipping subduction zone beneath the nearby Gibraltar Arc. Marine seismic data in the Gulf of Cadiz image active thrust faults in an accretionary wedge, above an east dipping decollement and an eastward dipping basement. Tomographic and other data support subduction and rollback of a narrow slab of oceanic lithosphere beneath the westward advancing Gibraltar block.Although, no instrumentally recorded seismicity has been documented for the subduction interface, we propose the hypothesis that this shallow east dipping fault plane is locked and capable of generating great earthquakes (like the Nankai or Cascadia seismogenic zones). We further propose this east dipping fault plane to be a candidate source for the Great Lisbon earthquake of 1755. In this paper we use all available geophysical data on the deep structure of the Gulf of Cadiz–Gibraltar region for the purpose of constraining the 3-D geometry of this potentially seismogenic fault plane. To this end, we use new depth processed seismic data, have interpreted all available published and unpublished time sections, examine the distribution of hypocenters and perform 2-D gravity modeling. Finally, a finite-element model of the forearc thermal structure is constructed to determine the temperature distribution along the fault interface and thus the thermally predicted updip and downdip limits of the seismogenic zone.  相似文献   

2.
Relative sea-level change at the time of, and since, the most recent great earthquake at the Cascadia subduction zone is estimated from intertidal sediments at three marshes on western Vancouver Island, British Columbia. We compare the elevation of the pre-earthquake surface, which is marked by a tsunami sand sheet, with the modern depositional elevation range of the sediment type upon which the sand was deposited. At a site south of the Nootka fault zone, which is the northern boundary of the subducting Juan de Fuca plate, tidal mud overlies the pre-earthquake marsh surface. The stratigraphy at this site indicates 0.2–1.6 m of coseismic submergence and 1.1 m of subsequent emergence. In contrast, two sites to the north lack obvious stratigraphic evidence for coseismic land-level change and record between 0.1 and 1.7 m of post-earthquake submergence. These results indicate a difference in tectonic environment across the Nootka fault zone and suggest that plate-boundary rupture during the last great Cascadia earthquake probably did not extend north of central Vancouver Island.  相似文献   

3.
活动断裂的变形特征及其大地震复发周期的估算   总被引:7,自引:0,他引:7  
活动断裂是晚更新世10~12万年以来一直在活动.现在正在活动,未来一定时期内仍会发生活动的各类断裂.活动断裂控制着大地震的发生,是不同类型地震的发震构造.从活动断裂的变形特征来看,不同性质的活动断裂具有不同的发震构造模型,研究这些问题对认识强震的发震条件,划分潜在的震源区或地震危险区,评估发震构造和发震地点具有重要的意义.基于国内外对不同类型活动断裂的认识,结合近10年来在青藏高原地区对活动断裂的研究,总结了活动断裂的基本变形特征和对大地震复发周期估算的认识.研究表明.东昆仑断裂库塞湖段类似2001年Ms 8.1级大地震的强震复发周期为250~350年,阿尔金断裂康西瓦段类似Ms 7.4级大地震的强震复发周期为370~500年.而在青藏高原东缘的龙门山地区,类似2008年5月12日Ms 8.0级汶川大地震的强震复发周期为3000~6000年.这些结果可能暗示着走滑断裂大地震的复发周期远短于逆冲断裂大地震的长复发周期,这是值得高度重视和深入研究的新课题.  相似文献   

4.
活动断裂的变形特征及其大地震复发周期的估算   总被引:1,自引:0,他引:1  
活动断裂是晚更新世10~12万年以来一直在活动, 现在正在活动, 未来一定时期内仍会发生活动的各类断裂。活动断裂控制着大地震的发生,是不同类型地震的发震构造。从活动断裂的变形特征来看,不同性质的活动断裂具有不同的发震构造模型,研究这些问题对认识强震的发震条件,划分潜在的震源区或地震危险区,评估发震构造和发震地点具有重要的意义。基于国内外对不同类型活动断裂的认识,结合近10年来在青藏高原地区对活动断裂的研究,总结了活动断裂的基本变形特征和对大地震复发周期估算的认识。研究表明,东昆仑断裂库塞湖段类似2001年Ms 8.1级大地震的强震复发周期为250~350年,阿尔金断裂康西瓦段类似Ms 7.4大地震的强震复发周期为370~500年,而在青藏高原东缘的龙门山地区,类似2008年5月12日Ms 8.0汶川大地震的强震复发周期为3000~6000年。这些结果可能暗示着走滑断裂大地震的复发周期远短于逆冲断裂大地震的长复发周期,这是值得高度重视和深入研究的新课题。  相似文献   

5.
We review geologic records of both historic and prehistoric tsunami inundations at three widely separated localities that experienced significant damage from the 1964 Alaskan tsunami along the Cascadia margin. The three localities are Port Alberni, Cannon Beach, and Crescent City, representing, respectively, the north, central, and south portions of the study area (1,000 km in length). The geologic records include anomalous sand sheets from marine surges that are hosted in supratidal peaty mud deposits. Paleotsunami sand sheets that exceed the thickness, continuity and/or extent of the 1964 historic tsunami are counted as major paleotsunami inundations. Major paleotsunamis (6–7 in number) at each locality during the last 3,000 years demonstrate mean recurrence intervals of 450–540 years, and within-cluster intervals (three events each) of 270–460 years. It has been 313 years since the last major paleotsunami from a great Cascadia earthquake in AD 1700. We compare the dated sequences of major paleotsunami inundations to the nearest regional records of coastal coseismic subsidence in Willapa Bay in the central margin, Waatch/Neah Bay in the northern margin, and Coquille in the southern margin. Similar numbers of events from both types of records suggest that the major paleotsunamis are locally derived (near-field) from ruptures of the Cascadia margin megathrust fault zone, rather than from transoceanic tsunamis (far-field) originating at other subduction zones around the Pacific Rim. Given the catastrophic hazard of the near-field Cascadia margin tsunamis, we propose a basic rule for reminding the general public of the need for self-initiated evacuation following a great earthquake at the Cascadia margin.  相似文献   

6.
Abstract

Eight caves have been investigated near Saint-Paul- de-Fenouillet after the earthquake of 5.2 magnitude of February 1996 which occurred in the eastern Pyrenees (France) and caused moderate damage at the ground surface. The earthquake has been associated with the movement of an E-W fault. The caves had not been visited since the earthquake. Some damage, mainly collapses of soda straws and small rocks, could be attributed to this earthquake. The most interesting cave in the epicentral area is the Paradet cave which is situated on a recently activated fault plane. In this cave, soda straw falls could be attributed to the earthquake, but other more ancient damage was also observed. Analysis of the azimuth of fallen speleothems, which are natural pendulums, may indicate the directions, and an estimation of their mechanical properties gives the threshold of the seismic ground motion amplitude responsible for their collapse, thus supplying information to calibrate damage due to past earthquakes. A statistical study indicates that the main direction of the collapsed soda straws is E–W. Numerical simulations confirm that soda straws are relatively strong objects that may break under certain conditions during earthquakes. © Elsevier, Paris  相似文献   

7.
Great earthquakes of variable magnitude at the Cascadia subduction zone   总被引:1,自引:0,他引:1  
Comparison of histories of great earthquakes and accompanying tsunamis at eight coastal sites suggests plate-boundary ruptures of varying length, implying great earthquakes of variable magnitude at the Cascadia subduction zone. Inference of rupture length relies on degree of overlap on radiocarbon age ranges for earthquakes and tsunamis, and relative amounts of coseismic subsidence and heights of tsunamis. Written records of a tsunami in Japan provide the most conclusive evidence for rupture of much of the plate boundary during the earthquake of 26 January 1700. Cascadia stratigraphic evidence dating from about 1600 cal yr B.P., similar to that for the 1700 earthquake, implies a similarly long rupture with substantial subsidence and a high tsunami. Correlations are consistent with other long ruptures about 1350 cal yr B.P., 2500 cal yr B.P., 3400 cal yr B.P., 3800 cal yr B.P., 4400 cal yr B.P., and 4900 cal yr B.P. A rupture about 700-1100 cal yr B.P. was limited to the northern and central parts of the subduction zone, and a northern rupture about 2900 cal yr B.P. may have been similarly limited. Times of probable short ruptures in southern Cascadia include about 1100 cal yr B.P., 1700 cal yr B.P., 3200 cal yr B.P., 4200 cal yr B.P., 4600 cal yr B.P., and 4700 cal yr B.P. Rupture patterns suggest that the plate boundary in northern Cascadia usually breaks in long ruptures during the greatest earthquakes. Ruptures in southernmost Cascadia vary in length and recurrence intervals more than ruptures in northern Cascadia.  相似文献   

8.
Although the effects of earthquakes in destruction found in archaeological excavations have been recognized for decades, their importance remains controversial. New measurements of motions and analysis of earthquakes on active geological faults substantially improve the explanation of often-observed, but rarely understood, repeated destruction revealed by these excavations. Ancient Armageddon (Megiddo), the single most excavated archaeological site in Israel, is a fascinating example of this. It is situated next to the Mt. Carmel-Gilboa fault system, which, according to recent geophysical measurements, is seismically active. Its past activity: (a) has created, over time, the topography that made Megiddo strategically so important; and (b) through episodic earthquakes destroyed Megiddo's walls and buildings repeatedly.

The accumulated fault motion created the Nahal Iron Pass, which controlled ancient traffic between Syria and Egypt. Megiddo's strategic location at this pass led to some of the greatest ancient battles fought in this region and was the reason for the maintenance of its fortifications. The recurrence of damaging earthquakes, possibly 3 to 4 per millennium, however, explains the repeated destruction of Megiddo–sometimes attributed, for lack of a better explanation, to unproved battles: e.g., King David's often assumed conquest and mindless destruction of Megiddo was actually a destructive earthquake in northern Israel that occurred at ~1000 B.C. Another earthquake at ~1400 B.C., which damaged many parts of the country, also destroyed Megiddo at that earlier time. Finally, the earthquake during the battle of the Apocalypse at Armageddon (Revelations 17:8-18) may well be a simple retrospective prophecy.  相似文献   

9.
Prajapati  Sanjay K.  Kumar  Ashok  Chopra  Sumer  Bansal  B. K. 《Natural Hazards》2013,69(3):1781-1801

We compiled available information of damages and other effects caused by the September 18, 2011, Sikkim–Nepal border earthquake from the print and electronic media, and interpreted them to obtain Modified Mercalli Intensity (MMI) at over 142 locations. These values are used to prepare the intensity map of the Sikkim earthquake. The map reveals several interesting features. Within the meizoseismal area, the most heavily damaged villages are concentrated toward the eastern edge of the inferred fault, consistent with eastern directivity. The intensities are amplified significantly in areas located along rivers, within deltas or on coastal alluvium such as mud flats and salt pans. We have also derived empirical relation between MMI and ground motion parameters using least square regression technique and compared it with the available relationships available for other regions of the world. Further, seismic intensity information available for historical earthquakes which have occurred in NE Himalayas along with present intensity has been utilized for developing attenuation relationship for NE India using two-step regression analyses. The derived attenuation relation is useful for assessing damage of a potential future earthquake (earthquake scenario-based planning purposes) for the northeast Himalaya region.

  相似文献   

10.
11.
North-eastern Himalaya is said to be one of the world most complex geological set-up with different kinds of seismotectonic systems. Region has experienced two of the world’s strongest earthquakes, such as Shillong earthquake of 1897 known as Assam earthquake and subsequent 1950 earthquake in Arunachal Pradesh, both of with magnitude of 8.7, and also several other strong earthquakes. Various techniques have been applied to understand the past strong earthquake mechanism as well as hazard estimation carried out for future earthquake. Fractal correlation dimension (D c) is being used in this study with the seismicity for the period 1961 to recent for understanding the pattern of seismic hazard. The entire area has been divided into four major tectonic blocks, and each block event was divided into consecutive fifty events window for seeing spatiotemporal patterns. After comparing the patterns, we have identified that Block of Eastern Himalaya near Main Central Thrust, Main Boundary Thrust, north of Kopili lineament and Block of Shillong plateau near Dauki fault are having relatively intense clustering of events in recent times, which may be identified as the zones of most potential to have a strong event.  相似文献   

12.
The 2nd century AD earthquake in central Italy is only known by an epigraph that mentions restorations to a damaged weighing-house at the ancient locality of Pagus Interpromium. The available seismic catalogues report this event with the conventional date of 101 AD, a magnitude M aw of 6.3, and an epicentral location at the village of San Valentino in Abruzzo Citeriore, in the province of Pescara. In order to improve the knowledge of the damage pattern, we gathered all the archaeological data collected during modern excavations at sites located in the area, which were presumably struck by the earthquake. This information is mainly represented by (1) stratigraphic units due to the sudden collapse of buildings over still frequented floors; (2) stratigraphic units demonstrating restoration or re-building of edifices; (3) stratigraphic units formed as the result of the abandonment of sites or of their lack of frequentation for decades or centuries. Only stratigraphic evidence consistent with an earthquake occurrence during the 2nd century AD has been considered. The most recent archaeological material found in a collapsed unit is a coin of Antoninus Pius, dated at 147–148 AD. This may represent a post quem date very close to the occurrence of the earthquake. The gathered information, plus the stratigraphic data that excluded the earthquake occurrence at some sites, has allowed us to roughly delineate an area of possible damage, including the Sulmona Plain and surrounding areas. Comparisons between the possible 2nd century damage distribution and (i) the damage patterns of more recent historical events that have struck the investigated area, (ii) the distribution of virtual intensities obtained by simulating an earthquake having an epicenter in the Sulmona Plain and applying an intensity attenuation relationship and (iii) a shaking scenario obtained by modelling the activation of the major active fault of the Sulmona Plain area (the Mt. Morrone fault) have revealed consistency between the ancient earthquake and the activation of this fault. Since no other historical events can be attributed to this active fault, we conclude that the time that has elapsed since the last fault activation should be in the order of 1,850 years, i.e. a time span that is very close to the recurrence interval of Apennine seismogenic sources. Moreover, considering the fault length, the causative source may be responsible for earthquakes with M up to 6.6–6.7. The comparison between the presumed 2nd century damage and the shaking scenario suggests that the magnitude mentioned is consistent with the presumed effects of the ancient earthquake. Finally, considering that Sulmona (the most important town in the region investigated) is located in the middle of the Mt. Morrone fault hanging wall, we consider it as the probable epicentral area. Therefore, to summarise the information on the 2nd century AD earthquake, we can conclude that (i) it occurred shortly after 147–148 AD; (ii) a magnitude M w 6.6–6.7 can be attributed to it and (iii) the probable macroseismic epicentral area was Sulmona.  相似文献   

13.
在西藏安多地区进行活动断裂研究过程中,进行地表调查和探槽开挖,证实错那-安多地堑北缘主边界断裂上的最新地表断层陡坎实际是该区史前大地震的地表遗迹。根据地表观察和实地测量结果可知,该区最新古地震断坎的延伸范围可达 26~36km,平均垂直位移量达 1.0~1.4m。相关地层-地貌体的年代学测试结果和古地震破裂参数表明,最新的古地震发生在距今约 10.0~8.1ka期间,估计当时的古地震震级介于 6.9~7.3级之间,当时的极震区烈度可能≥Ⅸ度。此古地震破裂的发现表明,青藏高原中部正断层型大地震之后的沉寂时间可以长达近万年,明显长于藏南裂谷带上的正断层型古地震活动间隔。由于安多地区最新大地震之后的离逝时间已足以积累类似强度的大地震,因此,该区未来的大地震危险性较高。  相似文献   

14.
1970年通海地震的地震地质特征   总被引:3,自引:0,他引:3       下载免费PDF全文
张四昌  刘百篪 《地质科学》1978,13(4):323-335
一、前言1970年1月5日云南省通海、峨山、建水三县交界地区的曲江河谷发生了7.7级地震,震中位置是:东经102.6°;北纬24.1°,震源深度约为13公里。震中烈度10度强。  相似文献   

15.
In this study, the modified stochastic method based on dynamic corner frequency has been used for the simulation of strong ground motions in Gujarat region. The earthquake-generating faults have been identified in the Gujarat region on the basis of past seismicity of the region. In all, 19 probable faults have been identified with 12 in Kachchh region, 5 in Saurashtra and 2 in Mainland Gujarat region. The maximum magnitude has been assigned to each fault based on the regional tectonic environment and past seismicity. The strong ground motions from these identified sources have been estimated at numerous points distributed all over Gujarat region on a grid. The peak ground acceleration (PGA) values have been extracted from the accelerograms and contoured. The spatial distribution of maximum of 19 PGA values at every grid point have been described and discussed. The ground motions at the surface of 32 important cities of the Gujarat have been estimated by incorporating the site amplification functions. The site amplification functions are obtained using the local earthquake data. These cities are located on various types of geological formations. We note that the site amplification functions have modified the character of the records and amplified the acceleration values at almost all the sites. The Kachchh region can expect surface accelerations between 400 and 800 cm/s2, Saurashtra between 100 and 200 cm/s2 and Mainland less than 50 cm/s2 from a future large earthquake. The obtained results are useful for disaster mitigation measures, strengthening the existing built environment and design of structures in the region.  相似文献   

16.
Abstract

This study presents the relationship between local seismicity and springs discharge, in which the microseismicity modifies the state of stress of the aquifer matrix and these modifications of the local stress control the aquifer behaviour from an example of a basaltic reservoir crossed by a seismic fault.

Along the right-lateral Garni seismic wrench fault, the distribution in space and time of more than 500 micro-earthquakes has been studied providing a pattern of stress distribution. Together with this tectonic survey, the hydrographs of springs issuing from an aquifer located in basaltic lava flows and crossed by the fault have been gauged for 4 years. According to its tectonic, geologic and hydrodynamic properties, the reservoir has been divided in to several parts. The hydrological behaviour of the reservoir and of each of its parts has been modelled, based on the rainfall and hydrodynamic properties of the basaltic reservoir and of nearby reservoirs.

The model allows us to define the ‘normal behaviour’ of the springs, when their discharge is not affected by an earthquake. Anomalies to the normal hydrometric curves are defined, and correlated to small (M < 3.5) earthquakes along the Garni fault. We propose that the circulation of underground water in the area around the fault depends largely on the fracture pattern of the basalts and the aquifer basement, as pointed out from field observations. Changes in spring discharges are explained by variations in the state of stress around the Garni fault, induced by the alternation of elastic strain and stick-slip movement on the fault, and by creep far from the fault. A model of stress distribution is proposed which explains changes in fracture charateristics before and after earthquakes. © Elsevier, Paris  相似文献   

17.
A spatio-temporal analysis based on the data of eleven repeated levellings around the Tangshan region prior to the 1976 earthquake indicates that an uplift lasting for 2 years, from 1968 through 1969. with a magnitude of 50 mm, occurred in the epicentral area.Aseismic creep superimposed on the accumulated strain has been found in the vicinity of Tangshan and Baodi along both the Tangshan and the Jiyunhe faults.Assuming uniform strain accumulation and elastic dislocation, theoretical values of displacement at the various dislocation sites have been calculated and, using the least squares method, the optimal values of strain accumulation and the parameters of the creep faults in different years have been determined.The creep fault under Tangshan, a right-lateral normal fault, strikes N47°E and dips S87°E. and is 8 km long and 6 km wide. The upper boundary of the fault lies 2 km deep. The strike-slip and dip-slip offsets are, respectively, 104 cm and 8cm. The average rate of strain accumulation amounts to 0.9 × 10−7/yr. Creep at the fault amounted to 18.6 cm/yr and 1.4 cm/yr, respectively, in the strike and dip directions over the period 1969–1975. The Jiyunhe fault, although of smaller dimensions, has experienced a greater rate of creep than the Tangshan fault.A correlation of the above-mentioned uplift and creep with that of the Tangshan earthquake suggests that the uplift might have been a manifestation of the early development of the earthquake and that aseismic creep may be one of the precursory phenomena of shallow earthquakes. The sequence of processes preceding the Tangshan earthquake may be described as: strain accumulation-land upliftaseismic creep-inverse land deformation (or decrease in creep rate)-earthquake.  相似文献   

18.
The catastrophic earthquakes that recently (September 4th, 2010 and February 22nd, 2011) hit Christchurch, New Zealand, show that active faults, capable of generating large-magnitude earthquakes, can be hidden beneath the Earth’s surface. In this article we combine near-surface paleoseismic data with deep (<5 km) onshore seismic-reflection lines to explore the growth of normal faults over short (<27 kyr) and long (>1 Ma) timescales in the Taranaki Rift, New Zealand. Our analysis shows that the integration of different timescale datasets provides a basis for identifying active faults not observed at the ground surface, estimating maximum fault-rupture lengths, inferring maximum short-term displacement rates and improving earthquake hazard assessment. We find that fault displacement rates become increasingly irregular (both faster and slower) on shorter timescales, leading to incomplete sampling of the active-fault population. Surface traces have been recognised for <50% of the active faults and along ≤50% of their lengths. The similarity of along-strike displacement profiles for short and long time intervals suggests that fault lengths and maximum single-event displacements have not changed over the last 3.6 Ma. Therefore, rate changes are likely to reflect temporal adjustments in earthquake recurrence intervals due to fault interactions and associated migration of earthquake activity within the rift.  相似文献   

19.
基于详细的遥感解译和野外调查,发现龙首山南缘断裂发育有较新的地震地表破裂遗迹,包括断层坎、地震鼓包、河道的系统位错等断层地貌标志,破裂带总长度超过20 km,沿断裂走向其垂向位移介于0.35~4 m,水平位移介于0.3~1.9 m,龙首山南缘断裂主体表现为逆冲性质,仅在西端表现为局部左旋走滑的性质。通过剖面和探槽揭示,龙首山南麓地区全新世以来发生多次断层活动,最新的一次在约3.96 ka以来。经过与区域内的强震记录比对,认为此次新发现的地震地表破裂带可能是1954年山丹MS 7?地震所致。1954年山丹MS 7?地震在浅表沿两条断裂同时发生了地表破裂,表现为正花状构造的变形样式。这种同震位移分配现象以往多发现于走滑型地震中,此次在逆冲型地震中发现。龙首山南缘断裂地表破裂带的发现为揭示1954年山丹地震的震源过程和破裂样式提供了新的证据和思路。   相似文献   

20.
This study presents the future seismic hazard map of Coimbatore city, India, by considering rupture phenomenon. Seismotectonic map for Coimbatore has been generated using past earthquakes and seismic sources within 300 km radius around the city. The region experienced a largest earthquake of moment magnitude 6.3 in 1900. Available earthquakes are divided into two categories: one includes events having moment magnitude of 5.0 and above, i.e., damaging earthquakes in the region and the other includes the remaining, i.e., minor earthquakes. Subsurface rupture character of the region has been established by considering the damaging earthquakes and total length of seismic source. Magnitudes of each source are estimated by assuming the subsurface rupture length in terms of percentage of total length of sources and matched with reported earthquake. Estimated magnitudes match well with the reported earthquakes for a RLD of 5.2% of the total length of source. Zone of influence circles is also marked in the seismotectonic map by considering subsurface rupture length of fault associated with these earthquakes. As earthquakes relive strain energy that builds up on faults, it is assumed that all the earthquakes close to damaging earthquake have released the entire strain energy and it would take some time for the rebuilding of strain energy to cause a similar earthquake in the same location/fault. Area free from influence circles has potential for future earthquake, if there is seismogenic source and minor earthquake in the last 20 years. Based on this rupture phenomenon, eight probable locations have been identified and these locations might have the potential for the future earthquakes. Characteristic earthquake moment magnitude (M w ) of 6.4 is estimated for the seismic study area considering seismic sources close to probable zones and 15% increased regional rupture character. The city is divided into several grid points at spacing of 0.01° and the peak ground acceleration (PGA) due to each probable earthquake is calculated at every grid point in city by using the regional attenuation model. The maximum of all these eight PGAs is taken for each grid point and the final PGA map is arrived. This map is compared to the PGA map developed based on the conventional deterministic seismic hazard analysis (DSHA) approach. The probable future rupture earthquakes gave less PGA than that of DSHA approach. The occurrence of any earthquake may be expected in near future in these eight zones, as these eight places have been experiencing minor earthquakes and are located in well-defined seismogenic sources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号