首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
北秦岭太白花岗岩体LA-ICP-MS锆石U-Pb测年及其地质意义   总被引:2,自引:2,他引:0  
北秦岭太白岩体位于商丹构造带北侧。野外侵入关系和LA-ICP-MS锆石U-Pb定年显示,该岩体由早志留世的五里峡岩体、晚三叠世的红崖河岩体和早白垩世的下板寺岩体组成。五里峡岩体的主要岩石类型为片麻状黑云母二长花岗岩,锆石U-Pb年龄为(431±2) Ma;红崖河岩体的主要岩石类型为黑云母二长花岗岩,锆石U-Pb年龄为(214±2) Ma;下板寺岩体为粗粒黑云母花岗岩,锆石U-Pb年龄为(130±1) Ma,表明太白岩体是由3个不同时代岩体组成的侵入复合杂岩体。结合区域构造背景和前人的研究成果,得出早志留世五里峡岩体可能与秦岭微板块沿商丹缝合带俯冲碰撞有关;晚三叠世红崖河岩体与秦岭早中生代主期岩浆作用一致,是华北地块与扬子地块碰撞的产物;燕山期的下板寺花岗岩属于板内岩浆作用。研究显示,今后应注意大岩体的解体,其可能隐含着不可忽视的构造-岩浆作用信息。  相似文献   

2.
王秉璋  陈静  罗照华  陈发彬  王涛  郭贵恩 《岩石学报》2014,30(11):3213-3228
祁漫塔格地区是青藏高原北部最重要的多金属矿集区,晚二叠世-早侏罗世岩浆作用与成矿作用关系密切,以祁漫塔格东段为研究区分析讨论了祁漫塔格及临区晚二叠世-早侏罗世花岗岩特点,从晚二叠世-早侏罗世可以识别出4个阶段5个花岗岩组合.(1)晚二叠世弱过铝质高钾钙碱性系列二长花岗岩+正长花岗岩组合与偏铝质-弱过铝质钙碱性系列英云闪长岩+花岗闪长岩组合,LA-ICP-MS U-Pb年龄在252.0~258.5Ma,普遍含暗色铁镁质微粒包体;(2)中三叠世闪长岩+英云闪长岩+花岗闪长岩+(二长花岗岩)组合,LA-ICP-MS U-Pb年龄在226.9~238.6Ma,富含暗色铁镁质微粒包体,为偏铝质-弱过铝质钙碱性-高钾钙碱性系列岩石,Sr含量一般在400×10-6~537×10-6,δEu在0.67~0.95;(3)晚三叠世石英闪长岩+英云闪长岩+花岗闪长岩+二长花岗岩组合,LA-ICP-MS U-Pb年龄在211.7~214.1Ma,为偏铝质高钾钙碱性系列岩石,Sr含量一般在341×10-6~515×10-6,δEu在0.69~0.95之间;(4)晚三叠世-早侏罗世正长花岗岩组合,LA-ICP-MS U-Pb年龄在199.5~204.4Ma,为偏铝质高钾钙碱性系列岩石,Sr含量在54×10-6~195×10-6.晚二叠世花岗岩组合为大陆边缘弧火成岩构造组合,与古特提斯洋俯冲相关;中三叠世花岗岩组合出露面积巨大,构成了印支期北昆仑岩浆弧的主体,形成于俯冲-碰撞转换阶段,与俯冲岩石圈板片的断离相关,这一事件在东昆仑具有普遍意义,是东昆仑造山带最具规模的地幔物质注入与壳幔岩浆混合事件,晚三叠世花岗岩组合形成于后碰撞阶段,是加厚陆壳底部幔源玄武质岩浆底侵作用的结果.  相似文献   

3.
北秦岭太白岩体位于商丹构造带北侧。野外侵入关系和LA-ICP-MS锆石U-Pb定年显示,该岩体由早志留世的五里峡岩体、晚三叠世的红崖河岩体和早白垩世的下板寺岩体组成。五里峡岩体的主要岩石类型为片麻状黑云母二长花岗岩,锆石U-Pb年龄为(431±2)Ma;红崖河岩体的主要岩石类型为黑云母二长花岗岩,锆石UPb年龄为(214±2)Ma;下板寺岩体为粗粒黑云母花岗岩,锆石U-Pb年龄为(130±1)Ma,表明太白岩体是由3个不同时代岩体组成的侵入复合杂岩体。结合区域构造背景和前人的研究成果,得出早志留世五里峡岩体可能与秦岭微板块沿商丹缝合带俯冲碰撞有关;晚三叠世红崖河岩体与秦岭早中生代主期岩浆作用一致,是华北地块与扬子地块碰撞的产物;燕山期的下板寺花岗岩属于板内岩浆作用。研究显示,今后应注意大岩体的解体,其可能隐含着不可忽视的构造-岩浆作用信息。  相似文献   

4.
杨猛  王居里  王建其  党飞鹏 《岩石学报》2012,28(7):2121-2131
新疆中天山北缘望峰地区花岗岩的岩石学、地球化学及锆石U-Pb-Hf同位素研究表明:(1)望峰地区花岗岩岩石类型主要为二云母二长花岗岩和黑云母二长花岗岩,岩体高SiO2、Al2O3,中等富碱且相对富钾,A/CNK≥1.1,稀土含量中等(∑REE=162.6×10-6~211.8×10-6),轻重稀土分馏明显且富集轻稀土,具中等Eu负异常(δEu=0.42~0.49),相对富集LILE和LREE,亏损Ba、Sr、P、Ti、Nb、Ta、HREE等,属高钾钙碱性过铝质S型花岗岩; (2)锆石LA-ICP-MS U-Pb定年获得岩浆结晶年龄为439.9±2.2Ma,成岩时代为早志留世; (3)锆石Hf同位素组成较均一,εHf(t)=-5.0~-1.3,平均-2.72,二阶段模式年龄tDM2变化范围在1294~1482Ma之间,岩浆主要来源于中元古代中期地壳结晶基底岩系的部分熔融,源岩为经历过风化旋回、成熟度较低的硬砂岩,形成于中天山北缘早古生代碰撞造山期同碰撞环境。  相似文献   

5.
江南成矿带晚侏罗世-早白垩世幕阜山复式花岗岩体内部及周缘发育多个早白垩世伟晶岩稀有金属矿床,成矿伟晶岩是否源自幕阜山复式岩体演化花岗岩浆高度分异还存在争议.幕阜山麦市等地发育含电气石、石榴石及白云母二长花岗岩,LA-ICP-MS锆石U-Pb年龄介于130~135 Ma,在误差范围内与区内大规模成矿伟晶岩年龄相当.与早期斑状黑云母二长花岗岩和白云母二长花岗岩(151~143 Ma)相比,晚期含电气石、石榴石及白云母二长花岗岩锆石具有较高的Hf、Ta、Nb、Th、U含量和较低的Th/U和Eu/Eu*比值,体现较高的演化程度,与岩石矿物组合及锆石结晶温度相一致.锆石年代与微量元素说明,幕阜山地区成矿伟晶岩可能是幕阜山复式岩体中早白垩世演化花岗岩浆进一步分异的产物.   相似文献   

6.
大兴安岭南段在晚侏罗世-早白垩世期间集中爆发有多期岩浆活动,深入讨论花岗岩岩石成因及岩浆演化过程对该地区中生代地球动力学背景及成矿作用研究具有重要意义。本文报道了海流特中粒二长花岗岩、细粒二长花岗岩、花岗伟晶岩的锆石LA-ICP-MS U-Pb年龄和全岩地球化学数据。海流特中粒二长花岗岩、细粒二长花岗岩、花岗伟晶岩的锆石206Pb/238U加权平均年龄分别为142.0±0.7 Ma、141.2±1.1 Ma、139.7±2.4 Ma,属早白垩世。样品主量元素表现为高硅、富碱,A/CNK值为1.01~1.18,平均1.09,属弱过铝质。微量元素富集Rb、Th、K等大离子亲石元素(LILE),亏损Ba、Sr、P、Ti等高场强元素(HFSE),Eu负异常明显(δEu=0.012~0.040),Zr+Nb+Ce+Y值介于38.25×10-6~258.2×10-6之间,小于350×10-6,锆石饱和温度为723~778℃,未见原生白云母及碱性暗色矿物。岩浆演化过程中经历了斜长石、钾长石等矿物的分离结晶,且Zr/Hf、La/Ta、La/Nb值低于正常花岗岩范围,Nb/Ta、Y/Ho值处于正常花岗岩区域,稀土四分组效应参数TE1,3介于1.18~1.34之间,大于1.1。综上,海流特岩体属早白垩世高分异I型花岗岩,在结晶分异过程中存在弱的熔-流体相互作用,具有钨锡、稀有金属等成矿潜力。  相似文献   

7.
野马泉大型铁多金属矿床位于东昆仑造山带祁漫塔格地区,矿区发育大量与铁多金属成矿关系密切的花岗质岩体。LA-ICP-MS锆石U-Pb定年表明北矿带隐伏二长花岗岩、花岗闪长岩年龄分别为393±2Ma、386±1Ma;南矿带斑状石英二长闪长岩、正长花岗岩年龄为219±1Ma、213±1Ma,分别为早-中泥盆世和晚三叠世岩浆活动的产物。早-中泥盆世花岗闪长岩与二长花岗岩均为高钾钙碱性,A/CNK值(0.92~1.01)<1.1,具中等强度的负Eu异常(δEu为0.60~0.81),明显亏损P、Nb、Ta、Ti、Sr、Ba等,富集LREE、Rb、Th、U、K等,显示了I型花岗岩的特征。晚三叠世斑状石英二长闪长岩含有少量角闪石,A/CNK值(0.88~0.95)<1,轻稀土富集,具中等负Eu异常(δEu为0.49~0.67),富集Rb、U、Th、K等大离子亲石元素,亏损P、Nb、Ta、Ti、Sr、Ba等,具有I型花岗岩的特征;正长花岗岩高硅(SiO2=77.20%~78.13%)、富碱(K2O+Na2O=7.91%~8.27%)、贫铝(Al2O3=11.71%~12.18%)、贫钙(CaO=0.90%~1.01%),富集LREE、Y、Zr、Hf、Th、U、Ga等,强烈亏损Ba、Sr、P、Ti、Eu,具强烈的负Eu异常(δEu为0.08~0.13),显示弱过铝质A型花岗岩的特征。锆石Hf同位素组成表明,早-中二叠世岩体的εHft)为-3.3~6.2,晚三叠世岩体的εHft)为-6.3~5.5,显示在成岩过程中有地幔组分的参与。综合研究认为,野马泉矿区早-中泥盆世、晚三叠世岩体分别形成于早古生代构造-岩浆旋回的碰撞-后碰撞阶段和晚古生代-早中生代构造-岩浆旋回的碰撞-后碰撞阶段,可能是由地幔底侵古老陆壳,幔源基性岩浆与壳源花岗质岩浆发生不同程度混合作用而生成,壳幔物质交换为区内大规模铁铜铅锌多金属矿化提供大量成矿物质。  相似文献   

8.
研究目的】内蒙古赤峰五十家子岩体位于大兴安岭南段成矿带的西南部,对其进行系统的年代学和地球化学研究有助于丰富对区域构造-岩浆演化和成矿规律的认识。【研究方法】本文基于岩石学与地球化学研究工作,采用LA-ICP-MS锆石U-Pb测年、主微量元素分析和锆石Lu-Hf同位素测试等方法分析了岩体成因。【研究结果】LAICP-MS锆石U-Pb测年结果表明,五十家子岩体中的斑状含黑云母二长花岗岩、斑状含黑云母正长花岗岩和斑状黑云母正长花岗岩分别形成于(150.3±1.3) Ma,(145.9±1.8) Ma和(137.1±2.2) Ma,属晚侏罗世至早白垩世的产物。地球化学组成上,该花岗岩体具有富硅、富碱、低铝、低钙的特点,属于碱性、准铝质-弱过铝质A型花岗岩。锆石Hf同位素分析结果显示斑状含黑云母正长花岗岩具有正的εHft)值(+7.5~+14.3)和年轻的二阶段模式年龄(tDM2=285~718Ma),与大兴安岭南段晚中生代花岗岩εHft)值相近,表明其源区物质中年轻下地壳的贡献占主导地位,斑状含黑云母二长花岗岩中暗色包体的发育指示其可能经历了岩浆混合作用。【结论】根据本文研究结果,结合区域地质背景,五十家子岩体可能形成于晚中生代岩石圈伸展减薄环境下,软流圈上涌导致年轻下地壳发生部分熔融形成初始岩浆,并与幔源岩浆混合,后经高程度分异演化并于浅部侵位,最终固结形成了五十家子花岗岩体。五十家子岩体具有显著的高分异和深源浅侵位特征,与区域内锡多金属成矿作用有密切的成因联系。创新点:采用LA-ICP-MS锆石U-Pb测年方法获取五十家子岩体3个岩相的形成时间,依据岩相学特征、成岩时间、地球化学特征、锆石Hf同位素特征及区域地质背景综合分析岩体成因。  相似文献   

9.
高峰山花岗岩体位于个旧矿区东区高松矿田南部,为一隐伏岩体,岩性主要为中粒黑云母二长花岗岩。本文对该岩体进行年代学、地球化学研究以约束其形成时代和岩石成因。锆石LA-ICP-MS U-Pb定年获得的形成年龄为85.76±0.58Ma,即白垩纪晚期。地球化学数据显示,高峰山花岗岩具有高硅富碱的特点,属于准铝质到过铝质的高钾钙碱性花岗岩;并富集Rb、U、Ta、Pb、Nd,而亏损Ba、Nb、Sr、P、Zr、Eu、Ti;稀土元素总量为(∑REE)为146.7×10-6~236.1×10-6,铕负异常非常明显(δEu为0.03~0.11),具有类似M型的四分组效应。初步研究表明,高峰山花岗岩具有A2型花岗岩的特征,是地壳部分熔融形成的母岩浆经高程度的分离结晶作用形成的,是晚中生代华南西部岩石圈拉张伸展的地球动力学背景下,滇东南-桂西一带大规模岩浆活动-成岩事件的产物。  相似文献   

10.
藏北羌塘果干加年山的东部出露有一处花岗岩岩体,其主要岩性为黑云母二长花岗岩和花岗细晶岩岩脉,侵入晚三叠世望湖岭组和晚石炭世—早二叠世展金岩群之中。锆石LA-ICP-MS U-Pb年龄测定结果表明,该花岗岩的形成时代为晚三叠世(210.3Ma±2.6Ma),略晚于区域上高压变质带的变质峰期年龄和望湖岭组底部流纹岩的年龄。岩石地球化学数据显示,该花岗岩岩体属高钾钙碱性过铝质花岗岩,形成于后碰撞环境,是岩石圈碰撞加厚之后减压过程中岩浆活动的产物,说明在210Ma左右果干加年山地区的构造环境开始由碰撞阶段向板内阶段转化,进入了后碰撞阶段。  相似文献   

11.
Lithostratigraphy, physicochemical stratigraphy, biostratigraphy, and geochronology of the 77–70 Ma old series bracketing the Campanian–Maastrichtian boundary have been investigated by 70 experts. For the first time, direct relationships between macro- and microfossils have been established, as well as direct and indirect relationships between chemo-physical and biostratigraphical tools. A combination of criteria for selecting the boundary level, duration estimates, uncertainties on durations and on the location of biohorizons have been considered; new chronostratigraphic units are proposed. The geological site at Tercis is accepted by the Commission on Stratigraphy as the international reference for the stratigraphy of the studied interval. To cite this article: G.S. Odin, C. R. Geoscience 334 (2002) 409–414.  相似文献   

12.
Well investigated platforms have been selected in each continent, and the history of Cretaceous transgressions and regressions there is concisely reviewed from the available evidence. The factual records have been summarized into a diagram and the timing of the events correlated between distant as well as adjoining areas.On a global scale, major transgressions were stepwise enlarged in space and time from the Neocomian, via Aptian-Albian, to the Late Cretaceous, and the post-Cretaceous regression was very remarkable. Minor cycles of transgression-regression were not always synchronous between different areas. Some of them were, however, nearly synchronous between the areas facing the same ocean.Tectono-eustasy may have been the main cause of the phenomena of transgression-regression, but certain kinds of other tectonic movements which affected even the so-called stable platforms were also responsible for the phenomena. The combined effects of various causes may have been unusual in the Cretaceous, since it was a period of global tectonic activity. The slowing down of this activity followed by readjustments may have been the cause of the global regression at the end of the Cretaceous.  相似文献   

13.
The Afyon stratovolcano exhibits lamprophyric rocks, emplaced as hydrovolcanic products, aphanitic lava flows and dyke intrusions, during the final stages of volcanic activity. Most of the Afyon volcanics belong to the silica-saturated alkaline suite, as potassic trachyandesites and trachytes, while the products of the latest activity are lamproitic lamprophyres (jumillite, orendite, verite, fitztroyite) and alkaline lamprophyres (campto-sannaite, sannaite, hyalo-monchiquite, analcime–monchiquite). Afyon lamprophyres exhibit LILE and Zr enrichments, related to mantle metasomatism.  相似文献   

14.
正20140751 Guo Xincheng(Geological Party,BGMRED of Xinjiang,Changji 831100,China);Zheng Yuzhuang Determination and Geological Significance of the Mesoarchean Craton in Western Kunlun Mountains,Xinjiang,China(Geological Review,ISSN0371-5736,CN11-1952/P,59(3),2013,p.401-412,8  相似文献   

15.
正20141058 Chen Ling(Key Laboratory of Mathematical Geology of Sichuan Province,Chengdu University of Technology,Chengdu610059,China);Guo Ke Study of Geochemical Ore-Forming Anomaly Identification Based on the Theory of Blind Source Separation(Geosci-  相似文献   

16.
SEISMIC GEOLOGY     
正20141334 Chen Kun(Institute of Geophysics,China Earthquake Administration,Beijing100081,China);Yu Yanxiang Shakemap of Peak Ground Acceleration with Bias Correction for the Lushan,Sichuan Earthquake on April20,2013(Seismology and Geology,ISSN0253-4967,CN11-2192/P,35(3),2013,p.627-633,2 illus.,1 table,9 refs.)Key words:great earthquakes,Sichuan Province  相似文献   

17.
正20141624 Cai Xiongfei(Key Laboratory of Geobiology and Environmental Geology,Ministry of Education,China University of Geosciences,Wuhan 430074,China);Yang Jie A Restudy of the Upper Sinian Zhengmuguan and Tuerkeng Formations in the Helan Mountains(Journal of Stratigraphy,ISSN0253-4959CN32-1187/P,37(3),2013,p.377-386,5 illus.,2 tables,10 refs.)  相似文献   

18.
PALEONTOLOGY     
正20142263Lü Shaojun(Geological Survey of Jiangxi Province,Nanchang 330030,China)Early-Middle Permian Biostratigraphical Characteristics in Qiangduo Area,Tibet(Resources SurveyEnvironment,ISSN1671-4814,CN32-1640/N,34(4),2013,p.221-227,2illus.,2tables,22refs.)Key words:biostratigraphy,Lower Permian,Middle Permian,Tibet  相似文献   

19.
正20142560Hu Hongxia(Regional Geological and Mineral Resources Survey of Jilin Province,Changchun 130022,China);Dai Lixia Application of GIS Map Projection Transformation in Geological Work(Jilin Geology,ISSN1001-2427,CN22-1099/P,32(4),2013,p.160-163,4illus.,2refs.)  相似文献   

20.
GEOCHEMISTRY     
正20140692 Duo Tianhui(No.402 Geological Team,Exploration of Geology and Mineral Resources of Sichuan Authority,Chengdu611730,China);Wang Yongli Computer Simulation of Neptunium Existing Forms in the Groundwater(Computing Techniques for Geophysical and Geochemical Exploration,ISSN1001-1749,CN51-1242/P,35(3),  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号